首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
RNA interference of HIV replication   总被引:19,自引:0,他引:19  
  相似文献   

5.
RNA interference directed to CDK2 inhibits HIV-1 transcription   总被引:3,自引:0,他引:3  
Ammosova T  Berro R  Kashanchi F  Nekhai S 《Virology》2005,341(2):171-178
  相似文献   

6.
RNA interference (RNAi) has recently emerged as a promising antiviral technique in vertebrates. Although most studies have used exogenous short interfering RNAs (siRNAs) to inhibit viral replication, vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) are more efficient and are practical for in vivo delivery. In this study, replication competent retroviral vectors were designed to deliver shRNA-mirs targeting subgroup B avian leukosis virus (ALV), the most effective of which reduced expression of protein targets by as much as 90% in cultured avian cells. Cells expressing shRNA-mirs targeting the tvb receptor sequence or the viral env(B) sequence significantly inhibited ALV(B) replication. This study demonstrates efficient antiviral RNAi in avian cells using shRNA-mirs expressed from pol II promoters, including an inducible promoter, allowing for the regulation of the antiviral effect by doxycycline.  相似文献   

7.
The RNA interference pathway is a mechanism to regulate gene expression that acts in mammalian antiviral immunity as a complement of interferon- and cytokine-based innate immunity. RNA interference has been proposed as an ancient mechanism against viruses since several components of this system show an effect against viral replication. In fact, protein effectors of this pathway, as well as synthesized microRNA, act against HIV-1, exerting a partial control over HIV-1 latency and replication. Conversely, HIV-1 may counteract this antiviral cell response through two major lines of attack: first, its main regulator Tat suppresses the cellular RNA interference pathway; and second, the virus synthesizes viral microRNA that alter specific cellular functions to enhance HIV-1 replication. As a result of this complex interaction, the microRNA profile in an HIV-1-infected cell is deeply modified. One key application of all this knowledge is the development of pharmacological treatment since microRNA expression can be manipulated and artificial small interference RNA can be delivered into the infected cell to inhibit viral replication. This strategy, combined with current antiretroviral therapy, could be valuable in controlling HIV-1 replication in infected cells.  相似文献   

8.
9.
A ribozyme was constructed that specifically cleaves RNA that contains the first coding exon of the tat gene of HIV-1. This anti-tat ribozyme was incorporated into a Moloney murine leukemia virus vector. A sequence containing only the 48-nucleotide antisense region of the ribozyme was also inserted into the retroviral vector. Human T-cell lines constitutively producing the tat-antisense and the anti-tat ribozyme RNA were created by transduction into Jurkat cells. When challenged with HIV-1, both the tat-antisense and anti-tat ribozyme-producing cells inhibited the replication of HIV-1. The antisense vector conferred a greater resistance to HIV-1 replication than did the anti-tat ribozyme vector.  相似文献   

10.
Li W  Yang X  Jiang Y  Wang B  Yang Y  Jiang Z  Li M 《Archives of virology》2011,156(11):1979-1987
Influenza (flu) pandemics have posed a great threat to human health in the last century. However, current vaccination strategies and antiviral drugs provide limited protection. RNA interference (RNAi) is an effective means of suppressing influenza virus replication. PB1 is the critical protein subunit of the influenza virus RNA polymerase. The gene encoding this protein, PB1, is highly conserved among different subtypes of IAV and was therefore chosen as the target in this study. The oligonucleotide, PB1-shRNA, contains a 21-bp siRNA corresponding to nucleotides 1,632 to 1,652 of PB1 linear vRNA with BamHI or EcoRI restriction enzyme sites incorporated at the ends. The PB1-shRNA oligonucleotide was directionally cloned into the RNAi-ready pSIREN-shuttle vector. The correct structure of the resulting pSIREN/PB1 plasmid was confirmed by restriction endonuclease digestion. Madin-Darby canine kidney (MDCK) cells were transfected with pSIREN/PB1 and subsequently infected with IAV at an MOI of 0.1 (A/PR/8/34, H1N1). The virus titer in cell culture supernatants was determined 48 hours later, and it was found that virus growth was inhibited by more than 50-fold relative to controls. Furthermore, embryonated eggs and mice were inoculated with liposome-encapsulated pSIREN/PB1 and then challenged with the A/PR/8/34 virus. The results showed at least a 100-fold inhibition in virus replication in egg allantoic fluid and a survival rate of between 50% and 100% in experimental mice. This study demonstrates that PB1-shRNA expressed by the recombinant plasmid pSIREN/PB1 inhibits influenza A virus replication both in vitro and in vivo. These observations provide a foundation for the development of a new and efficient treatment of influenza infections.  相似文献   

11.
Liu J  Chen I  Chua H  Du Q  Kwang J 《Virology》2006,347(2):422-433
Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome (PMWS) for which no antiviral treatment is available. To exploit the possibility of using RNA interference (RNAi) as a therapeutic approach against the disease, plasmid-borne short hairpin RNAs (shRNAs) were generated to target the PCV2 genome. Transfection of these shRNAs into cultured PK15 cells caused a significant reduction in viral RNA production that was accompanied by inhibiting viral DNA replication and protein synthesis in infected cells. The effect was further tested in vivo in a mouse model that has been developed for PCV2 infection. Mice injected with shRNA before PCV2 infection showed substantially decreased microscopic lesions in inguinal lymph nodes compared to controls. In situ hybridization and immunohistochemical analyses showed that shRNA caused a significant inhibition in the level of viral DNA and protein synthesis detected in the lymph nodes of the treated mice relative to the controls. Taken together, these results indicate that shRNAs are capable of inhibiting PCV2 infection in vitro as well as in vivo and thus may constitute an effective therapeutic strategy for PCV2 infection.  相似文献   

12.
Control of nonsegmented negative-strand RNA virus replication by siRNA   总被引:11,自引:0,他引:11  
Barik S 《Virus research》2004,102(1):27-35
Our laboratory provided the first proof-of-concept that double-stranded short interfering RNA (ds-siRNA) can act as potent and specific antiviral agents. Designed against specific mRNAs of nonsegmented negative-stranded RNA (NNR) viruses, siRNAs abrogated expression of the corresponding viral proteins, and generated the predicted viral phenotypes. Knockdown was demonstrated across different genera: respiratory syncytial virus (RSV), a pneumovirus; vesicular stomatitis virus (VSV), a rhabdovirus; and human parainfluenza virus (HPIV), a paramyxovirus. The targeted genes could have a wide range of functions, thus documenting the versatility of the technique. Interestingly, antisense single-stranded siRNA (ss-siRNA) was also effective, albeit at a higher concentration. NNR viral genomic and antigenomic RNA, which are encapsidated by nucleocapsid protein and serve as templates for viral RNA-dependent RNA polymerase, were resistant to siRNA. Together, siRNAs offer complementary advantages over traditional mutational analyses that are difficult to perform in NNR viruses, and are also an important new tool to dissect host-virus interactive pathways.  相似文献   

13.
Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication   总被引:5,自引:0,他引:5  
A substantial proportion of HIV-1-infected individuals are intravenous drug users (i.v.DUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the mu-opioid receptor. Our results show that DAMGO, a selective mu-opioid agonist, increases CXCR4 and CCR5 expression in both CD3(+) lymphoblasts and CD14(+) monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the mu-opioid receptor based on the ability of a mu-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of mu-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression.  相似文献   

14.
RNA interference (RNAi), a conserved mechanism triggered by small interfering RNA (siRNA), has been used for suppressing gene expression through RNA degradation. The replication of caliciviruses (CVs) with RNAi was studied using the Tulane virus (TV) as a model. Five siRNAs targeting the non‐structural, the major (VP1) and minor (VP2) structural genes of the TV were developed and the viruses were quantified using quantitative real time PCR (qPCR) and tissue culture infective dose (TCID50) assay. Treatment of the cells with siRNA 4 hr before viral inoculation significantly reduced viral titer by up to 2.6 logs and dramatically decreased viral RNA copy numbers and viral titers 48 hr post infection in four of the five siRNAs studied. The results were confirmed by Western blot, in which the major structural protein VP1 was markedly reduced in both the cells and the culture medium. Two small protein bands of the shell (S) and protruding (P) domains of the viral capsid protein were also detected in the cell lysates, although their role in viral replication remains unknown. Since the TV shares many biological properties with human noroviruses (NoVs), the successful demonstration of RNAi in TV replication would provide valuable information in control of acute gastroenteritis caused by human NoVs. J. Med. Virol. 85:179–186, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Human immunodeficiency virus type I (HIV-1) DNA integration is an essential step of viral replication. We have suggested recently that this stage of HIV-1 life-cycle triggers a cellular DNA damage response and requires cellular DNA repair proteins for its completion. These include DNA-PK (DNA-dependent protein kinase), ATR (ataxia telangiectasia and Rad3-related), and, at least in some circumstances, ATM (ataxia telangiectasia mutated). Host cell proteins may constitute an attractive target for anti-HIV-1 therapeutics, since development of drug resistance against compounds targeting these cellular cofactor proteins is unlikely. In this study, we show that an inhibitor of ATR and ATM kinases, caffeine, can suppress replication of infectious HIV-1 strains, and provide evidence that caffeine exerts its inhibitory effect at the integration step of the HIV-1 life-cycle. We also demonstrate that caffeine-related methylxanthines including the clinically used compound, theophylline, act at the same step of the HIV-1 life-cycle as caffeine and efficiently inhibit HIV-1 replication in primary human cells. These data reveal the feasibility of therapeutic approaches targeting host cell proteins and further support the hypothesis that ATR and ATM proteins are involved in retroviral DNA integration.  相似文献   

16.
To investigate the effects of Mycobacterium tuberculosis on HIV-1 replication, peripheral blood mononuclear cells (PBMC) of bacille Calmette–Guérin (BCG)-vaccinated donors and non-BCG-vaccinated donors were infected in vitro with a lymphotropic isolate of HIV-1 and cultured in the presence of purified protein derivative (PPD). Addition of PPD resulted in enhanced HIV-1 replication and lymphoproliferation in BCG-vaccinated donor PBMC, while PPD had no such effects in control PBMC. HIV-1 replication increased even more when monocytes were removed from PBMC, while lymphoproliferation was decreased. High percentages of monocytes were associated with a decreased HIV-1 replication and proliferation that could not be reversed by addition of antibodies against the cytokines IL-1, transforming growth factor-beta (TGF-β) or indomethacin. PPD stimulates PBMC to release IL-10, a cytokine known to down-regulate proliferation and HIV-1 replication. PPD-induced effects on proliferation as well as HIV-1 replication could be partially blocked by adding a monoclonal antibody against MHC class II molecules, suggesting that part of the mechanism of PPD-induced enhancement is T memory cell activation.  相似文献   

17.
Human immunodeficiency virus type 1(HIV-1) infection is the leading cause of death worldwide in adults attributable to infectious diseases. Although the majority of infections are in sub-Saharan Africa and Southeast Asia, HIV-1 is also a major health concern in most countries throughout the globe. While current antiretroviral treatments are generally effective, particularly in combination therapy, limitations exist due to drug resistance occurring among the drug classes. Traditionally, HIV-1 drugs have targeted viral proteins, which are mutable targets. As cellular genes mutate relatively infrequently, host proteins may prove to be more durable targets than viral proteins. HIV-1 replication is dependent upon cellular proteins that perform essential roles during the viral life cycle. Maraviroc is the first FDA-approved antiretroviral drug to target a cellular factor, HIV-1 coreceptor CCR5, and serves to intercept viral–host protein–protein interactions mediating entry. Recent large-scale siRNA and shRNA screens have revealed over 1000 candidate host factors that potentially support HIV-1 replication, and have implicated new pathways in the viral life cycle. These host proteins and cellular pathways may represent important targets for future therapeutic discoveries. This review discusses critical cellular factors that facilitate the successive steps in HIV-1 replication.  相似文献   

18.
19.
20.
High plasma HIV-1 RNA concentrations are associated with an increased risk of HIV-1 transmission. Although plasma and genital HIV-1 RNA concentrations are correlated, no study has evaluated the relationship between genital HIV-1 RNA and the risk of heterosexual HIV-1 transmission. In a prospective study of 2521 African HIV-1 serodiscordant couples, we assessed genital HIV-1 RNA quantity and HIV-1 transmission risk. HIV-1 transmission linkage was established within the partnership by viral sequence analysis. We tested endocervical samples from 1805 women, including 46 who transmitted HIV-1 to their partner, and semen samples from 716 men, including 32 who transmitted HIV-1 to their partner. There was a correlation between genital and plasma HIV-1 RNA concentrations: For endocervical swabs, Spearman's rank correlation coefficient ρ was 0.56, and for semen, ρ was 0.55. Each 1.0 log(10) increase in genital HIV-1 RNA was associated with a 2.20-fold (for endocervical swabs: 95% confidence interval, 1.60 to 3.04) and a 1.79-fold (for semen: 95% confidence interval, 1.30 to 2.47) increased risk of HIV-1 transmission. Genital HIV-1 RNA independently predicted HIV-1 transmission risk after adjusting for plasma HIV-1 quantity (hazard ratio, 1.67 for endocervical swabs and 1.68 for semen). Seven female-to-male and four male-to-female HIV-1 transmissions (incidence <1% per year) occurred from persons with undetectable genital HIV-1 RNA, but in all 11 cases, plasma HIV-1 RNA was detected. Thus, higher genital HIV-1 RNA concentrations are associated with greater risk of heterosexual HIV-1 transmission, and this effect was independent of plasma HIV-1 concentrations. These data suggest that HIV-1 RNA in genital secretions could be used as a marker of HIV-1 sexual transmission risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号