首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Econazole is used clinically as an antifungal drug with many different in vitro effects. However, the effects of econazole on prostate cancer cells are unknown. The effects of econazole on intracellular Ca2+ concentrations ([Ca2+]i) in and the proliferation of human PC3 prostate cancer cells was explored in the present study using fura-2 and tetrazolium as fluorescent dyes. 2. At a concentration of 0.1 micromol/L, econazole started to increase [Ca2+]i in a concentration-dependent manner. The econazole-induced increase in [Ca2+]i was reduced by 48% by removal of extracellular Ca2+, suggesting that the econazole-induced increase in [Ca2+]i was composed of extracellular Ca2+ influx and intracellular Ca2+. 3. This econazole-induced Ca2+ influx was via an L-type Ca2+ channel-like pathway. In Ca2+-free medium, 1 micromol/L thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic increase in [Ca2+]i, after which the effect of econazole to increase [Ca2+]i was substantially inhibited. Conversely, pretreatment with 5 micromol/L econazole to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+. 4. The phospholipase C (PLC) inhibitor U73122 (2 micromol/L) abolished the increase in [Ca2+]i induced by 10 micromol/L ATP (a Ca2+ mobilizer that needs inositol 1,4,5-trisphosphate). 5. Overnight incubation with 1-30 micromol/L econazole inhibited proliferation of PC3 cells in a concentration-dependent manner. 6. These findings suggest that, in PC3 cells, econazole increases [Ca2+]i by stimulating Ca2+ influx into cells and Ca2+ release from the endoplasmic reticulum via a PLC-independent mechanism. Econazole is cytotoxic at submicromolar concentrations.  相似文献   

2.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

3.
The effect of the antidepressant nortriptyline, on bone cells is unknown. In human osteosarcoma MG63 cells, the effect of nortriptyline on intracellular Ca2+ concentration ([Ca2+]i) and proliferation was measured by using fura-2 and tetrazolium, respectively. Nortriptyline (> or = 10 microM) caused a [Ca2+]i rise in a concentration-dependent manner (EC50 = 200 microM). Nortriptyline-induced [Ca2+]i rise was prevented by 60% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ -ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of nortriptyline on [Ca2+]i was abolished; also, pretreatment with nortriptyline abolished thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not affect nortriptyline-induced [Ca2+]i rise; however, activation of protein kinase C decrease nortriptyline-induced [Ca2+]i rise by 32%. Overnight incubation with 50 and 100 microM nortriptyline killed 78% and 97% of cells, respectively; while 10 microM nortriptyline had no effect. These data suggest that nortriptyline rapidly increases [Ca2+]i in human osteosarcoma cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic at high concentrations.  相似文献   

4.
In human osteosarcoma MG63 cells, the effect of desipramine, an antidepressant, on intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by using fura-2. Desipramine (>10 micromol/l) caused a rapid and sustained rise of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 200 micromol/l). Desipramine-induced [Ca(2+)](i) rise was prevented by 80% by removal of extracellular Ca(2+) but was not altered by voltage-gated Ca(2+) channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of desipramine on [Ca(2+)](i) was abolished; also, pretreatment with desipramine partly reduced thapsigargin-induced [Ca(2+)](i) increase. U73122, an inhibitor of phospholipase C, did not affect desipramine-induced [Ca(2+)](i) rise. Overnight incubation with 10 micromol/l desipramine did not alter cell proliferation, but killed 32 and 89% of cells at concentrations of 100 and 200 micromol/l, respectively. These findings suggest that desipramine rapidly increases [Ca(2+)](i) in osteoblasts by stimulating both extracellular Ca(2+) influx and intracellular Ca(2+) release, and is cytotoxic at high concentrations.  相似文献   

5.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

6.
Carvedilol is a useful cardiovascular drug for treating heart failure, however, the in vitro effect on many cell types is unclear. In human MG63 osteosarcoma cells, the effect of carvedilol on intracellular Ca2+ concentrations ([Ca2+]i) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Carvedilol at concentrations greater than 1 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50=15 microM). Carvedilol-induced [Ca2+]i rise was reduced by 60% by removal of extracellular Ca2+. Carvedilol-induced Mn2+-associated quench of intracellular fura-2 fluorescence also suggests that carvedilol induced extracellular Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of carvedilol on [Ca2+]i was inhibited by 50%. Conversely, pretreatment with carvedilol to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not carvedilol-induced, [Ca2+]i rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, did not alter carvedilol-induced [Ca2+]i rise. Separately, overnight treatment with 0.1-30 microM carvedilol inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, carvedilol increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum and other stores via a phospholipase C-independent manner. Carvedilol may be cytotoxic to osteoblasts.  相似文献   

7.
The effect of N-palmitoyl-L-serine phosphoric acid (L-NASPA), which has been used as an inhibitor of lysophosphatidic acid receptors, on intracellular Ca2+ concentration ([Ca2+]i) in human osteosarcoma MG63 cells was measured by using fura-2. L-NASPA (0.1-10 microM) caused a rapid and transient plateau [Ca2+]i rise in a concentration-dependent manner (EC50=0.5 microM). The L-NASPA-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+ but was not altered by L-type voltage-gated Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, induced a [Ca2+]i rise, after which the increasing effect of L-NASPA on [Ca2+]i was completely inhibited; also, pretreatment with L-NASPA partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, abolished histamine (but not L-NASPA)-induced [Ca2+]i rise. Overnight incubation with 1 microM L-NASPA did not affect cell proliferation, but 10-20 microM L-NASPA exerted 4% and 15% inhibition, respectively. Collectively, L-NASPA rapidly increased [Ca2+]i in MG63 cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic at higher concentrations.  相似文献   

8.
目的:研究粉防己碱对培养乳牛基底动脉平滑肌细胞游离钙浓度([Ca^2 ]i)的影响。方法:利用AR-CM-MIC阳离子测定系统,采用Fura 2-AM为指示剂,测量单个细胞内[Ca^2 ]i。结果:粉防己碱10-100μmol/L对培养乳牛基底动脉平滑肌细胞静息[Ca^2 ]i无明显影响。在细胞外钙为1.3mmol/L,粉防己碱可浓度依赖性地抑制KC1引起[Ca^2 ]i的升高。咖啡因10mmol/L可诱导一次[Ca^2 ]i瞬间快速升高,随后自发回复到静息水平,粉防己碱10和30μmol/L对咖啡因诱导的[Ca^2 ]i瞬间升高没有作用,但高浓度(100μmol/L)粉防己碱抑制了[Ca^2 ]i瞬间升高。在细胞外钙为1.3mmol/L,苯肾上腺素10μmol/L可引起双相[Ca^2 ]i变化,包括快速升高相和持续升高相。在细胞外钙为零,苯肾上腺素仅引起[Ca^2 ]i的快速升高相。粉防己碱可浓度依赖性地抑制苯肾上腺素引起[Ca^2 ]i快速升高相。结论:在培养乳牛基底动脉平滑肌细胞,粉防己碱可能通过影响电压依赖性和苯肾上腺素受体介导的钙通道而抑制钙内流。高浓度粉防己碱也可能影响肌浆网钙释放或钙摄取。  相似文献   

9.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

10.
1. Changes in cytoplasmic Ca2+ concentration ([Ca2+]1) were measured simultaneously with force by a microfluorometric method using a calcium indicator, fura-2, in canine coronary arterial smooth muscle cells. 2. Depolarization by high (30-90 mM) KCl-physiological salt solution (PSS) produced concentration-dependent increases in force and [Ca2+]i. 3. The KCl-induced increase in [Ca2+]i abolished by Ca2+-free conditions and almost abolished by verapamil 10-5 M, suggesting that it was entirely due to the increased Ca2+ influx through voltage-dependent Ca2+ channels. 4. The [Ca2+]i force relationship in the presence of verapamil was not distinguishable from that of control. 5. Nitroglycerin produced a concentration-dependent, reversible contraction of the coronary artery that had been contracted by high KCl-PSS, without reduction of the increased [Ca2+]i. 6. The KCl-induced increase in [Ca2+]i was not affected by nitroglycerin and in a presence of nitroglycerin it was abolished by 10-5 M verapamil suggesting that it was caused by the influx of extracellular Ca2+. 7. The [Ca2+]-force curve was shifted to the right by nitroglycerin. 8. It is likely that nitroglycerin relaxes the coronary arterial smooth muscle b reducing the amount of myosin light chain phosphorylation even in the presence of raised [Ca2+]i produced by increased Ca2+ influx following depolarization.  相似文献   

11.
Jan CR  Lu YC  Jiann BP  Chang HT  Huang JK 《Pharmacology》2002,66(3):120-127
In human osteosarcoma MG63 cells, the effect of the neuroprotective drug riluzole on the intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2. Riluzole (50-500 micromol/l) caused a rapid and sustained plateau increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 150 micromol/l). The riluzole-induced rise in [Ca(2+)](i) was prevented by 58 and 20% by extracellular Ca(2+) removal and nifedipine, respectively, but was not changed by La(3+) and verapamil. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the increasing effect of riluzole on [Ca(2+)](i) was attenuated by 84%; also, pretreatment with riluzole abolished the thapsigargin-induced [Ca(2+)](i) increase. U73122, an inhibitor of phospholipase C, abrogated the ATP (but not riluzole)-induced rise in [Ca(2+)](i). A low concentration (6 micromol/l) of riluzole selectively potentiated the bradykinin (but not ATP and histamine)-induced increase in [Ca(2+)](i). These results suggest that riluzole rapidly increases [Ca(2+)](i) by stimulating both the extracellular Ca(2+) influx via a nifedipine-sensitive pathway and intracellular Ca(2+) release from the ER via an as yet unidentified mechanism(s).  相似文献   

12.
Huang CC  Cheng HH  Lin KL  Cheng JS  Tsai JY  Liao WC  Fang YC  Jan CR 《Toxicology》2009,255(1-2):58-64
The effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in corneal epithelial cells. This study examined whether tamoxifen altered [Ca2+]i and viability in SIRC corneal epithelial cells. Tamoxifen at concentrations > or = 1 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 6 microM. The Ca2+ signal was reduced substantially by removing extracellular Ca2+. Tamoxifen induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to Ca2+ entry inhibitors and protein kinase C modulators. After pretreatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were abolished; conversely, tamoxifen pretreatment abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change the [Ca2+]i rises. At concentrations of 5-30 microM, tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 15 microM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5-30 microM tamoxifen. Tamoxifen (30 microM did not induce production of reactive oxygen species (ROS). Collectively, in SIRC cells, tamoxifen induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via unknown pathways. Tamoxifen-caused cytotoxicity was partly mediated by a Ca2+-independent apoptotic pathway.  相似文献   

13.
The effect of the carcinogen safrole on intracellular Ca2+ movement has not been explored in osteoblast-like cells. This study examined whether safrole could alter Ca2+ handling and viability in MG63 human osteosarcoma cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 130 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 450 microM. The Ca2+ signal was reduced by 30% by removing extracellular Ca2+. Addition of Ca2+ after safrole had depleted intracellular Ca2+ induced Ca2+ influx, suggesting that safrole caused Ca2+ entry. In Ca2+-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca2+; and pretreatment with thapsigargin inhibited most of the safrole-induced [Ca2+]i increases. Inhibition of phospholipase C with U73122 did not affect safrole-induced Ca2+ release; whereas activation of protein kinase C with phorbol ester enhanced safrole-induced [Ca2+]i increase. Trypan exclusion assays revealed that incubation with 65 microM safrole for 30 min did not kill cells, but incubation with 650 microM safrole for 10-30 min nearly killed all cells. Flow cytometry demonstrated that safrole evoked apoptosis in a concentration-dependent manner. Safrole-induced cytotoxicity was not reversed by chelation of Ca2+ with BAPTA. Collectively, the data suggest that in MG63 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release mainly from the endoplasmic reticulum in a phospholipase C-independent manner. The safrole response involved Ca2+ influx and is modulated by protein kinase C. Furthermore, safrole can cause apoptosis in a Ca2+-independent manner.  相似文献   

14.
Jan CR  Yu CC  Huang JK 《Pharmacology》2001,62(4):218-223
The effect of fendiline, an antianginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of bladder female transitional carcinoma (BFTC) cells was explored using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 3 and 200 micromol/l increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 100 micromol/l. The [Ca2+]i signal was biphasic, with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about half in peak amplitude. Adding 3 mmol/l Ca2+ increased [Ca2+]i in cells pretreated with 100 micromol/l fendiline in Ca2+ -free medium, suggesting that fendiline induced Ca2+ influx via capacitative Ca2+ entry. In Ca2+ -free medium, pretreatment with 1 micromol/l thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store inhibited most of the 100 micromol/l fendiline-induced internal Ca2+ release; and conversely, pretreatment with 100 micromol/l fendiline partly inhibited 1 micromol/l thapsigargin-induced Ca2+ release. This indicates that the major internal Ca2+ store of fendiline-induced [Ca2+]i increases is located in the endoplasmic reticulum. The Ca2+ release induced by 100 micromol/l fendiline may be partly mediated by inositol 1,4,5-trisphosphate, because the [Ca2+]i increase was inhibited by 50% by inhibiting phospholipase C with 2 micromol/l U73122. Fendiline (100 micromol/l) decreased cell viability by 12-44% after being added to cells for 2- 30 min. Together, the findings indicate that in BFTC cells, fendiline exerts a dual effect: mobilization of intracellular Ca2+ and induction of cell death.  相似文献   

15.
Capsazepine has been widely used as a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on most cell types is unknown. In human PC3 prostate cancer cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was investigated by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 75 microM. Capsazepine-induced [Ca(2+)](i) rise was reduced by 60% by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was contributed by extracellular Ca(2+) influx and intracellular Ca(2+). Consistently, the capsazepine (200 microM)-induced [Ca(2+)](i) rise was decreased by La(3+) by half. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the effect of capsazepine on [Ca(2+)](i) was inhibited by 80%. Conversely, pretreatment with capsazepine partly reduced thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. These findings suggest that in human PC3 prostate cancer cells, capsazepine increases [Ca(2+)](i) by evoking Ca(2+) influx and releasing Ca(2+) from the endoplasmic reticulum via a phospholiase C-independent manner. Overnight incubation with capsazepine (200 microM) killed 37% of cells, which could not be prevented by chelating intracellular Ca(2+) with BAPTA.  相似文献   

16.
The effect of 17beta-estradiol on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney cells was investigated by using the fluorescent dye fura-2. 17Beta-estradiol (5-100 micromol/l) induced instantaneous increases in [Ca(2+)](i) in a concentration-dependent manner. Ca(2+) removal inhibited 45 +/- 15% of the Ca(2+) signal. In Ca(2+)-free medium, pretreatment with 50 micromol/l 17beta-estradiol abolished the [Ca(2+)](i) increases induced by 2 micromol/l carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), 1 micromol/l thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) and 50 micromol/l brefeldin A (an antibiotic which disperses the Golgi complex), but pretreatment with brefeldin A, CCCP and thapsigargin only partly inhibited the 17beta-estradiol-induced [Ca(2+)](i) signal. Adding 3 mmol/l Ca(2+) increased [Ca(2+)](i) in cells pretreated with 5-100 micromol/l 17beta-estradiol in Ca(2+)-free medium. Pretreatment with 1 micromol/l U73122 to abolish the formation of inositol-1,4,5-trisphosphate inhibited 50% of the Ca(2+) release induced by 50 micromol/l 17beta-estradiol. 17Beta-estradiol (20 micromol/l) also increased [Ca(2+)](i) in human bladder cancer cells and prostate cancer cells. Collectively, this study shows that 17beta-estradiol evoked a significant internal Ca(2+) release and external Ca(2+) entry possibly in a nongenomic manner.  相似文献   

17.
1. The effects of the antianginal drug fendiline (N-[3,3-diphenylpropyl]-alpha-methyl-benzylamine) on intracellular free Ca2+ levels ([Ca2+](i)) in Chang liver cells were evaluated using fura-2 as a fluorescent Ca2+ indicator. 2. Fendiline (1-100 micromol/L) increased [Ca2+](i) in a concentration-dependent manner, with an EC50 of 25 micromol/L. 3. The [Ca2+](i) response was composed of an initial rise and a slow decay to a sustained phase. Removal of extracellular Ca2+ partly reduced the [Ca2+](i) signals. 4. Fendiline (10 micromol/L)-induced release of intracellular Ca2+ was reduced by 65% following pretreatment with 1 micromol/L thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete Ca2+ stored in the endoplasmic reticulum. 5. After pretreatment with 10 micromol/L fendiline in Ca2+-free medium for several minutes, addition of 3 mmol/L Ca2+ induced an increase in [Ca2+](i) of a magnitude four-fold greater than control. This increase in [Ca2+](i) was not reduced by 10 micromol/L SKF96365, econazole, nifedipine or verapamil. 6. Fendiline (10 micromol/L)-induced release of intracellular Ca2+ was not altered by inhibition of phospholipase C with 2 micromol/L 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl)-1H-pyrrole-2,5-dione (U73122). 7. The results of the present study show that fendiline induces an increase in [Ca2+](i) in Chang liver cells by releasing stored Ca2+ in an inositol 1,4,5-trisphosphate-independent manner and by causing extracellular Ca2+ influx.  相似文献   

18.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells and the underlying mechanism were evaluated using fura-2 as a Ca2+ dye. Histamine at concentrations between 0.1 and 50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1 microM. The [Ca2+]i response comprised an initial rise and a slow decay, which returned to baseline within 3 min. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In the absence of extracellular Ca2+, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 10 microM histamine did not increase [Ca2+]i. After pretreatment with 10 microM histamine in a Ca2+-free medium for several minutes, addition of 3 mM Ca2+ induced [Ca2+]i increases. Histamine (10 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3- methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 10 microM pyrilamine but was not altered by 50 microM cimetidine. Collectively, the present study shows that histamine induced [Ca2+]i transients in PC3 human prostate cancer cells by stimulating H1 histamine receptors leading to Ca2+ release from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, and by inducing Ca2+ entry.  相似文献   

19.
The effect of the environmental toxicant nonylphenol on cytosolic free Ca2+ concentration ([Ca2+]i) and proliferation has not been explored in human osteoblast-like cells. This study examined whether nonylphenol alters Ca2+ levels and causes cell death in MG63 human osteosarcoma cells. [Ca2+]i and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Nonylphenol at concentrations above 3 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+. The nonylphenol-induced Ca2+ influx was insensitive to blockade of L-type Ca2+ channel blockers. After pretreatment with 10 microM nonylphenol, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to induce [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change nonylphenol-induced [Ca2+]i rises. The nonylphenol-induced [Ca2+]i rises were enhanced or inhibited by phorbol myristate acetate or GF 109203X, respectively. At concentrations of 10 and 20 microM nonylphenol killed 55% and 100% cells, respectively. The cytotoxic effect of 10 microM nonylphenol was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, nonylphenol induced [Ca2+]i rises by causing Ca2+ release from intracellular stores and Ca2+ influx from extracellular space. Furthermore, nonylphenol can cause Ca2+-unrelated cytotoxicity in a concentration-dependent manner.  相似文献   

20.
Econazole is an antifungal drug with different in vitro effects. However, econazole's effect on osteoblast-like cells is unknown. In human MG63 osteosarcoma cells, the effect of econazole on intracellular Ca2+ concentrations ([Ca2+]i) was explored by using fura-2. At a concentration of 0.1 microM, econazole started to cause a rise in [Ca2+]i in a concentration-dependent manner. Econazole-induced [Ca2+]i rise was reduced by 74% by removal of extracellular Ca2+. The econazole-induced Ca2+ influx was mediated via a nimodipine-sensitive pathway. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca+ -ATPase, caused a [Ca2+]i rise, after which the increasing effect of econazole on [Ca2+]i was abolished. Pretreatment of cells with econazole to deplete Ca2+ stores totally prevented thapsigargin from releasing Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not econazole-induced, [Ca2+]i rise. Econazole inhibited 76% of thapsigargin-induced store-operated Ca2+ entry. These findings suggest that in MG63 osteosarcoma cells, econazole increases [Ca2+]i by stimulating Ca2+ influx and Ca2+ release from the endoplasmic reticulum via a phospholipase C-independent manner. In contrast, econazole acts as a potent blocker of store-operated Ca2+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号