首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Susceptibility to infection by the human immunodeficiency virus type-1 (HIV-1), both in vitro and in vivo, requires the interaction between its envelope (Env) glycoprotein gp120 Env and the primary receptor (R), CD4, and Co-R, either CCR5 or CXCR4, members of the chemokine receptor family. CCR5-dependent (R5) viruses are responsible for both inter-individual transmission and for sustaining the viral pandemics, while CXCR4-using viruses, usually dualtropic R5X4, emerge in ca. 50% of individuals only in the late, immunologically suppressed stage of disease. The hypothesis that such a major biological asymmetry is explained exclusively by the availability of cells expressing CCR5 or CXCR4 is challenged by several evidences. In this regard, binding of the HIV-1 gp120 Env to the entry R complex, i.e. CD4 and a chemokine R, leads to two major events: virion-cell membrane fusion and a cascade of cell signaling. While the fusion/entry process has been well defined, the role of R/Co-R signaling in the HIV-1 life cycle has been less characterized. Indeed, depending on the cellular model studied, the capacity of HIV-1 to trigger a flow of events favoring either its own latency or replication remains a debated issue. In this article, we will review the major findings related to the role of HIV R/Co-R signaling in the steps following viral entry and leading to viral spreading in CD4(+) T lymphocytes.  相似文献   

2.
The chemokine receptors CCR5 and CXCR4 are co-receptors together with CD4 for human immunodeficiency virus (HIV)-1 entry into target cells. Macrophage-tropic HIV-1 viruses use CCR5 as a co-receptor, whereas T-cell-line tropic viruses use CXCR4. HIV-1 infects the brain and causes a progressive encephalopathy in 20 to 30% of infected children and adults. Most of the HIV-1-infected cells in the brain are macrophages and microglia. We examined expression of CCR5 and CXCR4 in brain tissue from 20 pediatric acquired immune deficiency syndrome (AIDS) patients in relation to neuropathological consequences of HIV-1 infection. The overall frequency of CCR5-positive perivascular mononuclear cells and macrophages was increased in the brains of children with severe HIV-1 encephalitis (HIVE) compared with children with mild HIVE or non-AIDS controls, whereas the frequency of CXCR4-positive perivascular cells did not correlate with disease severity. CCR5- and CXCR4-positive macrophages and microglia were detected in inflammatory lesions in the brain of children with severe HIVE. In addition, CXCR4 was detected in a subpopulation of neurons in autopsy brain tissue and primary human brain cultures. Similar findings were demonstrated in the brain of adult AIDS patients and controls. These findings suggest that CCR5-positive mononuclear cells, macrophages, and microglia contribute to disease progression in the central nervous system of children and adults with AIDS by serving as targets for virus replication.  相似文献   

3.
BACKGROUND: HIV infection in India is unique as it occurs predominantly by CCR5-utilizing isolates that exhibit no co-receptor switch. OBJECTIVES: To study HIV-1 co-receptor dynamics on T cells and monocytes following viral infection. STUDY DESIGN: HIV co-receptor expression was evaluated by flow cytometry on various cell subsets in HIV-infected Indians and in vitro in human peripheral blood mononuclear cells infected with CCR5- or CXCR4-utilizing HIV-1. Transfection of the T cell line CEM-CCR5 (which expresses CD4, CCR5 and CXCR4) with HIV-1 Nef or Vpu expression vectors, or treatment with recombinant soluble gp120 from CCR5- and CXCR4-tropic HIV-1, was carried out to determine their effects on co-receptor expression. RESULTS: Indian HIV patients had fewer CD4(+)CCR5(+) T cells and CCR5-expressing activated CD4(+) T cells, but higher CXCR4-expressing activated CD4(+) T cells compared with controls. Expression of CCR5 was not different on monocytes in HIV patients as compared to controls. The CCR5 downregulation on T cells was HIV infection specific and was governed by the co-receptor-utilization phenotype of the virus. The Nef and soluble gp120 proteins induced CCR5 downregulation, the latter in a co-receptor-utilization phenotype specific manner. CONCLUSIONS: The HIV-1 co-receptor dynamics in Indian patients is distinct from western patients and depends upon the virus surface protein. We propose this to be a viral survival strategy.  相似文献   

4.
We show that IL-13 in the presence of TNF-alpha effected an equal or greater antiviral activity against a dual-tropic HIV-1 (R5X4) in macrophages. A temporary or continued exposure of macrophages to both cytokines significantly decreased the infection and replication of R5X4 HIV-1(89.6) (median, 128-fold, n = 9, p = 0.024) in macrophages as compared to untreated controls when analyzed over six decreasing multiplicities of infection. A quantitative flow cytometric assay revealed that IL-13 induced a significant (approximately 50 %) reduction in the number of CD4 and CC chemokine receptor 5 (CCR5) antibody binding sites while completely abrogating surface expression of CXC chemokine receptor 4 (CXCR4). In the presence of IL-13 and TNF-alpha, expression of CCR5 was completely abrogated while the expression of CD4 and CXCR4 remained significantly reduced as compared to untreated controls. A reduction in CD4 and HIV-1 coreceptors was associated with a decrease in reverse-transcribed viral DNA at 24 h post-infection. Quantification of viral gene expression using amphotropic MLV Env pseudotyped luciferase reporter viruses suggested that IL-13 inhibited HIV-1 gene expression within 24 h by up to 90 % in the presence or absence of TNF-alpha. In conclusion, our data suggest that IL-13 is a powerful counter-regulatory agent against TNF-alpha-induced HIV-1 expression while also acting with TNF-alpha in inhibiting de novo infection of macrophages.  相似文献   

5.
The susceptibility of HIV-1 to chemokine-mediated inhibition may be lost as a consequence of the expanded usage of chemokine co-receptors frequently occurring in clade B isolates obtained from individuals with advanced disease. Since chemokine-based immune intervention is under intense investigation, it is crucial to determine its potential effect on primary dualtropic HIV isolates characterized by simultaneous utilization of CCR5 and CXCR4 chemokine co-receptors (R5X4 viruses). In the present study, the CCR5 binding chemokine regulated upon activation normal T cell expressed and secreted (RANTES) strongly inhibited the replication of two of eight primary R5X4 viruses in mitogen-activated primary peripheral blood mononuclear cells (PBMC). The CXCR4 antagonist AMD3100 efficiently suppressed the replication of other two HIV isolates, whereas the remaining four viruses were partially inhibited by treatment with either RANTES or AMD3100. The potency of chemokine-mediated inhibition was influenced by PBMC donor variability, but it was usually independent from the levels of expression of CCR5 or CXCR4. Dual co-receptor usage was maintained by the viruses after two serial passages on U87.CD4 astrocytic cell lines expressing exclusively either CCR5 or CXCR4. The gp120 env variable domains were sequenced before and after passages on U87.CD4 cells. Virus replication into U87.CD4-CXCR4 cells did not result in changes in the V3 region but perturbed the dominant env V4 sequence. Interestingly, double passage onto U87.CD4-CXCR4 cells determined the loss of susceptibility to RANTES inhibition. In conclusion, interference with CCR5 may efficiently inhibit the replication of at least some dualtropic HIV-1 strains, whereas forced CXCR4 usage may result in viral escape from CCR5-dependent inhibitory effects.  相似文献   

6.
The CXC chemokine receptor CXCR4 was the first molecule identified as a coreceptor working in conjunction with CD4 to mediate cellular entry for the human immunodeficiency virus (HIV-1). Since that original discovery, 11 other seven-mtransmembrane domain molecules, many of which are chemokine receptors, have been shown to facilitate HIV entry into cells. These include CCR5, CCR3, CCR2, CCR1, CCR8, CX3CR1, STRL33 (BONZO), GPR15 (BOB), GPR1, US28, and APJ. In studies done by this and other labs, CCR3, CCR5, and CXCR4 have been identified in CNS microglia and several laboratories, including ours, have shown that CXCR4 is expressed in neurons. Neuronal expression of CCR2, CCR3, and CCR5 has been less consistent. We performed a semiquantitative immunohistochemical analysis of the expression of CCR2, CCR3, CCR5, and CXCR4 in 23 regions of the brain and in two sections of the spinal cord. Hippocampal neurons were positive for CCR2, CCR3, and CXCR4, but not for CCR5. In other regions of the brain, neurons, and glial cells reacted with anti-CCR2, anti-CCR3, and anti-CXCR4 antibodies, whereas only glial cells (primarily microglia) were positive for CCR5. The areas of highest expression, however, seem to be subcortical regions and the limbic system. The limbic system plays a key role in memory, and the presence of CXCR4-which can bind the viral envelope protein gp120-min a subset of neurons from this system may play a role in the development of HIV-related dementia.  相似文献   

7.
Dendritic cells (DC) and macrophages play an important role in the generation of immune responses and transmission of HIV infection. It has been recently found that, in the presence of gp120, CD4 can be efficiently coimmunoprecipitated by anti-CXCR4 antibodies from lymphocytes and monocytes but not from blood monocyte-derived macrophages. The gp120-CD4-CXCR4 complex formation paralleled the ability for these cell types to support X4 (LAV) HIV-1 envelope glycoprotein (Env)-mediated fusion. Here we report that, unlike macrophages but similar to lymphocytes and monocytes, human blood monocyte-derived DC allow efficient complex formation among the HIV-1 coreceptor CXCR4, the primary receptor CD4, and the Env gp120 (LAV) which parallels their fusion ability with cells expressing HIV-1 Env (LAV). In addition, DC behaved similarly to macrophages, lymphocytes, and monocytes in their ability to support formation of complexes between CD4 and the other major HIV-1 coreceptor CCR5 even in the absence of gp120 as demonstrated by CD4 coimmunoprecipitation with anti-CCR5 antibodies. Further, the amount of gp120-CD4-CXCR4 (or CCR5) complexes was proportional to the extent of cell fusion mediated by the HIV-1 Env (LAV or JRFL, respectively). These results demonstrate that of all the major types of host cells important for HIV-1 infection, the first central stage in the entry mechanism, the formation of gp120-CD4-coreceptor complexes, is not impaired except for the formation of the gp120-CD4-CXCR4 complex in macrophages. Therefore, for most CD4+ target cells restraint(s) on productive HIV-1 infection appears to occur at stages of the virus life cycle subsequent to the gp120-CD4-coreceptor complex formation.  相似文献   

8.
HIV-1 infection of cells is mediated by engagement between viral envelope glycoproteins (Env) and a receptor complex comprising CD4 and one of two chemokine receptors, CCR5 and CXCR4, expressed on the surface of target cells. Most CD4+-transformed T cell lines express only CXCR4, but primary lymphocytes and macrophages, the main cellular targets for infection in vivo, express both coreceptors. Cell- and viral strain-specific utilization of these coreceptor pathways, rather than coreceptor expression per se, regulates lymphocyte and macrophage entry and tropism. Virus use of coreceptor[s] (R5, X4, or R5 and X4) and its target cell tropism (lymphocytes, macrophages, and/or transformed T cell lines) are related but distinct characteristics of Envs. A comprehensive classification schema of HIV-1 Env phenotypes that addresses both tropism and coreceptor use is proposed. Defining Env phenotype based on both parameters is important in the development of entry inhibitors and vaccines, for understanding changes in Env that evolve over time in vivo, and for discerning differences among viral species that underlie aspects of pathogenesis and transmission. Recognizing how tropism is related to, yet differs from, coreceptor selectivity is critical for understanding the mechanisms by which these viral characteristics impact pathogenesis.  相似文献   

9.
Summary.  CD4 and members of the chemokine receptor family are required for infection of host cells, in vitro and in vivo, by the human immunodeficiency virus type-1. Although it is established that HIV-1 gp120 interacts with CD4 and the coreceptors CCR5 or CXCR4 at the plasma membrane during HIV entry, longer-term interactions taking place between these molecules and HIV Env are less well understood. We have measured the cell surface expression of CD4, CCR5 and CXCR4 on a CD4+/CXCR4+CCR5+ T cell line following infection by cell line-adapted X4 and primary X4, X4R5 and R5 viruses. We report a selective downmodulation of CD4 by X4 and R5X4 viruses, but not by R5 viruses. None of the viruses tested significantly reduced CXCR4 expression at any time after infection. CCR5 protein and mRNA expression was eliminated by chronic infection with R5 viruses. These results indicate that chronic HIV-1 infection has distinct effects on CD4 and coreceptor membrane expression that depends on viral origin and coreceptor usage. Accepted October 25, 1999  相似文献   

10.
OBJECTIVE: To measure CCR5 and CXCR4 chemokine receptor expression on CD4 and CD8 T cells in HIV-1 infection and to relate levels to the distribution of CD45RO memory and CD45RA-naive subsets, measures of disease activity, and response to highly active antiretroviral therapy (HAART). DESIGN: Fourteen untreated HIV-1-infected patients, 18 patients at 3-to 4-weeks after beginning HAART, and 35 uninfected control subjects were studied. METHODS: Four-color cytofluorometry with appropriate conjugated monoclonal antibodies (mAbs) was performed to define CD45RA and CD45RO subsets of CD4 and CD8 T cells and measure their expression of CCR5, CXCR4, and CD38. RESULTS: HIV-1-infected patients had higher CCR5 levels and lower CXCR4 levels on CD4 and CD8 T cells and their CD45RO/CD45RA subsets than control subjects did. However, CCR5 elevation was statistically significant only for CD4 T cells and their subsets, and CXCR4 depression was significant for CD8 T cells and their subsets (and for CD4:CD45RO cells). The elevation of CCR5 and depression of CXCR4 were not due to shifts in CD45RO/CD45RA subset proportions but to upregulation or downregulation within the subsets. CCR5 elevation on CD4 T cells was significantly restored toward normal by HAART, but the CXCR4 depression was not. CCR5 expression but not CXCR4 expression correlated with other measures of immunodeficiency (CD4 T-cell levels), active infection (viral load), and cellular activation (CD38). CONCLUSIONS: CCR5 elevation is a concomitant of immune activation and viral replication that occurs in HIV-1 infection, but the relation of CXCR4 depression to severity of infection, disease progression, and response to therapy remains undefined.  相似文献   

11.
Although a number of chemokine receptors display coreceptor activities in vitro, chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) remain the major coreceptors used by the human immunodeficiency virus type 1 (HIV-1). In this study, we used an envelope-mediated fusion assay to demonstrate low CCR4 coreceptor activity with some primary HIV-1 and simian immunodeficiency virus-1 (mac316) isolates in vitro. The coreceptor activity was sensitive to CCR4-specific antibodies and to the CCR4-specific chemokine ligand macrophage-derived chemokine (MDC)/chemokine ligand 22 (CCL22). Treatment of peripheral blood mononuclear cells (PBMCs; which express high levels of CCR4) with CCL22 caused down-modulation of endogenous CCR4 but had no significant effect on HIV-1 entry, suggesting that CCR4 may not be used as an entry coreceptor. Despite expression of other minor coreceptors on PBMCs, CCR5 and CXCR4 are preferentially used by HIV-1 isolates, as shown by chemokine-inhibition data. To determine the factors involved in this selective use, we analyzed CCR4 coreceptor activity and compared it with CCR5 use in PBMCs. We used a quantitative fluorescence-activated cell-sorting assay to estimate the numbers of CCR4 and CCR5 antibody-binding sites (ABS) on PBMCs. Although CCR4 was found on a higher percentage of CD4(+) cells, CCR5 ABS was twofold greater than CCR4 ABS on CD4(+) cells. Confocal microscopy revealed strong cell-surface CD4/CCR5 but weak CD4/CCR4 colocalization in PBMCs. Binding studies demonstrated that soluble gp120 had greater affinity to CCR5 than CCR4. The results suggested that coreceptor density, colocalization with CD4, and affinity of the viral gp120 to the coreceptor may determine preferential coreceptor use by HIV-1.  相似文献   

12.
13.
Chemokines are critical components of the immune system that participate in immune homeostasis and alterations in chemokine balance can result in severe inflammatory and autoimmune diseases. The role of chemokines and their receptors in viral infections including HIV-1 was predicted from the early studies of HIV-1 co-receptor CCR5 and its ligands and a divergent role of C-C chemokines in HIV-1 pathogenesis has been established. For example, CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES) have been shown to possess antiviral effects by binding to the HIV-1 co-receptor CCR5, whereas CCL2, a pro-inflammatory chemokine, supports HIV-1 replication despite being a member of same chemokine family. Furthermore, the well-established role of CCL2 in driving the Th2 immune response supports its potential role in HIV-1/AIDS. Recent reports suggest multiple pathways of CCL2 affect HIV-1 infection. In this review, we provide a comprehensive overview of the role and potential mechanisms of the HIV-1-CCL2 interplay in driving virus-induced immuno-pathology, suggesting that CCL2 could be an anti-inflammatory target in the treatment of HIV-1 infection.  相似文献   

14.
Virologic failure on continuous antiretroviral therapy (ART) is associated with variable changes in CD4 T-cell counts: peripheral CD4 T-cell counts decrease in conjunction with a resurgence of plasma virus (nonresponders) or remain stable or continue to increase despite ongoing virus replication (discordant responders). This study found that HIV-1 isolated from nonresponders had significantly greater replicative capacity in activated peripheral blood mononuclear cells (PBMCs) as well as an enhanced ability to induce apoptosis in both HIV-1-infected and HIV-1-uninfected CD4 T cells compared with virus isolated from discordant responders. Enhanced replicative capacity in PBMCs of virus isolated from nonresponders was inhibited by AMD3100, a CXCR4 antagonist. Virus quasispecies isolated from PBMCs from nonresponders used both CC chemokine receptor 5 (CCR5) and CX chemokine receptor 4 (CXCR4) for entry, in contrast to virus isolated from PBMCs from discordant responders, which predominantly used CCR5. In contrast, virus isolated from plasma from both groups predominantly used CCR5. In summary, although drug resistance may lead to impaired viral fitness, the capacity of virus quasispecies from PBMCs to use CXCR4 may have significant consequences on viral replicative capacity and potentially on clinical outcome.  相似文献   

15.
HIV/AIDS患者CCR5、CXCR4的表达与疾病进展的关系   总被引:2,自引:0,他引:2  
目的 了解HIV AIDS患者淋巴细胞表面第二受体CCR5、CXCR4的表达 ,分析其与疾病进展的关系 ,探讨HIV感染的免疫基础。方法 收集 33例HIV AIDS患者及 13例健康对照的抗凝全血 ,用流式细胞仪检测第二受体CCR5、CXCR4的表达 ,并分析第二受体表达与病毒载量、CD4 + T淋巴细胞绝对值及T淋巴细胞活化 (HLA DR+ CD38+ )的相关性。结果 艾滋病组CD4 + 、CD8+ T淋巴细胞表面CCR5表达高于无症状HIV 1感染组及健康对照 (P <0 .0 0 1) ;艾滋病组CD8+ T淋巴细胞表面CXCR4表达低于健康对照 (P <0 .0 1)。HIV AIDS患者CD4 + 、CD8+ T淋巴细胞表面CCR5的表达与病毒载量明显正相关 (P <0 .0 1) ;与CD4 + T淋巴细胞绝对值明显负相关 (P <0 .0 1) ,与T淋巴细胞活化(HLA DR+ CD38+ )水平明显正相关 (P <0 .0 0 1)。结论 HIV 1感染者第二受体CCR5的表达与机体对HIV的免疫反应及疾病进展密切相关。  相似文献   

16.
BACKGROUND: The chemokine receptors CXCR4 and CCR5 have been identified as the major coreceptors for HIV-1 on CD4+ cells and macrophages. The natural ligands for these receptors are SDF-1 and the beta-chemokines (MIP-1alpha, MIP-1beta, RANTES), respectively, and are the products of a variety of immune cells, including CD8+ T lymphocytes. STUDY DESIGN/METHODS: We hypothesized that the ability to stimulate the natural ligands for these receptors using an immune based therapy might influence in vivo chemokine receptor expression. RESULTS: In vivo CXCR4 expression remained stable after treatment with an HIV-1 Immunogen (REMUNE), whereas CCR5 expression on CD4+ T cells decreased (p < .05). Furthermore, HIV-1 antigen-specific production of beta-chemokines in vitro was also augmented (P < .05). CONCLUSIONS: These preliminary results suggest that this HIV-1-specific immune-based therapy can stimulate antigen-specific beta-chemokine production in vitro and downregulate CCR5 receptor expression on CD4 cells in vivo.  相似文献   

17.
In this study, coreceptor usage of HIV-1 other than subtype B in relation to HIV-1 transmission from mother to child was investigated. Repeated sampling of 42 HIV-1-seropositive, asymptomatic women in Cameroon during the second and third trimesters of pregnancy, at delivery, and 6 months postpartum were performed. Env subtyping was carried out from uncultured peripheral blood mononuclear cells (PBMCs) by heteroduplex mobility assay and, whenever necessary, by DNA sequencing. Virus isolates were tested for coreceptor usage on human cell lines-U87.CD4 and GHOST(3)-engineered to express stably CD4 and the chemokine receptors CCR1, CCR2b, CCR3, CCR5, or CXCR4, or the orphan receptors BOB/gpr15 or Bonzo/STRL33/TYMSTR. Transmission rate was 11.9%. Viruses were predominantly envelope subtype A and used CCR5 as coreceptor and, surprisingly, 4 of 28 (14.2%) isolates from mothers and 1 of 3 isolates from children used the orphan receptor Bonzo as well. In 2 transmitting mothers from whom sequential HIV-1 isolates were available, viral coreceptor usage evolved from CCR5 monotropic to CCR5/Bonzo dual tropic during pregnancy, and in 1 case transmission of this virus could be documented. Our data suggest that evolution of HIV-1 coreceptor usage to dual (or multi-) tropism may occur during pregnancy.  相似文献   

18.
The chemokine receptor gene, CCR5, has become a central theme in studies of host genetic effects on HIV-1 pathogenesis ever since the discovery that the CCR5 molecule serves as a major cell surface co-receptor for the virus. A growing number of genetic variants within the coding and 5' regulatory region of CCR5 have been identified, several of which have functional consequences for HIV-1 pathogenesis. Here we review the CCR5 literature describing CCR5 polymorphism and the functional ramifications that several of these variants have on HIV-1 infection and progression to AIDS. The multiplicity of CCR5 genetic effects on HIV-1 disease underscores the critical importance of this gene in controlling AIDS pathogenesis and provides the logic for develop-ment of therapeutic strategies that target the interaction of HIV-1 envelope and CCR5 in HIV-1 associated disease.  相似文献   

19.
The chemokine receptors CCR5 and CXCR4 serve as the cellular receptors in conjunction with CD4 for HIV-1 entry and infection of target cells. Although the virus has subverted these molecules for its own use, their natural function is to respond to activation and migration signals delivered by extracellular chemokines. A principal research objective of our laboratory is to understand the consequences of virus-chemokine receptor interactions for cellular function, as well as for entry and infection. We hypothesized that CXCR4-using (X4) and CCR5-using (R5) HIV-1 strains might elicit signals through the chemokine receptors that result in aberrant function and/or regulate virus entry or postentry steps of infection. We have focused on primary human macrophages, which express both CXCR4 and CCR5, because macrophages are a principal target for HIV-1 in vivo, in appropriate macrophage activation appears to play a major role in the pathogenesis of certain sequelae of AIDS, such as HIV encephalopathy, and macrophage infection is regulated at several steps subsequent to entry in ways that are linked to envelope-receptor interactions. This review summarizes our recent findings regarding the mechanisms of chemokine-receptor signaling in macrophages, the role of viral envelope glycoproteins in eliciting macrophage signals, and how these activation pathways may participate in macrophage infection and affect cell functions apart from infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号