首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

In pancreatic ductal adenocarcinoma (PDAC), fractalkine receptor CX3CR1 contributes to perineural invasion (PNI). We investigated whether CX3CR1 expression occurs early in PDAC and correlates with tumour features other than PNI.

Methods:

We studied CX3CR1 and CX3CL1 expression by immunohistochemistry in 104 human PDAC and coexisting Pancreatic Intraepithelial Neoplasia (PanIN), and in PdxCre/LSL-KrasG12D mouse model of PDAC. CX3CR1 expression in vitro was studied by a spheroid model, and in vivo by syngenic mouse graft of tumour cells.

Results:

In total, 56 (53.9%) PDAC expressed CX3CR1, 70 (67.3%) CX3CL1, and 45 (43.3%) both. CX3CR1 expression was independently associated with tumour glandular differentiation (P=0.005) and PNI (P=0.01). Pancreatic Intraepithelial Neoplasias were more frequently CX3CR1+ (80.3%, P<0.001) and CX3CL1+ (86.8%, P=0.002) than matched cancers. The survival of PDAC patients was better in those with CX3CR1+ tumour (P=0.05). Mouse PanINs were also CX3CR1+ and -CL1+. In vitro, cytokines significantly increased CX3CL1 but not CX3CR1 expression. Differently, CX3CR1 was upregulated in tumour spheroids, and in vivo only in well-differentiated tumours.

Conclusion:

Tumour differentiation, rather than inflammatory signalling, modulates CX3CR1 expression in PanINs and PDAC. CX3CR1 expression pattern suggests its early involvement in PDAC progression, outlining a potential target for interfering with the PanIN transition to invasive cancer.  相似文献   

2.
3.
Brain metastases frequently occur in lung cancer and dramatically limit prognosis of affected patients. The influence of tumor-associated macrophages and microglia (TAM/M) and their receptor CX3CR1 on different steps of brain metastasis formation from lung cancer is poorly characterized. We established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic cranial window with repetitive intravital 2-photon laser scanning microscopy. This allowed in vivo tracking of fluorescence-expressing tumor cells and TAM/M on a single-cell level over weeks. Intracarotid injection of red tdTomato-fluorescent Lewis lung carcinoma cell was performed in transgenic mice either proficient or deficient for CX3CR1. After intracarotid cell injection, intravascular tumor cells extravasated into the brain parenchyma and formed micro- and mature macrometastases. We observed potential phagocytosis of extravasated tumor cells by TAM/M. However, during later steps of metastasis formation, these anti-tumor effects diminished and were paralleled by TAM/M accumulation and activation. Although CX3CR1 deficiency resulted in a lower number of extravasated tumor cells, progression of these extravasated cells into micro metastases was more efficient. Overall, this resulted in a comparable number of mature macrometastases in CX3CR1-deficient and -proficient mice. Our findings indicate that unspecific inhibition of CX3CR1 might not be a suitable therapeutic option to prevent dissemination of lung cancer cells to the brain. Given the close interaction between TAM/M and tumor cells during metastasis formation, other therapeutic approaches targeting TAM/M function may warrant further evaluation. The herein established orthotopic mouse model may be a useful tool to evaluate such concepts in vivo.  相似文献   

4.
Innate immunity is critically important for tumor surveillance and regulating tumor metastasis. Fractalkine (FKN, CX3CL1), operating through the receptor CX3CR1, is an effective chemoattractant and adhesion receptor for NK cells and monocytes, important constituents of the innate immune response. Previous studies have shown that over-expression of CX3CL1 by tumor cells enhances antitumor responses. However, since most tumors do not express CX3CL1, it remains unclear if CX3CL1/CX3CR1 has a role in tumor immunity in the absence of ligand over-expression. To determine the role of CX3CL1 and CX3CR1 in regulating antitumor immune responses, we tested the response of wildtype and CX3CR1-deficient animals to unmanipulated B16 melanoma that does not express CX3CL1. We studied the distribution and trafficking of mononuclear cells (MNC) under homeostatic conditions and in the presence of B16 metastatic melanoma, cytotoxic activity, and cytokine production in wild-type and CX3CR1-deficient animals. We found that B16-treated CX3CR1-/- mice had increased lung tumor burden and cachexia. There was a selective reduction of monocytes and NK cells in the lungs of CX3CR1-deficient animals under homeostatic conditions and in response to B16. CX3CR1-deficient NK cells effectively killed B16 cells in cytotoxicity assays. However, CX3CR1-deficient NK cells exhibited a tumorigenic cytokine production profile with defective IFN-gamma expression and enhanced IL-6 production in response to TLR3 activation with polyIC. Our studies indicate that CX3CR1 is an important contributor to innate immunity at multiple levels. Its role in tumor immunity is not limited by expression of CX3CL1 by tumor cells.  相似文献   

5.
Inhibitors targeting the integrin αvβ3 are promising new agents currently tested in clinical trials for supplemental therapy of glioblastoma multiforme (GBM). The aim of our study was to evaluate 18F-labeled glycosylated Arg-Gly-Asp peptide ([18F]Galacto-RGD) PET for noninvasive imaging of αvβ3 expression in patients with GBM, suggesting eligibility for this kind of additional treatment. Patients with suspected or recurrent GBM were examined with [18F]Galacto-RGD PET. Standardized uptake values (SUVs) of tumor hotspots, galea, and blood pool were derived by region-of-interest analysis. [18F]Galacto-RGD PET images were fused with cranial MR images for image-guided surgery. Tumor samples taken from areas with intense tracer accumulation in the [18F]Galacto-RGD PET images and were analyzed histologically and immunohistochemically for αvβ3 integrin expression. While normal brain tissue did not show significant tracer accumulation (mean SUV, 0.09 ± 0.04), GBMs demonstrated significant but heterogeneous tracer uptake, with a maximum in the highly proliferating and infiltrating areas of tumors (mean SUV, 1.6 ± 0.5). Immunohistochemical staining was prominent in tumor microvessels as well as glial tumor cells. In areas of highly proliferating glial tumor cells, tracer uptake (SUVs) in the [18F]Galacto-RGD PET images correlated with immunohistochemical αvβ3 integrin expression of corresponding tumor samples. These data suggest that [18F] Galacto-RGD PET successfully identifies αvβ3 expression in patients with GBM and might be a promising tool for planning and monitoring individualized cancer therapies targeting this integrin.  相似文献   

6.
Classical immunotherapeutic approaches to glioblastoma multiforme (GBM) have shown mixed results, and therapies focused on innate lymphocyte activity against GBM have not been rigorously evaluated. We examined peripheral blood lymphocyte phenotype, γδ T-cell number, mitogenic response, and cytotoxicity against GBM cell lines and primary tumor explants from GBM patients at selected time points prior to and during GBM therapy. Healthy volunteers served as controls and were grouped by age. T-cell infiltration of tumors from these patients was assessed by staining for CD3 and T-cell receptor γδ. Our findings revealed no differences in counts of mean absolute T-cells, T-cell subsets CD3+CD4+ and CD3+CD8+, and natural killer cells from healthy volunteers and patients prior to and immediately after GBM resection. In contrast, γδ T-cell counts and mitogen-stimulated proliferative response of γδ T-cells were markedly decreased prior to GBM resection and throughout therapy. Expanded/activated γδ T-cells from both patients and healthy volunteers kill GBM cell lines D54, U373, and U251, as well as primary GBM, without cytotoxicity to primary astrocyte cultures. Perivascular T-cell accumulation was noted in paraffin sections, but no organized T-cell invasion of the tumor parenchyma was seen. Taken together, these data suggest that γδ T-cell depletion and impaired function occur prior to or concurrent with the growth of the tumor. The significant cytotoxicity of expanded/activated γδ T-cells from both healthy controls and selected patients against primary GBM explants may open a previously unexplored approach to cellular immunotherapy of GBM.  相似文献   

7.
Glioblastoma multiforme (GBM) remains one of the most lethal primary brain tumors despite surgical and therapeutic advancements. Targeted therapies of neoplastic diseases, including GBM, have received a great deal of interest in recent years. A highly studied target of GBM is interleukin-13 receptor α chain variant 2 (IL13Rα2). Targeted therapies against IL13Rα2 in GBM include fusion chimera proteins of IL-13 and bacterial toxins, nanoparticles, and oncolytic viruses. In addition, immunotherapies have been developed using monoclonal antibodies and cell-based strategies such as IL13Rα2-pulsed dendritic cells and IL13Rα2-targeted chimeric antigen receptor–modified T cells. Advanced therapeutic development has led to the completion of phase I clinical trials for chimeric antigen receptor–modified T cells and phase III clinical trials for IL-13–conjugated bacterial toxin, with promising outcomes. Selective expression of IL13Rα2 on tumor cells, while absent in the surrounding normal brain tissue, has motivated continued study of IL13Rα2 as an important candidate for targeted glioma therapy. Here, we review the preclinical and clinical studies targeting IL13Rα2 in GBM and discuss new advances and promising applications.  相似文献   

8.
Transendothelial migration (TEM) of tumor cells is a crucial step in metastasis formation. The prevailing paradigm is that the mechanism underlying TEM of tumor cells is similar to that of leukocytes involving adhesion molecules and chemokines. Fractalkine (CX3CL1) is a unique membrane-bound chemokine that functions also as an adhesion molecule. CX3CL1 can be cleaved to a soluble fragment, capable of attracting fractalkine receptor (CX3CR1)-expressing cells. In the present study, we asked if CX3CR1 is involved in the TEM of neuroblastoma cells. We demonstrated that biologically functional CX3CR1 is expressed by several neuroblastoma cell lines. Most importantly, CX3CR1-expressing neuroblastoma cells were stimulated by CX3CL1 to transmigrate through human bone-marrow endothelial cells. A dose dependent phosphorylation of ERK1/2 and AKT was induced in CX3CR1-expressing neuroblastoma cells by soluble CX3CL1. In addition to CX3CR1, neuroblastoma cells also express the CX3CL1 ligand. Membrane CX3CL1 expression was downregulated and the shedding of soluble CX3CL1 was upregulated by PKC activation. Taken together, the results of this study indicate that CX3CR1 plays a functional role in transmigration of neuroblastoma cells through bone-marrow endothelium. These results led us to hypothesize that the CX3CR1-CX3CL1 axis takes part in bone-marrow metastasis of neuroblastoma.  相似文献   

9.
Glioblastoma (GBM) is the most malignant brain tumor where patients'' survival is only 14.6 months, despite multimodal therapy with debulking surgery, concurrent chemotherapy and radiotherapy. There is an urgent, unmet need for novel, effective therapeutic strategies for this devastating disease. Although several immunotherapies are under development for the treatment of GBM patients, the use of natural killer (NK) cells is still marginal despite this being a promising approach to treat cancer. In regard of our knowledge on the role of NG2/CSPG4 in promoting GBM aggressiveness we investigated the potential of an innovative immunotherapeutic strategy combining mAb9.2.27 against NG2/CSPG4 and NK cells in preclinical animal models of GBM. Multiple immune escape mechanisms maintain the tumor microenvironment in an anti-inflammatory state to promote tumor growth, however, the distinct roles of resident microglia versus recruited macrophages is not elucidated. We hypothesized that exploiting the cytokine release capabilities of activated NK cells to reverse the anti-inflammatory axis combined with mAb9.2.27 targeting the NG2/CSPG4 may favor tumor destruction by editing pro-GBM immune responses. Combination treatment with NK+mAb9.2.27 diminished tumor growth that was associated with reduced tumor proliferation, increased cellular apoptosis and prolonged survival compared to vehicle and monotherapy controls. The therapeutic efficacy was mediated by recruitment of CCR2low macrophages into the tumor microenvironment, increased ED1 and MHC class II expression on microglia that might render them competent for GBM antigen presentation, as well as elevated IFN-γ and TNF-α levels in the cerebrospinal fluid compared to controls. Depletion of systemic macrophages by liposome-encapsulated clodronate decreased the CCR2low macrophages recruited to the brain and abolished the beneficial outcomes. Moreover, mAb9.2.27 reversed tumor-promoting effects of patient-derived tumor-associated macrophage/ microglia (TAM) ex vivo. Taken together, these findings indicate that NK+mAb9.2.27 treatment may be an amenable therapeutic strategy to treat NG2/CSPG4 expressing GBMs. We provide a novel conceptual approach of combination immunotherapy for glioblastoma. The results traverse beyond the elucidation of NG2/CSPG4 as a therapeutic target, but demonstrate a proof of concept that this antibody may hold potential for the treatment of GBM by activation of tumor infiltrated microglia/macrophages.  相似文献   

10.
BackgroundEmerging insights from numerous laboratories have revealed important roles for nonneoplastic cells in the development and progression of brain tumors. One of these nonneoplastic cellular constituents, glioma-associated microglia (GAM), represents a unique population of brain monocytes within the tumor microenvironment that have been reported to both promote and inhibit glioma proliferation. To elucidate the role of GAM in the setting of low-grade glioma (LGG), we leveraged RNA sequencing meta-analysis, genetically engineered mouse strains, and human biospecimens.MethodsPublicly available disease-associated microglia (DAM) RNA-seq datasets were used, followed by immunohistochemistry and RNAScope validation. CD11a-deficient mouse microglia were used for in vitro functional studies, while LGG growth in mice was assessed using anti-CD11a neutralizing antibody treatment of Neurofibromatosis type 1 (Nf1) optic glioma mice in vivo.ResultsWe identified Itgal/CD11a enrichment in GAM relative to other DAM populations, which was confirmed in several independently generated murine models of Nf1 optic glioma. Moreover, ITGAL/CD11A expression was similarly increased in human LGG (pilocytic astrocytoma) specimens from several different datasets, specifically in microglia from these tumors. Using CD11a-knockout mice, CD11a expression was shown to be critical for murine microglia CX3CL1 receptor (Cx3cr1) expression and CX3CL1-directed motility, as well as glioma mitogen (Ccl5) production. Consistent with an instructive role for CD11a+ microglia in stromal control of LGG growth, antibody-mediated CD11a inhibition reduced mouse Nf1 LGG growth in vivo.ConclusionsCollectively, these findings establish ITGAL/CD11A as a critical microglia regulator of LGG biology relevant to future stroma-targeted brain tumor treatment strategies.  相似文献   

11.
Prognosis of leukemia relapse post allogeneic stem cell transplantation (alloSCT) is poor and effective new treatments are urgently needed. T cells are pivotal in eradicating leukemia through a graft versus leukemia (GVL) effect and leukemia relapse is considered a failure of GVL. T-cell exhaustion is a state of T-cell dysfunction mediated by inhibitory molecules including programmed cell death protein 1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3). To evaluate whether T-cell exhaustion and inhibitory pathways are involved in leukemia relapse post alloSCT, we performed phenotypic and functional studies on T cells from peripheral blood of acute myeloid leukemia patients receiving alloSCT. Here we report that PD-1hiTIM-3+ cells are strongly associated with leukemia relapse post transplantation. Consistent with exhaustion, PD-1hiTIM-3+ T cells are functionally deficient manifested by reduced production of interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In addition, these cells demonstrate a phenotype consistent with exhausted antigen-experienced T cells by losing TN and TEMRA subsets. Importantly, increase of PD-1hiTIM-3+ cells occurs before clinical diagnosis of leukemia relapse, suggesting their predictive value. Results of our study provide an early diagnostic approach and a therapeutic target for leukemia relapse post transplantation.  相似文献   

12.
目的 探讨趋化因子CX3CL1及其受体CX3CR1与卵巢癌患者耐药及预后的关系,以及裸鼠耐药模型中CX3CL1、CX3CR1在铂类耐药过程中的变化,分析其表达水平与Fas信号通路的相关性。方法 利用癌症基因图集(TCGA)数据库中卵巢癌患者的全基因组表达谱,分析CX3CL1和CX3CR1在铂类敏感和耐药患者中的表达与临床病理特征的关系。利用已构建的带有绿色荧光标记的卵巢癌SKOV3敏感细胞(SKOV3-GFP)和顺铂耐药细胞(SKOV3-GFP/DDPⅢ)进行裸鼠皮下种植,成瘤后分次给予顺铂体内注射;qRT-PCR检测第0、2、5、8次顺铂注射后移植瘤组织中CX3CL1、CX3CR1与Fas信号通路上基因的表达水平。结果 CX3CL1表达与卵巢癌FIGO分期和铂类耐药产生呈负相关(r=-0.112,P=0.030;r=-0.106,P=0.044);CX3CR1表达与无进展生存时间呈负相关(r=-0.130,P=0.029)和1年复发率呈正相关(r=0.119,P=0.045)。铂类敏感组卵巢癌患者的卵巢组织中CX3CL1的平均表达量为3.96±0.039,显著高于耐药组的3.64±0.55(P=0.000)。顺铂干预后,裸鼠皮下移植瘤体质量随时间推移而增加,SKOV3-GFP/DDPⅢ组形成的移植瘤体质量始终高于SKOV3-GFP组,在第5次给药后移植瘤开始逐渐变小。顺铂干预后,SKOV3-GFP组CX3CL1、CX3CR1表达水平明显升高(P=0.001,P=0.002),SKOV3-GFP/DDPⅢ组CX3CL1、CX3CR1基因表达始终处于较低水平。SKOV3-GFP/DDPⅢ组中Fas信号通路上的Fas、FADD的表达较SKOV3-GFP组明显降低(P<0.001);而PARP1基因的相对表达较SKOV3 GFP组明显上调(P<0.001)。CX3CL1和CX3CR1的表达与Fas信传导通路上节点基因Fas、FADD表达呈正相关,与下游PARP1基因的表达呈负相关。结论 CX3CL1、CX3CR1表达下调与铂类耐药形成相关,两者可能具有维持肿瘤细胞对铂类药物敏感性的作用。CX3CL1、CX3CR1在耐药细胞中的低表达可能通过某种机制抑制Fas信号传导通路,使其传导失调,抑制细胞凋亡及诱发卵巢癌对铂类耐药。  相似文献   

13.
The present studies examined the biology of the multiple sclerosis drug dimethyl-fumarate (DMF) or its in vivo breakdown product and active metabolite mono-methyl-fumarate (MMF), alone or in combination with proteasome inhibitors, in primary human glioblastoma (GBM) cells. MMF enhanced velcade and carfilzomib toxicity in multiple primary GBM isolates. Similar data were obtained in breast and colon cancer cells. MMF reduced the invasiveness of GBM cells, and enhanced the toxicity of ionizing radiation and temozolomide. MMF killed freshly isolated activated microglia which was associated with reduced IL-6, TGFβ and TNFα production. The combination of MMF and the multiple sclerosis drug Gilenya further reduced both GBM and activated microglia viability and cytokine production. Over-expression of c-FLIP-s or BCL-XL protected GBM cells from MMF and velcade toxicity. MMF and velcade increased plasma membrane localization of CD95, and knock down of CD95 or FADD blocked the drug interaction. The drug combination inactivated AKT, ERK1/2 and mTOR. Molecular inhibition of AKT/ERK/mTOR signaling enhanced drug combination toxicity whereas molecular activation of these pathways suppressed killing. MMF and velcade increased the levels of autophagosomes and autolysosomes and knock down of ATG5 or Beclin1 protected cells. Inhibition of the eIF2α/ATF4 arm or the IRE1α/XBP1 arm of the ER stress response enhanced drug combination lethality. This was associated with greater production of reactive oxygen species and quenching of ROS suppressed cell killing.  相似文献   

14.
The chemokine CX3CL1 is constitutively expressed in the central nervous system by neurons and astrocytes controlling neuronal survival and neurotransmission. In this work, we analyzed the expression and function of the chemokine CX3CL1 and its receptor, CX3CR1, by human glioma cells. We show that both molecules are expressed on the tumor cell plasma membrane and that soluble CX3CL1 accumulates in the culture supernatants, indicating that the chemokine is constitutively released. We found that CX3CR1 is functional, as all the cell lines adhered to immobilized recombinant CX3CL1 and migrated in response to the soluble form of this chemokine. In addition, the blockade of endogenous CX3CL1 function by means of a neutralizing monoclonal antibody markedly delayed tumor cell aggregation and increased their invasiveness. We also show that CX3CL1 expression is potently modulated by the transforming growth factor-beta1 (TGF-beta1), a key regulator of glioma cell invasiveness. Indeed, both the treatment of glioma cells with recombinant TGF-beta1 and the inhibition of its endogenous expression by siRNA showed that TGF-beta1 decreases CX3CL1 mRNA and protein expression. Overall, our results indicate that endogenously expressed CX3CL1 negatively regulates glioma invasion likely by promoting tumor cell aggregation, and that TGF-beta1 inhibition of CX3CL1 expression might contribute to glioma cell invasive properties.  相似文献   

15.
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. The poor prognosis and short median overall survival of patients with GBM is associated with resistance to therapy after surgical and adjuvant treatment. The expression of various acetylcholine receptors (AChR) in GBM has been widely reported. The present study aimed to investigate the expression of cholinergic system-related genes in primary GBM and to explore the antiproliferative effect of 3-(2,4-dimethoxybenzylidene) anabaseine (GTS-21) in GBM cell lines. Therefore, the expression of 28 genes associated with the cholinergic system was detected using a customized RT2 Profiler PCR Array in 44 GBM and 5 healthy control brain tissue samples. In addition, the activity of GTS-21, an alpha 7 subunit nicotinic AChR (α7 nAChR) agonist, and that of α-bungarotoxin (α-BTX), an α7 nAChR antagonist, was determined in primary and established GBM cells. Therefore, the A172, U87 and G28 cell lines and primary GBM cells were treated with GTS-21, ACh or nicotine. Cell viability was evaluated using MTT assay at 24, 48 and 72 h following cell treatment with the corresponding compounds. The results revealed that the expression of cholinergic system-related components was notably downregulated, except that of cholinergic receptor nicotinic alpha 7 subunit (CHRNA7), in primary GBM and U87 cells. However, the dominant-negative duplicate form of CHRNA7 was also downregulated. Furthermore, A172 and G28 cells exhibited a heterogeneous gene expression pattern. Additionally, GTS-21 inhibited the proliferation of GBM cells in a dose- and time-dependent manner. Interestingly, treatment with α-BTX restored the proliferation of U87 cells, but not that of A172 and G28 cells. Collectively, the findings of the present study suggested that GTS-21 may inhibit the proliferation of GBM cells and may therefore serve as a novel therapeutic approach to the treatment of GBM, which warrants further investigation.  相似文献   

16.
BACKGROUND AND OBJECTIVES: Fractalkine is the only CX3C chemokine, and its receptor, CX3CR1, is expressed on NK cells, CD8+ T cells, monocytes, and dendritic cells (DC). Although studies have reported that fractalkine regulates the host immune response, the roles of the fractalkine-CX3CR1 axis in tumor biology and the clinical results of hepatocellular carcinoma (HCC) remain unknown. METHODS: Fractalkine and CX3CR1 expression in HCC were evaluated and compared with the clinicopathologic features, including tumor progression determined by proliferating cell nuclear antigen (PCNA) antibody and patient prognosis after surgery. RESULTS: Tumors with high expression of both fractalkine and CX3CR1 had significantly fewer intra- and extrahepatic recurrences, a low PCNA labeling index (PCNALI), and different histological grades. Patients with tumors that expressed both had a significantly better prognosis in terms of disease-free (DFS) and overall survival (OAS), and this finding was identified as one of the independent prognostic factors in the multivariate analysis. CONCLUSIONS: Our results suggest that the fractalkine-CX3CR1 axis plays a pivotal role in the prognosis of patients with HCC, which might arise from the known modulation of the host immune response, and that of the cell cycle in HCC.  相似文献   

17.
Ly-6E.1 is highly expressed in murine tumor cells with a high malignancy phenotype and may serve as a marker for such a phenotype. In this study, we examined the effects of various growth conditions and stress on the expression levels of Ly-6E.1 by tumor cells. Previous preliminary results have shown that murine DA3 mammary tumor cells expressing high levels of Ly-6E.1 (Ly-6hi) are more highly tumorigenic than the same tumor cells expressing low levels of this membrane protein (Ly-6lo). In this study, we demonstrate that mice bearing Ly-6hi DA3 tumors have a significantly higher burden of spontaneous pulmonary metastasis than mice bearing Ly-6lo DA3 tumors. Furthermore, the survival time of the former mice was significantly shorter than that of the latter ones. We further show that certain other members of the Ly-6 gene family such as Ly-6C.1 and Ly-6G.1 are coregulated with Ly-6E.1. This was shown to occur with respect to both DA3 cells as well as A3 tumor cells which are of fibroblast origin. However, these 2 cells differ with respect to regulation of Sca-2 (TSA1, another member of the Ly-6 family) expression on these cells. Levels of Sca-2 on A3 cells appear to be coregulated with Ly-6E.1 (i.e., Ly-6hi A3 cells express high levels of Sca-2 and Ly-6lo A3 cells express low levels of Sca-2). These 2 Ly-6 proteins were, however, not coregulated on DA3 cells. Both Ly-6hi as well as Ly-6lo DA3 cells express equal levels of Sca-2. Levels of Thy-1, another glycosylphosphatidylinositol (GPI)-anchored protein expressed by A3 tumor cells, were equally expressed by both Ly-6hi and Ly-6lo A3 tumor cells. Levels of Ly-6 (but not those of CD44) on A3 tumor cells were upregulated on cells from dense cultures but were not influenced by the position of the cells in the cell cycle. Stress conditions such as serum starvation or heat shock upregulated the expression of Ly-6 by the 2 types of tumor cells but did not induce apoptosis in these cells. The kinetics of the stress-dependent upregulation of Ly-6 expression differed, however, between the epithelial and fibroblastic tumor cells. Int. J. Cancer 77:306–313, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

18.
Glioblastoma multiforme (GBM) is the most common primary brain tumor and is without exception lethal. GBMs modify the immune system, which contributes to the aggressive nature of the disease. Particularly, cells of the monocytic lineage, including monocytes, macrophages and microglia, are affected. We investigated the influence of GBM‐derived extracellular vesicles (EVs) on the phenotype of monocytic cells. Proteomic profiling showed GBM EVs to be enriched with proteins functioning in extracellular matrix interaction and leukocyte migration. GBM EVs appeared to skew the differentiation of peripheral blood‐derived monocytes to alternatively activated/M2‐type macrophages. This was observed for EVs from an established cell line, as well as for EVs from primary cultures of GBM stem‐like cells (GSCs). Unlike EVs of non‐GBM origin, GBM EVs induced modified expression of cell surface proteins, modified cytokine secretion (e.g., an increase in vascular endothelial growth factor and IL‐6) and increased phagocytic capacity of the macrophages. Most pronounced effects were observed upon incubation with EVs from mesenchymal GSCs. GSC EVs also affected primary human microglia, resulting in increased expression of Membrane type 1‐matrix metalloproteinase, a marker for GBM microglia and functioning as tumor‐supportive factor. In conclusion, GBM‐derived EVs can modify cells of the monocytic lineage, which acquire characteristics that resemble the tumor‐supportive phenotypes observed in patients.  相似文献   

19.
20.

Background

Glioblastoma (GBM) is the most lethal and common type of primary brain tumor. Recent evidence suggests that a subpopulation of GBM cells (glioblastoma stem cells [GSCs]) is critical for tumor progression, invasion, and therapeutic resistance. We and others have demonstrated that MET, a receptor tyrosine kinase, positively regulates the stemness phenotype and radioresistance of GSCs. Here, we interrogated the downstream effector pathways of MET signaling in GSCs.

Methods

We have established a series of GSCs and xenograft tumors derived from freshly dissociated specimens from patients with GBM and characterized a subpopulation enriched with MET activation (METhigh/+). Through global expression profiling and subsequent pathways analysis, we identified signaling pathways that are enriched in METhigh/+ populations, one of which is Wnt/β-catenin signaling pathway. To determine molecular interaction and the biological consequences of MET and Wnt/β-catenin signaling, we used pharmacological and shRNA-mediated genetic inhibition and performed various molecular and cellular analyses, including flow cytometry, immunohistochemistry, and clonogenicity assays.

Results

We found that Wnt/β-catenin signaling is highly active in METhigh/+ cells, compared with bulk tumor cells. We also showed that Wnt/β-catenin signaling activities in GBM are directly modulated by the addition of ligand-mediated MET activation or MET inhibition. Furthermore, the ectopic expression of active-β-catenin (S37A and S45Y) rescued the phenotypic effects caused by MET inhibition.

Conclusion

These data suggest that Wnt/β-catenin signaling is a key downstream effector of MET signaling and contributes to the maintenance of GSC and GBM malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号