首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Gadolinium (Gd) Extracellular volume fraction (ECV) by Cardiovascular Magnetic Resonance (CMR) has been proposed as a non-invasive method for assessment of diffuse myocardial fibrosis. Yet only few studies used 3 T CMR to measure ECV, and the accuracy of ECV measurements at 3 T has not been established. Therefore the aims of the present study were to validate measurement of ECV by MOLLI T1 mapping by 3 T CMR against fibrosis measured by histopathology. We also evaluated the recently proposed hypothesis that native-T1 mapping without contrast injection would be sufficient to detect fibrosis.

Methods

31 patients (age = 58 ± 17 years, 77 % men) with either severe aortic stenosis (n = 12) severe aortic regurgitation (n = 9) or severe mitral regurgitation (n = 10), all free of coronary artery disease, underwent 3 T-CMR with late gadolinium enhancement (LGE) and pre- and post-contrast MOLLI T1 mapping and ECV computation, prior to valve surgery. LV biopsies were performed at the time of surgery, a median 13 [1–30] days later, and stained with picrosirius red. Pre-, and post-contrast T1 values, ECV, and amount of LGE were compared against magnitude of fibrosis by histopathology by Pearson correlation coefficients.

Results

The average amount of interstitial fibrosis by picrosirius red staining in biopsy samples was 6.1 ± 4.3 %. ECV computed from pre-post contrast MOLLI T1 time changes was 28.9 ± 5.5 %, and correlated (r = 0.78, p < 0.001) strongly with the magnitude of histological fibrosis. By opposition, neither amount of LGE (r = 0.17, p = 0.36) nor native pre-contrast myocardial T1 time (r = −0.18, p = 0.32) correlated with fibrosis by histopathology.

Conclusions

ECV determined by 3 T CMR T1 MOLLI images closely correlates with histologically determined diffuse interstitial fibrosis, providing a non-invasive estimation for quantification of interstitial fibrosis in patients with valve diseases. By opposition, neither non-contrast T1 times nor the amount of LGE were indicative of the magnitude of diffuse interstitial fibrosis measured by histopathology.  相似文献   

2.

Background

In hypertrophic cardiomyopathy (HCM), autopsy studies revealed both increased focal and diffuse deposition of collagen fibers. Late gadolinium enhancement imaging (LGE) detects focal fibrosis, but is unable to depict interstitial fibrosis. We hypothesized that with T1 mapping, which is employed to determine the myocardial extracellular volume fraction (ECV), can detect diffuse interstitial fibrosis in HCM patients.

Methods

T1 mapping with a modified Look-Locker Inversion Recovery (MOLLI) pulse sequence was used to calculate ECV in manifest HCM (n = 16) patients and in healthy controls (n = 14). ECV was determined in areas where focal fibrosis was excluded with LGE.

Results

The total group of HCM patients showed no significant changes in mean ECV values with respect to controls (0.26 ± 0.03 vs 0.26 ± 0.02, p = 0.83). Besides, ECV in LGE positive HCM patients was comparable with LGE negative HCM patients (0.27 ± 0.03 vs 0.25 ± 0.03, p = 0.12).

Conclusions

This study showed that HCM patients have a similar ECV (e.g. interstitial fibrosis) in myocardium without LGE as healthy controls. Therefore, the additional clinical value of T1 mapping in HCM seems limited, but future larger studies are needed to establish the clinical and prognostic potential of this new technique within HCM.  相似文献   

3.

Background

Diffuse myocardial fibrosis (DMF) is important in cardiovascular disease, however until recently could only be assessed by invasive biopsy. We hypothesised that DMF measured by T1 mapping is elevated in isolated systemic hypertension.

Methods

In a study of well-controlled hypertensive patients from a specialist tertiary centre, 46 hypertensive patients (median age 56, range 21 to 78, 52 % male) and 50 healthy volunteers (median age 45, range 28 to 69, 52 % male) underwent clinical CMR at 1.5 T with T1 mapping (ShMOLLI) using the equilibrium contrast technique for extracellular volume (ECV) quantification. Patients underwent 24-hours Automated Blood Pressure Monitoring (ABPM), echocardiographic assessment of diastolic function, aortic stiffness assessment and measurement of NT-pro-BNP and collagen biomarkers.

Results

Late gadolinium enhancement (LGE) revealed significant unexpected underlying pathology in 6 out of 46 patients (13 %; myocardial infarction n = 3; hypertrophic cardiomyopathy (HCM) n = 3); these were subsequently excluded. Limited, non-ischaemic LGE patterns were seen in 11 out of the remaining 40 (28 %) patients. Hypertensives on therapy (mean 2.2 agents) had a mean ABPM of 152/88 mmHg, but only 35 % (14/40) had left ventricular hypertrophy (LVH; LV mass male > 90 g/m2; female > 78 g/m2). Native myocardial T1 was similar in hypertensives and controls (955 ± 30 ms versus 965 ± 38 ms, p = 0.16). The difference in ECV did not reach significance (0.26 ± 0.02 versus 0.27 ± 0.03, p = 0.06). In the subset with LVH, the ECV was significantly higher (0.28 ± 0.03 versus 0.26 ± 0.02, p < 0.001).

Conclusion

In well-controlled hypertensive patients, conventional CMR discovered significant underlying diseases (chronic infarction, HCM) not detected by echocardiography previously or even during this study. T1 mapping revealed increased diffuse myocardial fibrosis, but the increases were small and only occurred with LVH.  相似文献   

4.

Purpose

Myocardial T1 relaxation time (T1 time) and extracellular volume fraction (ECV) are altered in patients with diffuse myocardial fibrosis. The purpose of this study was to perform an intra-individual assessment of normal T1 time and ECV for two different contrast agents.

Methods

A modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired at 3 T in 24 healthy subjects (8 men; 28 ± 6 years) at mid-ventricular short axis pre-contrast and every 5 min between 5-45 min after injection of a bolus of 0.15 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Magnevist®) (exam 1) and 0.1 mmol/kg gadobenate dimeglumine (Gd-BOPTA; Multihance®) (exam 2) during two separate scanning sessions. T1 times were measured in myocardium and blood on generated T1 maps. ECVs were calculated as (ΔR1myocardium/ΔR1blood)???(1 ? hematocrit).

Results

Mean pre-contrast T1 relaxation times for myocardium and blood were similar for both the first and second CMR exam (p > 0.5). Overall mean post-contrast myocardial T1 time was 15 ± 2 ms (2.5 ± 0.7%) shorter for Gd-DTPA at 0.15 mmol/kg compared to Gd-BOPTA at 0.1 mmol/kg (p < 0.01) while there was no significant difference for T1 time of blood pool (p > 0.05). Between 5 and 45 minutes after contrast injection, mean ECV values increased linearly with time for both contrast agents from 0.27 ± 0.03 to 0.30 ± 0.03 (p < 0.0001). Mean ECV values were slightly higher (by 0.01, p < 0.05) for Gd-DTPA compared to Gd-BOPTA. Inter-individual variation of ECV was higher (CV 8.7% [exam 1, Gd-DTPA] and 9.4% [exam 2, Gd-BOPTA], respectively) compared to variation of pre-contrast myocardial T1 relaxation time (CV 4.5% [exam 1] and 3.0% [exam 2], respectively). ECV with Gd-DTPA was highly correlated to ECV by Gd-BOPTA (r = 0.803; p < 0.0001).

Conclusion

In comparison to pre-contrast myocardial T1 relaxation time, variation in ECV values of normal subjects is larger. However, absolute differences in ECV between Gd-DTPA and Gd-BOPTA were small and rank correlation was high. There is a small and linear increase in ECV over time, therefore ideally images should be acquired at the same delay after contrast injection.  相似文献   

5.

Background

Myocardial T1 relaxation times have been reported to be markedly abnormal in diverse myocardial pathologies, ascribed to interstitial changes, evaluated by T1 mapping and calculation of extracellular volume (ECV). T1 mapping is sensitive to myocardial water content of both intra- and extracellular in origin, but the effect of intravascular compartment changes on T1 has been largely neglected. We aimed to assess the role of intravascular compartment on native (pre-contrast) T1 values by studying the effect of adenosine-induced vasodilatation in patients with severe aortic stenosis (AS) before and after aortic valve replacement (AVR).

Methods

42 subjects (26 patients with severe AS without obstructive coronary artery disease and 16 controls) underwent cardiovascular magnetic resonance at 3 T for native T1-mapping (ShMOLLI), first-pass perfusion (myocardial perfusion reserve index-MPRI) at rest and during adenosine stress, and late gadolinium enhancement (LGE).

Results

AS patients had increased resting myocardial T1 (1196 ± 47 ms vs. 1168 ± 27 ms, p = 0.037), reduced MPRI (0.92 ± 0.31 vs. 1.74 ± 0.32, p < 0.001), and increased left ventricular mass index (LVMI) and LGE volume compared to controls. During adenosine stress, T1 in AS was similar to controls (1240 ± 51 ms vs. 1238 ± 54 ms, p = 0.88), possibly reflecting a similar level of maximal coronary vasodilatation in both groups. Conversely, the T1 response to stress was blunted in AS (ΔT1 3.7 ± 2.7% vs. 6.0 ± 4.2% in controls, p = 0.013). Seven months after AVR (n = 16) myocardial T1 and response to adenosine stress recovered towards normal. Native T1 values correlated with reduced MPRI, aortic valve area, and increased LVMI.

Conclusions

Our study suggests that native myocardial T1 values are not only influenced by interstitial and intracellular water changes, but also by changes in the intravascular compartment. Performing T1 mapping during or soon after vasodilator stress may affect ECV measurements given that hyperemia alone appears to substantially alter T1 values.  相似文献   

6.

Background

Disturbances in the myocardial extracellular volume fraction (ECV), such as diffuse or focal myocardial fibrosis or edema, are hallmarks of heart disease. Diffuse ECV changes are difficult to assess or quantify with cardiovascular magnetic resonance (CMR) using conventional late gadolinium enhancement (LGE), or pre- or post-contrast T1-mapping alone. ECV measurement circumvents factors that confound T1-weighted images or T1-maps, and has been shown to correlate well with diffuse myocardial fibrosis. The goal of this study was to develop and evaluate an automated method for producing a pixel-wise map of ECV that would be adequately robust for clinical work flow.

Methods

ECV maps were automatically generated from T1-maps acquired pre- and post-contrast calibrated by blood hematocrit. The algorithm incorporates correction of respiratory motion that occurs due to insufficient breath-holding and due to misregistration between breath-holds, as well as automated identification of the blood pool. Images were visually scored on a 5-point scale from non-diagnostic (1) to excellent (5).

Results

The quality score of ECV maps was 4.23 ± 0.83 (m ± SD), scored for n = 600 maps from 338 patients with 83% either excellent or good. Co-registration of the pre-and post-contrast images improved the image quality for ECV maps in 81% of the cases. ECV of normal myocardium was 25.4 ± 2.5% (m ± SD) using motion correction and co-registration values and was 31.5 ± 8.7% without motion correction and co-registration.

Conclusions

Fully automated motion correction and co-registration of breath-holds significantly improve the quality of ECV maps, thus making the generation of ECV-maps feasible for clinical work flow.  相似文献   

7.

Background

Although echocardiography is used as a first line imaging modality, its accuracy to detect acute and chronic myocardial infarction (MI) in relation to infarct characteristics as assessed with late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) is not well described.

Methods

One-hundred-forty-one echocardiograms performed in 88 first acute ST-elevation MI (STEMI) patients, 2 (IQR1-4) days (n = 61) and 102 (IQR92-112) days post-MI (n = 80), were pooled with echocardiograms of 36 healthy controls. 61 acute and 80 chronic echocardiograms were available for analysis (53 patients had both acute and chronic echocardiograms). Two experienced echocardiographers, blinded to clinical and CMR data, randomly evaluated all 177 echocardiograms for segmental wall motion abnormalities (SWMA). This was compared with LGE-CMR determined infarct characteristics, performed 104 ± 11 days post-MI. Enhancement on LGE-CMR matched the infarct-related artery territory in all patients (LAD 31%, LCx 12% and RCA 57%).

Results

The sensitivity of echocardiography to detect acute MI was 78.7% and 61.3% for chronic MI; specificity was 80.6%. Undetected MI were smaller, less transmural, and less extensive (6% [IQR3-12] vs. 15% [IQR9-24], 50 ± 14% vs. 61 ± 15%, 7 ± 3 vs. 9 ± 3 segments, p < 0.001 for all) and associated with higher left ventricular ejection fraction (LVEF) and non-anterior location as compared to detected MI (58 ± 5% vs. 46 ± 7%, p < 0.001 and 82% vs. 63%, p = 0.03). After multivariate analysis, LVEF and infarct size were the strongest independent predictors of detecting chronic MI (OR 0.78 [95%CI 0.68-0.88], p < 0.001 and OR 1.22 [95%CI0.99-1.51], p = 0.06, respectively). Increasing infarct transmurality was associated with increasing SWMA (p < 0.001).

Conclusions

In patients presenting with STEMI, and thus a high likelihood of SWMA, the sensitivity of echocardiography to detect SWMA was higher in the acute than the chronic phase. Undetected MI were smaller, less extensive and less transmural, and associated with non-anterior localization and higher LVEF. Further work is needed to assess the diagnostic accuracy in patients with non-STEMI.  相似文献   

8.

Background

To evaluate and quantify the impact of a novel image-based motion correction technique in myocardial T2 mapping in terms of measurement reproducibility and spatial variability.

Methods

Twelve healthy adult subjects were imaged using breath-hold (BH), free breathing (FB), and free breathing with respiratory navigator gating (FB + NAV) myocardial T2 mapping sequences. Fifty patients referred for clinical CMR were imaged using the FB + NAV sequence. All sequences used a T2 prepared (T2prep) steady-state free precession acquisition. In-plane myocardial motion was corrected using an adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC). DICE similarity coefficient (DSC) and myocardial boundary errors (MBE) were measured to quantify the motion estimation accuracy in healthy subjects. T2 mapping reproducibility and spatial variability were evaluated in healthy subjects using 5 repetitions of the FB + NAV sequence with either 4 or 20 T2prep echo times (TE). Subjective T2 map quality was assessed in patients by an experienced reader using a 4-point scale (1-non diagnostic, 4-excellent).

Results

ARCTIC led to increased DSC in BH data (0.85 ± 0.08 vs. 0.90 ± 0.02, p = 0.007), FB data (0.78 ± 0.13 vs. 0.90 ± 0.21, p < 0.001), and FB + NAV data (0.86 ± 0.05 vs. 0.90 ± 0.02, p = 0.002), and reduced MBE in BH data (0.90 ± 0.40 vs. 0.64 ± 0.19 mm, p = 0.005), FB data (1.21 ± 0.65 vs. 0.63 ± 0.10 mm, p < 0.001), and FB + NAV data (0.81 ± 0.21 vs. 0.63 ± 0.08 mm, p < 0.001). Improved reproducibility (4TE: 5.3 ± 2.5 ms vs. 4.0 ± 1.5 ms, p = 0.016; 20TE: 3.9 ± 2.3 ms vs. 2.2 ± 0.5 ms, p = 0.002), reduced spatial variability (4TE: 12.8 ± 3.5 ms vs. 10.3 ± 2.5 ms, p < 0.001; 20TE: 9.7 ± 3.5 ms vs. 7.5 ± 1.4 ms) and improved subjective score of T2 map quality (3.43 ± 0.79 vs. 3.69 ± 0.55, p < 0.001) were obtained using ARCTIC.

Conclusions

The ARCTIC technique substantially reduces spatial mis-alignment among T2-weighted images and improves the reproducibility and spatial variability of in-vivo T2 mapping.  相似文献   

9.

Background

Although cardiovascular magnetic resonance (CMR) is showing increasingly diagnostic potential in left ventricular non-compaction (LVNC), relatively little research relevant to CMR is conducted in children with LVNC. This study was performed to characterize and compare CMR features and clinical outcomes in children with LVNC with and without late gadolinium enhancement (LGE).

Methods

A cohort of 40 consecutive children (age, 13.7 ± 3.3 years; 29 boys and 11 girls) with isolated LVNC underwent a baseline CMR scan with subsequent clinical follow-up. Short-axis cine images were used to calculate left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), myocardial mass, ratio of non-compacted-to-compacted myocardial thickness (NC/C ratio), and number of non-compacted segments. The LGE images were analyzed to assess visually presence and patterns of LGE. The primary end point was a composite of cardiac death and heart transplantation.

Results

The LGE was present in 10 (25 %) children, and 46 (27 %) segments were involved, including 23 non-compacted segments and 23 normal segments. Compared with LGE- cohort, LGE+ cohort had significantly lower LVEF (23.8 ± 10.7 % vs. 42.9 ± 16.7 %, p < 0.001) and greater LVEDV (169.2 ± 65.1 vs. 118.2 ± 48.9 mL/m2, p = 0.010), LVESV (131.3 ± 55.5 vs. 73.3 ± 46.7 mL/m2, p = 0.002), and sphericity indices (0.75 ± 0.19 vs. 0.60 ± 0.20, p = 0.045). There were no differences in terms of number and distribution of non-compacted segments, NC/C ratio, and myocardial mass index between LGE+ and LGE- cohort. In the LGE+ cohort, adverse events occurred in 6 patients compared to 2 events in the LGE- cohort. Kaplan-Meier analysis showed a significant difference in outcome between LGE+ and LGE- cohort for cardiac death and heart transplantation (p = 0.011).

Conclusions

The LGE was present in up to one-fourth of children with LVNC, and the LGE+ children exhibited a more maladaptive LV remodeling and a higher incidence of cardiovascular death and heart transplantation.  相似文献   

10.

Background

The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors.

Methods

Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography.

Results

Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose.

Conclusions

Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning.  相似文献   

11.

Background

Liver cirrhosis has been shown to affect cardiac performance. However cardiac dysfunction may only be revealed under stress conditions. The value of non-invasive stress tests in diagnosing cirrhotic cardiomyopathy is unclear. We sought to investigate the response to pharmacological stimulation with dobutamine in patients with cirrhosis using cardiovascular magnetic resonance.

Methods

Thirty-six patients and eight controls were scanned using a 1.5 T scanner (Siemens Symphony TIM; Siemens, Erlangen, Germany). Conventional volumetric and feature tracking analysis using dedicated software (CMR42; Circle Cardiovascular Imaging Inc, Calgary, Canada and Diogenes MRI; Tomtec; Germany, respectively) were performed at rest and during low to intermediate dose dobutamine stress.

Results

Whilst volumetry based parameters were similar between patients and controls at rest, patients had a smaller increase in cardiac output during stress (p = 0.015). Ejection fraction increase was impaired in patients during 10 μg/kg/min dobutamine as compared to controls (6.9 % vs. 16.5 %, p = 0.007), but not with 20 μg/kg/min (12.1 % vs. 17.6 %, p = 0.12). This was paralleled by an impaired improvement in circumferential strain with low dose (median increase of 14.4 % vs. 30.9 %, p = 0.03), but not with intermediate dose dobutamine (median increase of 29.4 % vs. 33.9 %, p = 0.54). There was an impaired longitudinal strain increase in patients as compared to controls during low (median increase of 6.6 % vs 28.6 %, p < 0.001) and intermediate dose dobutamine (median increase of 2.6%vs, 12.6 % p = 0.016). Radial strain response to dobutamine was similar in patients and controls (p > 0.05).

Conclusion

Cirrhotic cardiomyopathy is characterized by an impaired cardiac pharmacological response that can be detected with magnetic resonance myocardial stress testing. Deformation analysis parameters may be more sensitive in identifying abnormalities in inotropic response to stress than conventional methods.  相似文献   

12.

Background

T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR.

Methods

We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium.

Results

All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %.

Conclusions

Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis.  相似文献   

13.

Introduction

Rewarming from deep hypothermic circulatory arrest (DHCA) produces calcium desensitization by troponin I (cTnI) phosphorylation which results in myocardial dysfunction. This study investigated the acute overall hemodynamic and metabolic effects of epinephrine and levosimendan, a calcium sensitizer, on myocardial function after rewarming from DHCA.

Methods

Forty male Wistar rats (400 to 500 g) underwent cardiopulmonary bypass (CPB) through central cannulation and were cooled to a core temperature of 13°C to 15°C within 30 minutes. After DHCA (20 minutes) and CPB-assisted rewarming (60 minutes) rats were randomly assigned to 60 minute intravenous infusion with levosimendan (0.2 μg/kg/min; n = 15), epinephrine (0.1 μg/kg/min; n = 15) or saline (control; n = 10). Systolic and diastolic functions were evaluated at different preloads with a conductance catheter.

Results

The slope of left ventricular end-systolic pressure volume relationship (Ees) and preload recruitable stroke work (PRSW) recovered significantly better with levosimendan compared to epinephrine (Ees: 85 ± 9% vs 51 ± 11%, P<0.003 and PRSW: 78 ± 5% vs 48 ± 8%, P<0.005; baseline: 100%). Levosimendan but not epinephrine reduced left ventricular stiffness shown by the end-diastolic pressure-volume relationship and improved ventricular relaxation (Tau). Levosimendan preserved ATP myocardial content as well as energy charge and reduced plasma lactate concentrations. In normothermia experiments epinephrine in contrast to Levosimendan increased cTnI phosphorylation 3.5-fold. After rewarming from DHCA, cTnI phosphorylation increased 4.5-fold in the saline and epinephrine group compared to normothermia but remained unchanged with levosimendan.

Conclusions

Levosimendan due to prevention of calcium desensitization by cTnI phosphorylation is more effective than epinephrine for treatment of myocardial dysfunction after rewarming from DHCA.  相似文献   

14.

Background

Sarcomeric gene mutations cause hypertrophic cardiomyopathy (HCM). In gene mutation carriers without left ventricular (LV) hypertrophy (G + LVH-), subclinical imaging biomarkers are recognized as predictors of overt HCM, consisting of anterior mitral valve leaflet elongation, myocardial crypts, hyperdynamic LV ejection fraction, and abnormal apical trabeculation. Reverse curvature of the interventricular septum (into the LV) is characteristic of overt HCM. We aimed to assess LV septal convexity in subclinical HCM.

Methods

Cardiovascular magnetic resonance was performed on 36 G + LVH- individuals (31 ± 14 years, 33 % males) with a pathogenic sarcomere mutation, and 36 sex and age-matched healthy controls (33 ± 12 years, 33 % males). Septal convexity (SCx) was measured in the apical four chamber view perpendicular to a reference line connecting the mid-septal wall at tricuspid valve insertion level and the apical right ventricular insertion point.

Results

Septal convexity was increased in G + LVH- compared to controls (maximal distance of endocardium to reference line: 5.0 ± 2.5 mm vs. 1.6 ± 2.4 mm, p ≤ 0.0001). Expected findings occurred in G + LVH- individuals: longer anterior mitral valve leaflet (23.5 ± 3.0 mm vs. 19.9 ± 3.1 mm, p ≤ 0.0001), higher relative wall thickness (0.31 ± 0.05 vs. 0.29 ± 0.04, p ≤ 0.05), higher LV ejection fraction (70.8 ± 4.3 % vs. 68.3 ± 4.4 %, p ≤ 0.05), and smaller LV end-systolic volume index (21.4 ± 4.4 ml/m2vs. 23.7 ± 5.8 ml/m2, p ≤ 0.05). Other morphologic measurements (LV angles, sphericity index, and eccentricity index) were not different between G + LVH- and controls.

Conclusions

Septal convexity is an additional previously undescribed feature of subclinical HCM.  相似文献   

15.

Background

Patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) have varying degrees of salvageable myocardium at risk of irreversible injury. We hypothesized that a novel model of NSTE-ACS produces acute myocardial injury, measured by increased T2 cardiovascular magnetic resonance (CMR), without significant necrosis by late gadolinium enhancement (LGE).

Methods

In a canine model, partial coronary stenosis was created and electrodes placed on the epicardium. Myocardial T2, an indicator of at-risk myocardium, was measured pre- and post-tachycardic pacing.

Results

Serum troponin-I (TnI) was not detectable in unoperated sham animals but averaged 1.97 ± 0.72 ng/mL in model animals. Coronary stenosis and pacing produced significantly higher T2 in the affected vs. the remote myocardium (53.2 ± 4.9 vs. 43.6 ± 2.8 ms, p < 0.01) with no evident injury by LGE. Microscopy revealed no significant irreversible cellular injury. Relative respiration rate (RRR) of affected vs. remote myocardial tissue was significantly lower in model vs. sham animals (0.72 ± 0.07 vs. 1.04 ± 0.07, p < 0.001). Lower RRR corresponded to higher final TnI levels (R2 = 0.83, p = 0.004) and changes in CaMKIID and mitochondrial gene expression.

Conclusions

A large animal NSTE-ACS model with mild TnI elevation and without ST elevation, similar to the human syndrome, demonstrates signs of acute myocardial injury by T2-CMR without significant irreversible damage. Reduced tissue respiration and associated adaptations of critical metabolic pathways correspond to increased myocardial injury by serum biomarkers in this model. T2-CMR as a biomarker of at-risk but salvageable myocardium warrants further consideration in preclinical and clinical studies of NSTE-ACS.  相似文献   

16.

Background

Previous work indicates that dilatation of the pulmonary artery (PA) itself or in relation to the ascending aorta (PA:Ao ratio) predicts pulmonary hypertension (PH). Whether these results also apply for heart failure with preserved ejection fraction (HFpEF) is unknown.In the present study we evaluated the diagnostic and prognostic power of PA diameter and PA:Ao ratio on top of right ventricular (RV) size, function, and septomarginal trabeculation (SMT) thickness by cardiovascular magnetic resonance (CMR) in HFpEF.

Methods and Results

159 consecutive HFpEF patients were prospectively enrolled. Of these, 111 underwent CMR and invasive hemodynamic evaluation.By invasive assessment 64 % of patients suffered from moderate/severe PH (mean pulmonary artery pressure (mPAP) ≥30 mmHg). Significant differences between groups with and without moderate/severe PH were observed with respect to PA diameter (30.9 ± 5.1 mm versus 26 ± 5.1 mm, p < 0.001), PA:Ao ratio (0.93 ± 0.16 versus 0.78 ± 0.14, p < 0.001), and SMT diameter (4.6 ± 1.5 mm versus 3.8 ± 1.2 mm; p = 0.008). The strongest correlation with mPAP was found for PA:Ao ratio (r = 0.421, p < 0.001). By ROC analysis the best cut-off for the detection of moderate/severe PH was found for a PA:Ao ratio of 0.83.Patients were followed for 22.0 ± 14.9 months. By Kaplan Meier analysis event-free survival was significantly worse in patients with a PA:Ao ratio ≥0.83 (log rank, p = 0.004). By multivariable Cox-regression analysis PA:Ao ratio was independently associated with event-free survival (p = 0.003).

Conclusion

PA:Ao ratio is an easily measureable noninvasive indicator for the presence and severity of PH in HFpEF, and it is related with outcome.  相似文献   

17.
ObjectiveThe characteristics of the early changes in preclinical diabetic retinopathy (DR) are poorly known. This study aimed to analyse the changes in the structure and function of the fundus in diabetic patients without diabetic retinopathy (NDR).MethodsThis prospective study enrolled patients with type 2 diabetes and healthy controls from April to December 2020. Retinal sensitivity was measured by microperimetry. The peripapillary retinal nerve fibre layer (p-RNFL) thickness, macular retinal thickness, and retinal volume were measured by optical coherence tomography (OCT). The vessel density (VD) and perfusion density (PD) of the peripapillary area, as well as the foveal avascular zone (FAZ) area, FAZ perimeter, and FAZ circularity, were measured by optical coherence tomographic angiography (OCTA).ResultsA total of 71 cases (100 eyes) were enrolled in the study, including 34 cases (51 eyes) in the NDR group and 37 cases (49 eyes) in the control group. The mean retinal sensitivity was lower in the NDR group than in the control group for all sectors (all p < .001). Compared with controls, the NDR group showed thinner p-RNFL in the T sector (76.24 ± 14.29 vs. 85.47 ± 19.66 µm, p = .035). The NDR group had a thinner retina in the N2 sector (304.55 ± 16.07 vs. 312.02 ± 12.30 µm, p = .010). The PD of DCP was lower in the N2 sector in the NDR group (44.92 ± 11.77 vs. 50.27 ± 6.37%, p = .044). The VD was higher in the NDR group in RPCP-S/N/I, and the PD was higher in the RPCP-S/N (all p < .05). The frequencies of perifoveal capillary drop-out, notched or punched out borders of the superficial FAZ, and loss of smooth contour were all higher in the NDR group (all p < .05).ConclusionThe structure (p-RNFL thickness, VD, and PD) and function (retinal sensitivity) display some changes in diabetic patients even if they had not been found to have DR.

Key messages

  1. Decreased retinal sensitivity was observed in diabetic patients before the onset of diabetic retinopathy.
  2. Compared with the control group, we found the changes in vessel density or perfusion density in a certain area, whether in SCP, DCP, or RPCP in the NDR group.
  3. Before the onset of diabetic retinopathy, the structure and function of the retina in diabetic patients had changed.
  相似文献   

18.
BackgroundIn ureterorenoscopy, anaesthesiologists are preferring regional anaesthesia to avoid postoperative complications, while surgeons are preferring general anaesthesia to avoid ureteral trauma. China has not published its guidelines and not referring to the European Association of Urology guidelines. The objectives of study were to evaluate the effects of general, spinal, and epidural anaesthesia on ureter access and surgical outcomes of ureterorenoscopy.MethodsCharts of a total of 392 patients with the American Society of Anaesthesiologists grade I or II, and underwent flexible ureterorenoscopy for removal of the proximal, middle, or distal ureteral single stone under general anaesthesia (GA group; n = 145) or spinal anaesthesia (SA group; n = 131) or epidural anaesthesia (EA group; n = 116) were reviewed retrospectively.ResultsThe dilatation time for patients of GA group was fewer than those of SA (104.01 ± 12.77 sec/patient vs. 130.55 ± 22.53 sec/patient, p < .0001, q = 17.0350) and EA (104.01 ± 12.77 sec/patient vs. 147.03 ± 18.76 sec/patient, p < .0001, q = 26.7240) groups. The time to reach to stone for patients of GA group was fewer than those of SA (126.68 ± 12.59 sec/patient vs. 137.60 ± 17.84 sec/patient, p < .0001, q = 8.4510) and EA (126.68 ± 12.59 sec/patient vs. 149.44 ± 14.85 sec/patient, p < .0001, q = 17.0350) groups. The lithotripsy time (p = .359), operation time (p = .449), intraoperative complications (p = .058), and length of hospital stays (p = .057) of patients were same among groups. Visual analog scale pain scores of patients of the GA group found higher among groups. General anaesthesia caused nausea and vomiting.ConclusionsThis study suggests general anaesthesia for flexible ureterorenoscopy if there is no contraindication.

KEY MESSAGE

  • General anaesthesia facilitates early dilatation of ureters and access to the stone.
  • No strong correlation of the anaesthesia method of choice with lithotripsy time, operation time, intraoperative complications, stone-free conditions, and length of hospital stays.
  • Epidural and spinal anaesthesia have advantages of fewer postoperative pain and better postoperative outcomes for flexible ureterorenoscopy.
  相似文献   

19.

Background

Different patterns of late gadolinium enhancement (LGE) including mid-wall fibrosis using cardiovascular magnetic resonance (CMR) have been reported in adult patients presenting with non-ischemic dilated cardiomyopathy (DCM). In these studies, LGE was associated with pronounced LV remodelling and predicted adverse cardiac outcomes. Accordingly, the purpose of our study was to determine the presence and patterns of LGE in children and adolescents with DCM.

Methods

Patients <18 years of age presenting with severe congestive heart failure who were admitted for evaluation of heart transplantation at our centre underwent CMR examination which consisted of ventricular functional analysis and assessment of LGE for detection of myocardial fibrosis. Ischemic DCM was excluded by coronary angiography, and right ventricular endomyocardial biopsies ruled out acute myocarditis.

Results

Thirty-one patients (mean age 2.1 ± 4.2 years) with severe LV dilatation (mean indexed LVEDV 136 ± 48 ml/m2) and LV dysfunction (mean LV-EF 23 ± 8%) were examined. LGE was detected in 5 of the 31 patients (16%) appearing in various patterns characterized as mid-wall (n = 1), focal patchy (n = 1), RV insertion site (n = 1) and transmural (n = 2). Based on histopathological analysis, 4 of the 5 LGE positive patients had lymphocytic myocarditis, whereas one patient was diagnosed with idiopathic DCM.

Conclusions

In children and adolescents with DCM, focal histologically proven myocardial fibrosis is rarely detected by LGE CMR despite marked LV dilatation and severely depressed LV function. LGE occurred in various patterns and mostly in patients with inflammatory cardiomyopathy. It remains unclear whether myocardial fibrosis in childhood DCM reflects different endogenous repair mechanisms that enable favourable reverse remodelling. Larger trials are needed to assess the prognostic implications of LGE in childhood DCM.  相似文献   

20.

Background

The natural history of acute myocarditis (AM) remains highly variable and predictors of outcome are largely unknown. The objectives were to determine the potential value of various cardiovascular magnetic resonance (CMR) parameters for the prediction of adverse long-term outcome in patients presenting with suspected AM.

Methods

In a single-centre longitudinal prospective study, 203 routine consecutive patients with an initial CMR-based diagnosis of AM (typical Late Gadolinium Enhancement, LGE) were followed over a mean period of 18.9 ± 8.2 months. Various CMR parameters were evaluated as potential predictors of outcome. The primary endpoint was defined as the occurrence of at least one of the combined Major Adverse Clinical Events (MACE) (cardiac death or aborted sudden cardiac death, cardiac transplantation, sustained documented ventricular tachycardia, heart failure, recurrence of acute myocarditis, and the need for hospitalization for cardiac causes).

Results

The vast majority of patients (N = 143,70 %) presented with chest pain, mild to moderate troponin elevation and ST-segment or T wave abnormalities. Various CMR parameters were evaluated on initial CMR performed 3 ± 2 days after acute clinical presentation (LV functional parameters, presence/extent of edema on T2 CMR, and extent of late gadolinium enhancement lesions). Out of the 203 patients, 22 experienced at least one major cardiovascular event (10.8 %) during follow-up for a total of 31 major cardiovascular events. Among all CMR parameters, the only independent CMR predictor of adverse clinical outcome by multivariate analysis was an initial alteration of LVEF (p = 0.04).

Conclusions

In routine consecutive patients without severe hemodynamic compromise and a CMR-based diagnosis of AM, various CMR parameters such as the presence and extent of myocardial edema and the extent of late gadolinium-enhanced LV myocardial lesions were not predictive of outcome. The only independent CMR predictor of adverse clinical outcome was an initial alteration of LVEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号