首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treponema denticola surface proteins were studied for their biochemical and biological characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of detergent extracts of whole cells revealed a major protein of 53 kDa and a number of minor proteins. Antiserum raised against whole cells of T. denticola ATCC 35405 reacted with the 53-kDa protein and a 72-kDa protein but not with the other proteins. Immunoelectron microscopy with anti-53-kDa-protein antibodies showed that the 53-kDa protein is located on the surface of the cell. SDS-PAGE analysis of unheated samples indicated that the 53-kDa protein is the major component of oligomers with molecular masses ranging from 130 to 300 kDa. Western blot (immunoblot) analysis showed that the high-molecular-mass oligomers reacted with whole-cell antiserum and anti-53-kDa-protein antibody. The aggregates dissociated into their subunits after heating to 70 degrees C. Isoelectric focusing followed by SDS-PAGE indicated that the 53-kDa protein was separated into several forms with apparent pI values ranging from 8.0 to 5.5. The oligomeric forms were highly resistant to proteolysis by trypsin and proteinase K, whereas the monomeric proteins were readily digested. A clone expressing a 53-kDa antigen in Escherichia coli was isolated from a lambda ZAP II DNA library of T. denticola ATCC 35405. The recombinant protein had exactly the same molecular mass as the major 53-kDa T. denticola surface protein and reacted with antisera raised against this protein. The role of T. denticola ATCC 35405 surface proteins in attachment to laminin, fibronectin, gelatin, fibrinogen, and bovine serum albumin (BSA) was studied by a modified Western blot binding assay. Fibronectin, laminin, and fibrinogen attached to the 53-kDa surface protein of T. denticola as well as to a 72-kDa protein, whereas no attachment to gelatin or BSA was observed. Attachment could be inhibited by pretreating the blots with fibrinogen but not with gelatin or BSA. Our results suggest that the 53-kDa major surface protein of T. denticola may play a role in the attachment to host proteins and may thus be an important virulence determinant of this species.  相似文献   

2.
Attachment of Treponema denticola ATCC 35405 to laminin, a major basement membrane protein, and to other proteins was studied. Microdilution plates were coated with the proteins, and the attachment of T. denticola was measured by the enzyme-linked immunosorbent assay technique. Compared with bovine serum albumin (BSA), T. denticola had a high affinity to laminin, fibronectin, fibrinogen, and gelatin, as well as to type I and type IV collagens. Attachment to RGD peptide (Gly-Arg-Gly-Asp-Ser, the integrin recognition sequence) was only about 30% of that to laminin and was comparable to attachment to BSA. Tests with laminin fragments obtained through elastase digestion showed that the spirochetes attached well to an A-chain 140-kDa fragment involved in eukaryote cell attachment but did not attach to a 50-kDa fragment that includes the heparin binding site. Pretreatment of T. denticola with soluble laminin, fibronectin, gelatin, BSA, or fibrinogen had no effect on the attachment of the bacteria to laminin or fibronectin. A wide variety of compounds were tested for their possible inhibitory actions on the attachment. While most treatments of T. denticola ATCC 35405 had little or no effect on the attachment to proteins, sulfhydryl reagents p-chloromercuribenzoic acid (pCMBA) and oxidized glutathione inhibited the attachment by 70 to 99%, depending on the protein. When T. denticola was first allowed to attach to proteins, addition of pCMBA or oxidized glutathione could no longer reverse the attachment. Heat treatment of the spirochetes also markedly reduced the attachment to laminin, gelatin, and fibrinogen but not to BSA. Mixed glycosidase treatment of the spirochetes inhibited the attachment by 20 to 80%. None of the above treatments of the substrate proteins had any marked effect on the spirochete attachment. The results indicate that T. denticola has the capacity to bind to many different kinds of proteins by utilizing specific attachment mechanisms. The binding appears to involve protein SH groups and/or carbohydrate residues on the surface of T. denticola.  相似文献   

3.
By using the mutated gyrB gene from a spontaneous coumermycin A1-resistant Treponema denticola, an Escherichia coli-T. denticola shuttle vector that renders T. denticola resistant to coumermycin was constructed. The complete T. denticola flgE gene was cloned into the shuttle vector pKMCou, and the vector was transformed into the T. denticola ATCC 33520 flgE erythromycin-resistant knockout mutant HL210. The coumermycin-resistant transformants were motile and restored FlgE activity. This complementation system should prove useful in studying the virulence factors of T. denticola and uncultivatible pathogenic spirochetes.  相似文献   

4.
Enzyme profiles of oral spirochetes in RapID-ANA system.   总被引:3,自引:0,他引:3       下载免费PDF全文
Enzyme profiles of oral Treponema species were determined by using RapID-ANA (Innovative Diagnostic System, Atlanta, Ga.), a 4-h test system which detects 18 enzymatic reactions, including aminopeptidases and glycosidases. Seventy-two clinical isolates of Treponema denticola, four reference strains of T. denticola (ATCC 35404, ATCC 35405, ATCC 35520, and ATCC 33521), one strain of T. vincentii (ATCC 35580), and two strains of T. socranskii subspecies (T. socranskii subsp. buccale ATCC 35534 and T. socranskii subsp. socranskii ATCC 35536) were used in this study. All T. denticola strains produced indole and a variety of aminopeptidases and glycosidases. These organisms could be differentiated into two groups on the basis of tetrazolium reductase and serine, phenylalanine, and glycine aminopeptidase activities. T. vincentii produced N-acetylglucosaminidase and arginine aminopeptidase, which facilitated the differentiation of this organism from T. socranskii subspecies and the T. denticola group. T. socranskii subspecies gave positive reactions for alkaline phosphatase only. These findings suggest that the RapID-ANA system is useful for enzymatic characterization and differentiation of oral spirochetes.  相似文献   

5.
We have isolated and characterized a neutral phosphatase gene, phoN, from Treponema denticola ATCC 35405. The gene was isolated from a T. denticola clone bank constructed in the medium-copy-number plasmid vector pMCL19. Subcloning and nucleotide sequencing of the DNA insert from one phosphatase clone, pTph14, revealed that the activity corresponded to an open reading frame consisting of 1,027 bp coding for a 37.9-kDa protein. Hydrophobicity analysis indicated that the protein exhibits some hydrophobic regions. Indeed, partial purification of the phosphatase suggested that the enzyme was membrane associated both in T. denticola and in the Escherichia coli clone. The pH optimum of the enzyme, approximately pH 6.4, indicated that it corresponded to a neutral phosphatase activity from T. denticola. An examination of possible natural substrates for the enzyme suggested that this enzyme hydrolyzes nucleoside di- and triphosphates. Northern (RNA) blot analysis revealed that this phosphatase gene is not likely to be present in an operon structure.  相似文献   

6.
Proteins secreted or exported by Treponema denticola have been implicated as mediators of specific interactions between the spirochete and subgingival tissues in periodontal diseases. However, limited information is available on the ability of this peptidolytic organism to bind or transport soluble peptides present in the subgingival environment. A prominent 70-kDa protein was isolated from surface extracts of T. denticola ATCC 35405. A clone expressing a portion of the protein was identified in an Escherichia coli expression library of T. denticola DNA. DNA sequence analysis showed that the cloned gene encoded a peptide homologous to OppA, the solute binding protein of an ATP-binding cassette-type peptide transporter involved in peptide uptake and environmental signaling in a wide range of bacteria. Genes encoding OppB, -C, -D, and -F were identified directly downstream of oppA in T. denticola. OppA was present in representative strains of T. denticola and in Treponema vincentii but was not detected in Treponema pectinovorum or Treponema socranskii. Immunogold electron microscopy suggested that OppA was accessible to proteins at the surface of the spirochete. Native OppA bound soluble plasminogen and fibronectin but did not bind to immobilized substrates or epithelial cells. A T. denticola oppA mutant bound reduced amounts of soluble plasminogen, and plasminogen binding to the parent strain was inhibited by the lysine analog epsilon-aminocaproic acid. Binding of soluble host proteins by OppA may be important both for spirochete-host interactions in the subgingival environment and for uptake of peptide nutrients.  相似文献   

7.
The ability to penetrate tissue is an important virulence factor for pathogenic spirochetes. Previous studies have recognized the role of motility in allowing pathogenic spirochetes to invade tissues and migrate to sites favorable for bacterial proliferation. However, the nature of the movements, whether they are random or controlled by chemotaxis systems, has yet to be established. In this study, we addressed the role of motility and chemotaxis in tissue penetration by the periodontal disease-associated oral spirochete Treponema denticola using an oral epithelial cell line-based experimental approach. Wild-type T. denticola ATCC 35405 was found to penetrate the tissue layers effectively, whereas a nonmotile mutant was unable to overcome the tissue barrier. Interestingly, the chemotaxis mutants also showed impaired tissue penetration. A cheA mutant that is motile but lacks the central kinase of the chemotaxis pathway showed only about 2 to 3% of the wild-type penetration rate. The two known chemoreceptors of T. denticola, DmcA and DmcB, also appear to be involved in the invasion process. The dmc mutants were actively motile but exhibited reduced tissue penetration of about 30 and 10% of the wild-type behavior, respectively. These data suggest that not only motility but also chemotaxis is involved in the tissue penetration by T. denticola.  相似文献   

8.
The chymotrypsinlike protease gene (prtA) from Treponema denticola ATCC 35405 was isolated from a lambda gt11 clone bank as one of several clones expressing protease activity. The DNA from one positive clone capable of hydrolyzing type IV collagen was subcloned into plasmid vector pUC119 for further analysis. Deletion analysis of subclone pXQ27.2 revealed the approximate location of the prtA gene on the DNA insert. DEAE-Sephadex chromatography of crude cell extracts of the subclone revealed two distinct T. denticola enzymes, one hydrolyzing SAAPNA (succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine-p-nitroanilide [chymotrypsin substrate]) and the other hydrolyzing PZ-PLGPA (phenylazobenzyl-oxycarbonyl-L-leucylglycyl-L-prolyl-D -arginine [collagenase substrate]). Each activity was purified to near homogeneity and exhibited by sodium dodecyl sulfate-polyacrylamide gel electrophoresis estimated molecular sizes of 67 and 36 kDa, respectively. Western blot (immunoblot) analysis demonstrated that only the 67-kDa SAAPNA-hydrolyzing enzyme reacted with antibody against the T. denticola chymotrypsinlike protease. The purified SAAPNA-hydrolyzing enzyme degraded type IV collagen, laminin, and fibronectin, but not type I collagen. These results indicate that the prtA gene coding for the chymotrypsinlike protease from T. denticola has been isolated. Another distinct gene encoding an enzyme hydrolyzing PZ-PLGPA appears to be adjacent to the prtA gene.  相似文献   

9.
The human oral cavity harbors more than 500 species of bacteria. Periodontitis, a bacterially induced inflammatory disease that leads to tooth loss, is believed to result from infection by a select group of gram-negative periodontopathogens that includes Porphyromonas gingivalis, Treponema denticola, and "Tannerella forsythia" (opinion on name change from Tannerella forsythensis pending; formerly Bacteroides forsythus). Epithelial cell invasion by periodontopathogens is considered to be an important virulence mechanism for evasion of the host defense responses. Further, the epithelial cells with invading bacteria also serve as reservoirs important in recurrent infections. The present study was therefore undertaken to address the epithelial cell adherence and invasion properties of T. forsythia and the role of the cell surface-associated protein BspA in these processes. Further, we were interested in determining if P. gingivalis, one of the pathogens frequently found associated in disease, or its outer membrane vesicles (OMVs) could modulate the epithelial cell adherence and invasion abilities of T. forsythia. Here we show that epithelial cell attachment and invasion by T. forsythia are dependent on the BspA protein. In addition, P. gingivalis or its OMVs enhance the attachment and invasion of T. forsythia to epithelial cells. Thus, interactions between these two bacteria may play important roles in virulence by promoting host cell attachment and invasion.  相似文献   

10.
Treponema denticola is an anaerobic spirochete strongly associated with human periodontal disease. T. denticola bacteria interact with a range of host tissue proteins, including fibronectin, laminin, and fibrinogen. The latter localizes in the extracellular matrix where tissue damage has occurred, and interactions with fibrinogen may play a key role in T. denticola colonization of the damaged sites. T. denticola ATCC 35405 showed saturable binding of fluid-phase fibrinogen to the cell surface and saturable adherence to immobilized fibrinogen. Levels of fibrinogen binding were enhanced in the presence of the serine protease inhibitor phenylmethylsulfonyl fluoride. The Aalpha and Bbeta chains of fibrinogen, but not the gamma chains, were specifically recognized by T. denticola. Following fibrinogen affinity chromatography analysis of cell surface extracts, a major fibrinogen-binding component (polypeptide molecular mass, approximately 100 kDa), which also degraded fibrinogen, was purified. Upon heating at 100 degrees C, the polypeptide was dissociated into three components (apparent molecular masses, 80, 48, and 45 kDa) that did not individually bind or degrade fibrinogen. The native 100-kDa polypeptide complex was identified as chymotrypsin-like protease (CTLP), or dentilisin. In an isogenic CTLP(-) mutant strain, CKE, chymotrypsin-like activity was reduced >90% compared to that in the wild type and fibrinogen binding and hydrolysis were ablated. Isogenic mutant strain MHE, deficient in the production of Msp (major surface protein), showed levels of CTLP reduced 40% relative to those in the wild type and exhibited correspondingly reduced levels of fibrinogen binding and proteolysis. Thrombin clotting times in the presence of wild-type T. denticola cells, but not strain CKE (CTLP(-)) cells, were extended. These results suggest that interactions of T. denticola with fibrinogen, which may promote colonization and modulate hemostasis, are mediated principally by CTLP.  相似文献   

11.
Tip-oriented adherence of Treponema denticola to fibronectin.   总被引:6,自引:12,他引:6       下载免费PDF全文
The adherence of Treponema denticola to ligands on cell surfaces or in basement membranes of periodontal tissues might play an important role in its pathogenicity. A direct microscopic assay was used to examine the binding of T. denticola to fibronectin and other protein substrates adsorbed on plastic cover slips. All strains of T. denticola that were tested adhered to fibronectin but to different degrees. The strains which bound in high numbers frequently bound by their tips. Type strain ATCC 33520 bound to fibronectin in high numbers (149 +/- 11.3 bacteria per microscopic field), with 60% bound by the tips. Strain e' bound in high numbers (140 +/- 10.2) and had the highest percentage of tip binding (98%); strain e bound in lowest numbers (39 +/- 8.2) and had the lowest percentage of tip binding (15%). Laminin supported binding at a level similar to that of fibronectin, as did fibronectin fragments which contained the cell binding domain peptides, RGDS. Type IV collagen and non-RGDS peptides did not support binding. Binding to fibronectin and laminin was inhibited by the addition of antifibronectin and antilaminin antibodies. By lowering the incubation temperature from 37 to 4 degrees C, the number of cells that attached decreased by 60% and tip binding was reduced by 50%. Pretreatment of the cells with collagen did not affect binding, whereas fibronectin pretreatment enhanced binding by 50% and laminin pretreatment resulted in a decrease of 60%. T. denticola adheres by its tips to fibronectin-coated surfaces, which suggests that fibronectin-specific adhesins cluster at the tips.  相似文献   

12.
The oral spirochete Treponema denticola is closely associated with periodontal diseases in humans. The 53-kDa major surface protein (Msp) located in the outer membrane of T. denticola serovar a (ATCC 35405) has both pore-forming activity and adhesin activity. We have used standard patch clamp recording methods to study the effects of a partially purified outer membrane complex containing Msp on HeLa cells. The Msp complex was free of the chymotrypsin-like proteinase also found in the outer membrane of T. denticola. Msp bound to several HeLa cell proteins, including a 65-kDa surface protein and a 96-kDa cytoplasmic protein. The Msp complex depolarized and increased the conductance of the HeLa cell membrane in a manner which was not strongly selective for Na+, K+, Ca2+, and Cl- ions. Cell-attached patches of HeLa cell membrane exposed to Msp complex exhibited short-lived channels with a slope conductance of 0.4 nS in physiologically normal saline. These studies show that Msp binds both a putative epithelial cell surface receptor and cytoplasmic proteins and that the Msp complex can form large conductance ion channels in the cytoplasmic membrane of epithelial cells. These properties may contribute to the cytopathic effects of T. denticola on host epithelial cells.  相似文献   

13.
Spirochetes are associated with destructive periodontal diseases, and one cultivatable oral species, Treponema denticola, binds to mammalian cells and perturbs metabolism. To evaluate the cytoskeletal responses and attachment functions of human gingival fibroblasts (HGF) exposed to T. denticola, monolayers of HGF were incubated with T. denticola strains ATCC 35405, e, and e' in serum-free medium. HGF retracted pseudopods, rounded up, and ultimately detached from the substratum. Scanning electron microscopy showed spirochetes in close contact with HGF surfaces; occasionally, bacteria were partially submerged between folds in the HGF membrane. Blebbing and numerous microvilli formed on the cell surface as the HGF retracted. By confocal microscopy, spirochetes were detected in contact with the HGF surface but were never found on the ventral surface of fibroblasts between the substratum and cell. Morphological alterations were associated with and preceded by actin assembly, as measured by microscopic fluorimetry: there was a 263% increase in actin fluorescence over controls within 30 min. Detachment of fibroblasts from the substratum was related to incubation time and was dependent on the concentration of T. denticola. Detachment was observed for all strains tested and was also dependent on the viability of T. denticola: UV light, heat, and metronidazole treatment markedly reduced the HGF detachment response. Detachment was also significantly reduced by the protease inhibitor phenylmethylsulfonyl fluoride. HGF viability was not significantly affected by coincubation with spirochetes, as measured by lactate dehydrogenase release. Thus, T. denticola induces rapid cytoskeletal remodelling followed by cell detachment, which might be stimulated by a bacterially associated protease but is not likely directly mediated by proteolytic degradation at the cell-substratum adhesive contact points.  相似文献   

14.
Human gingival fibroblasts (HGFs) degrade collagen fibrils in physiological processes by phagocytosis. Since Treponema denticola outer membrane (OM) extract perturbs actin filaments, important structures in phagocytosis, we determined whether the OM affects collagen phagocytosis in vitro by HGFs. Phagocytosis was measured by flow cytometric assessment of internalized collagen-coated fluorescent latex beads. Confluent HGFs pretreated with T. denticola ATCC 35405 OM exhibited an increase in the percentage of collagen phagocytic cells (phagocytosis index [PI]) and in the number of beads per phagocytosing cell (phagocytic capacity [PC]) compared with untreated controls. The enhancement was swift (within 15 min) and was still evident after 1 day. PI and PC of HGFs for bovine serum albumin (BSA)-coated beads were also increased, indicating a global increase in phagocytic processes. These results contrasted those for control OM from Veillonella atypica ATCC 17744, which decreased phagocytosis. The T. denticola OM-induced increase in bead uptake was eliminated by heating the OM and by depolymerization of actin filaments by cytochalasin D treatment of HGFs. Fluid-phase accumulation of lucifer yellow was enhanced in a saturable, concentration-dependent, transient manner by the T. denticola OM. Our findings were not due to HGF detachment or cytotoxicity in response to the T. denticola OM treatment since the HGFs exhibited minimal detachment from the substratum; they did not take up propidium iodide; and there was no change in their size, granularity, or content of sub-G1 DNA. We conclude that a heat-sensitive component(s) in T. denticola OM extract stimulates collagen phagocytosis and other endocytic processes such as nonspecific phagocytosis and pinocytosis by HGFs.  相似文献   

15.
Immediately downstream from the previously isolated Treponema denticola ATCC 35405 prtB gene coding for a chymotrypsinlike protease activity, an open reading frame, ORF3, was identified which shared significant homology with the highly conserved domains (HCDs) of bacterial methyl-accepting chemotaxis proteins (MCPs). Nucleotide sequencing of this ORF revealed that the gene would code for a protein with a size of approximately 41 kDa. In addition, this sequence contained a domain which was virtually identical to the HCD of a recently characterized MCP, DmcA, of strain 35405. Therefore, this ORF was named dmcB. Northern blot analysis suggested that dmcB was part of an operon structure containing prtB. Insertional inactivation of dmcB utilizing an ermF-ermAM cassette resulted in a mutant with decreased chemoattraction toward nutrient supplements. In addition, the mutant displayed an altered pattern of methylated proteins under conditions of chemotaxis. Inactivation of the dmcB gene also attenuated the methylation of the DmcA protein. These results suggest that the dmcB gene codes for an MCP in T. denticola which may interact with other MCPs in these organisms.  相似文献   

16.
Large, general population-based data on carriage rates of periodontal pathogens hardly exist in the current literature. The objectives of the present study were to examine the salivary detection of Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans, Campylobacter rectus, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Treponema denticola in a representative sample of the adult population living in southern Finland and to clarify which determinants are associated with the presence of these pathogens in saliva. 16S rRNA-based PCR methods with species-specific primers were employed to determine the presence of the six target bacteria in stimulated saliva samples, which were available from 1,294 subjects aged > or =30 years. The age group, gender, level of education, marital status, smoking history, number of teeth, and number of teeth with deepened pockets were included in the statistical analysis. In general, the carriage of periodontal pathogens was common, since at least one of the examined pathogens was found in 88.2% of the subjects. In descending order, the total detection rates were 56.9%, 38.2%, 35.4%, 31.3%, 20.0%, and 13.9% for T. forsythensis, T. denticola, P. gingivalis, C. rectus, A. actinomycetemcomitans, and P. intermedia, respectively. Age per se was strongly associated with the carriage of P. gingivalis (P = 0.000), and the level of education with that of T. denticola (P = 0.000). There was an association between the number of teeth with deepened pockets and carriage of P. gingivalis (P = 0.000), P. intermedia (P = 0.000), T. denticola (P = 0.000), and A. actinomycetemcomitans (P = 0.004). The data suggest that distinct species have a different carriage profile, depending on variables such as age, educational level, and periodontal status.  相似文献   

17.
Hemagglutination by different Treponema denticola strains was observed for erythrocytes of human, horse, bovine, and rabbit origin. The growth of T. denticola ATCC 33520 in serum-free medium in continuous culture enabled us to study the hemagglutinating activity of freshly harvested spirochetes of a defined physiological status. The hemagglutinating activity was cell bound and not related to motility or appendages, such as fimbriae. The activity was destroyed by proteolytic enzymes, heat, and alkylation, indicating that the agglutinin is of a proteinaceous nature. In addition, periodate oxidation of the spirochetes indicated the involvement of carbohydrate groups. Microscopic inspection of the hemagglutination mixtures at the titration endpoints revealed that only a part of the spirochete population was involved in the hemagglutination process. The hemagglutinating activity was found to be growth phase related. The activity was blocked by serum, while of all tested amino acids and carbohydrates, only sialic acid blocked the activity at low concentrations. In conclusion, we found a hemagglutinating activity in T. denticola which was cell bound and growth phase related. The agglutinin may be a glycoprotein, like lectin, that recognizes sialic acid as a receptor.  相似文献   

18.
Human oral spirochetes are prominent inhabitants of subgingival plaque in patients with periodontal disease. By immunoelectron microscopy using protein A-gold complexes and either polyclonal mouse antiserum against the 53-kDa antigen or 53-kDa-antigen-specific monoclonal antibody, a major polypeptide antigen, with a molecular weight of 53,000 (molecular size, 53 kilodaltons [kDa]), of a human oral spirochete, Treponema denticola ATCC 33520, was found to localize on the surface of the outer envelope.  相似文献   

19.
A TaqMan-based real-time PCR assay was established to quantify the periodontopathic bacteria Tannerella forsythensis and Fusobacterium spp. With this assay, the prevalence and proportion of these bacteria in clinical specimens were evaluated. Our preliminary results suggest a positive colocalization of T. forsythensis and Fusobacterium spp. in periodontal pockets.  相似文献   

20.
Prevalence of periodontal pathogens in dental plaque of children   总被引:5,自引:0,他引:5       下载免费PDF全文
Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, and Tannerella forsythensis have been implicated as the main etiological agents of periodontal disease. The purpose of this work was to estimate the prevalence of these organisms in plaque from children without gingivitis (group 1; n = 65) and from those with gingivitis (group 2; n = 53). Extracted DNA from plaque was subjected to two rounds of PCR targeting the 16S rRNA gene using both universal primers and species-specific primers. The results were as follows: group 1, P. gingivalis, 49%; A. actinomycetemcomitans, 55%; and T. forsythensis, 65%; group 2, P. gingivalis, 47%; A. actinomycetemcomitans, 59%; and T. forsythensis, 45%. T. forsythensis was detected more frequently in children with no gingivitis than in those with gingivitis (P = 0.03). There was no significant difference between the two groups with respect to the presence of P. gingivalis or A. actinomycetemcomitans in either group (P > 0.05). Logistic regression analysis revealed that the odds of a patient having gingivitis were 2.3 times greater in the absence of T. forsythensis. In conclusion, the results of this study have shown that the three pathogens can be detected in the dental plaque of healthy children and of those with gingivitis and that T. forsythensis is associated with dental plaque at sites with no gingivitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号