首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PMEPA1 was originally identified as a highly androgen-induced gene by serial analysis of gene expression in androgen-treated LNCaP prostate cancer (CaP) cells. PMEPA1 expression is prostate abundant and restricted to prostatic epithelial cells. PMEPA1-encoded protein shows high sequence homology to a mouse N4wbp4-encoded protein that binds to Nedd4 protein, an E3 ubiquitin-protein ligase involved in ubiquitin-dependent, proteasome-mediated protein degradation. Studies from our and other laboratories have suggested the role of PMEPA1 in cell growth regulation as noted by androgen induction of PMEPA1 expression, elevated PMEPA1 expression in nontumorigenic revertants of tumor cell lines after chromosome 8p transfer, and PMEPA1 expression alterations (up- or down-regulation) in human tumors. Here, we demonstrate that PMEPA1 protein through its PY motifs interacts with WW domains of the human NEDD4 protein. Exogenous expression of PMEPA1, in widely used CaP cell lines DU145, PC3, LNCaP, and LNCaP sublines (C4, C4-2, and C4-2B), conferred cell growth inhibition, and at least one of the PY motifs of PMEPA1 may be involved in its cell growth inhibitory functions. Quantitative expression analysis of PMEPA1 in paired normal and tumor cells of 62 patients with primary CaP revealed tumor cells associated decreased expression in 40 of 62 patients that were significantly associated with higher pathologic stage and serum prostate-specific antigen. Taken together, PMEPA1 negatively regulates growth of androgen responsive or refractory CaP cells, and these functions may be mediated through the interaction of PMEPA1 with the NEDD4 protein involved in the ubiquitin-proteasome pathway. Loss or reduced PMEPA1 expression in CaP further suggests for its role in prostate tumorigenesis.  相似文献   

2.
3.
Objective: The hyperactivated neddylation pathway plays an important role in tumorigenesis and is emerging as a promising anticancer target. We aimed to study whether NEDD8(neural precursor cell expressed, developmentally down-regulated 8) might serve as a therapeutic target in esophageal squamous cell carcinoma(ESCC).Methods: The clinical relevance of NEDD8 expression was evaluated by using The Cancer Genome Atlas(TCGA) database and tissue arrays. NEDD8-knockdown ESCC cells generated with the C...  相似文献   

4.
5.
6.
7.
Bone morphogenetic protein (BMP) is a pleiotropic growth factor that has been implicated in inflammation and prostate cancer (CaP) progression. We investigated the potential role of BMP‐6 in the context of macrophages and castration‐resistant prostate cancer. When the androgen‐responsive murine (Tramp‐C1 and PTENCaP8) and human (LNCaP) CaP cell lines were cocultured with macrophages in the presence of dihydrotestosterone, BMP‐6 increased androgen‐responsive promoter activity and cell count significantly. Subsequent studies revealed that BMP‐6 increased the expression level of androgen receptor (AR) mRNA and protein in CaP cell lines only in the presence of macrophages. Simultaneously, the AR antagonists bicalutamide and MDV3100 partially or completely blocked BMP‐6‐induced macrophage‐mediated androgen hypersensitivity in CaP cells. Abolishing interleukin‐6 signaling with neutralizing antibody in CaP/macrophage cocultures inhibited the BMP‐6‐mediated AR upregulation in CaP cells. Using Tramp‐C1 and PTENCaP8 cells with a tetracycline‐inducible expression of BMP‐6, the induction of BMP‐6 in vivo resulted in a significant resistance to castration. However, this resistance was blocked after the removal of macrophages with clodronate liposomes. Taken together, these results show that BMP‐6 induces castration resistance by increasing the expression of AR through macrophage‐derived interleukin‐6.  相似文献   

8.
9.
10.
11.
The type 1 insulin-like growth factor receptor (IGF1R) is overexpressed in prostate cancer, and mediates proliferation, motility, and survival. Many prostate cancers harbor inactivating PTEN mutations, enhancing Akt phosphorylation. This activates the principal antiapoptotic pathway downstream of the IGF1R, calling into question the value of IGF1R targeting in this tumor. The aim of the current study was to assess the effect of IGF1R gene silencing in prostate cancer cells that lack functional PTEN protein. In human DU145, LNCaP and PC3 prostate cancer cells, transfection with IGF1R small interfering RNA induced significant enhancement of apoptosis and inhibition of survival, not only in PTEN wild-type DU145 but also in PTEN mutant LNCaP and PC3. This was attributed to attenuation of IGF signaling via Akt, ERKs and p38. In both DU145 and PC3, IGF1R knockdown led to enhancement of sensitivity to mitoxantrone, etoposide, nitrogen mustard and ionizing radiation. There was no sensitization to paclitaxel or 5-fluorouracil, which do not damage DNA, suggesting that chemosensitization results from impairment of the DNA damage response, in addition to removal of apoptosis protection. These results support the concept of IGF1R targeting in prostate cancer, and indicate that PTEN loss does not render tumor cells refractory to this strategy.  相似文献   

12.
Metformin, a diabetes drug, has been reported to inhibit the growth of prostate cancer cells. In this study, we investigated the effect and action mechanism of metformin on the function of androgen receptor (AR), a key molecule in the proliferation of prostate cancer cells. Metformin was found to reduce androgen-dependent cell growth and the expression of AR target genes by inhibiting AR function in prostate cancer cells such as LNCaP and C4-2 cells. Interestingly, metformin upregulated the protein level of small heterodimer partner-interacting leucine zipper (SMILE), a coregulator of nuclear receptors, and knockdown of SMILE expression with shRNA abolished the inhibitory effect of metformin on AR function. Further studies revealed that SMILE protein itself suppressed the transactivation of AR, and its ectopic expression resulted in the repressed expression of endogenous AR target genes, PSA and NKX3.1, in LNCaP cells. In addition, SMILE protein physically interacted with AR and competed with the AR coactivator SRC-1 to modulate AR transactivation. As expected, SMILE repressed androgen-dependent growth of LNCaP and C4-2 cells. Taken together, these results suggest that SMILE, which is induced by metformin, functions as a novel AR corepressor and may mediate the inhibitory effect of metformin on androgen-dependent growth of prostate cancer cells.  相似文献   

13.
Better understanding of the distinct and redundant functions of the proprotein convertase (PC) enzyme family within pathophysiological states has a great importance for potential therapeutic strategies. In this study, we investigated the functional redundancy of PCs in prostate cancer in the commonly used androgen-sensitive LNCaP and the androgen-independent DU145 human cell lines. Using a lentiviral-based shRNA delivery system, we examined in vitro and in vivo cell proliferation characteristics of knockdown cell lines for the endogenous PCs furin, PACE4, and PC7 in both cell lines. Of the three PCs, only PACE4 was essential to maintain a high-proliferative status, as determined in vitro using XTT proliferation assays and in vivo using tumor xenografts in nude mice. Furin knockdowns in both cell lines had no effects on cell proliferation or tumor xenograft growth. Paradoxically, PC7 knockdowns reduced in vitro cellular proliferation but had no effect in vivo. Because PCs act within secretion pathways, we showed that conditioned media derived from PACE4 knockdown cells had very poor cell growth-stimulating effects in vitro. Immunohistochemistry of PACE4 knockdown tumors revealed reduced Ki67 and higher p27KIP levels (proliferation and cell cycle arrest markers, respectively). Interestingly, we determined that the epidermal growth factor receptor signaling pathway was activated in PC7 knockdown tumors only, providing some explanations of the paradoxical effects of PC7 silencing in prostate cancer cell lines. We conclude that PACE4 has a distinct role in maintaining proliferation and tumor progression in prostate cancer and this positions PACE4 as a relevant therapeutic target for this disease.  相似文献   

14.
15.
16.
17.
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. To study if termination of long-term androgen ablation and restoration of testosterone levels could suppress the growth of relapsed hormone-refractory prostate tumors, we implanted testosterone pellets in castrated nude mice carrying androgen receptor (AR)-positive LNCaP 104-R2 cells, which relapsed from androgen-dependent LNCaP 104-S cells after long-term androgen deprivation. 104-R2 tumor xenografts regressed after testosterone pellets were implanted. Of 33 tumors, 24 adapted to elevation of testosterone level and relapsed as androgen-insensitive tumors. Relapsed tumors (R2Ad) expressed less AR and prostate-specific antigen. We then studied the molecular mechanism underlying the androgenic regulation of prostate cancer cell proliferation. Androgen suppresses proliferation of 104-R2 by inducing G(1) cell cycle arrest through reduction of S-phase kinase-associated protein 2 (Skp2) and c-Myc, and induction of p27(Kip1). 104-R2 cells adapted to androgen treatment and the adapted cells, R2Ad, were androgen-insensitive cells with a slower growth rate and low protein level of AR, high levels of c-Myc and Skp2, and low levels of p27(Kip1). Nuclear AR and prostate-specific antigen expression is present in 104-R2 cells but not R2Ad cells when androgen is absent. Overexpression of AR in R2Ad cells regenerated an androgen-repressed phenotype; knockdown of AR in 104-R2 cells generated an androgen-insensitive phenotype. Overexpression of Skp2 and c-Myc in 104-R2 cells blocked the growth inhibition caused by androgens. We concluded that androgens cause growth inhibition in LNCaP 104-R2 prostate cancer cells through AR, Skp2, and c-Myc.  相似文献   

18.
E3 ubiquitin ligases primarily determine the substrate specificity of the ubiquitin-proteasome system and play an essential role in the resistance to bortezomib in multiple myeloma (MM). Neural precursor cell-expressed developmentally downregulated gene 4-1 (NEDD4-1, also known as NEDD4) is a founding member of the NEDD4 family of E3 ligases and is involved in the proliferation, migration, invasion and drug sensitivity of cancer cells. In the present study, we investigated the role of NEDD4-1 in MM cells and explored its underlying mechanism. Clinically, low NEDD4-1 expression has been linked to poor prognosis in patients with MM. Functionally, NEDD4-1 knockdown (KD) resulted in bortezomib resistance in MM cells in vitro and in vivo. The overexpression (OE) of NEDD4-1, but not an enzyme-dead NEDD4-1-C867S mutant, had the opposite effect. Furthermore, the overexpression of NEDD4-1 in NEDD4-1 KD cells resensitized the cells to bortezomib in an add-back rescue experiment. Mechanistically, pAkt-Ser473 levels and Akt signaling were elevated and decreased by NEDD4-1 KD and OE, respectively. NEDD4-1 ubiquitinated Akt and targeted pAkt-Ser473 for proteasomal degradation. More importantly, the NEDD4-1 KD-induced upregulation of Akt expression sensitized MM cells to growth inhibition after treatment with an Akt inhibitor. Collectively, our results suggest that high NEDD4-1 levels may be a potential new therapeutic target in MM.  相似文献   

19.
Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP.  相似文献   

20.
Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号