首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active Representation of Shape and Spatial Location in Man   总被引:4,自引:2,他引:2  
Neural activity during the delay period of spatial delayed response(DR) and delayed matching (DM) tasks was investigated by positronemission tomography. A distributed cortical system was activatedin each condition. The bilateral dorsolateral prefrontal cortex(DLPFC) was activated in the delay period of both tasks; activationwas of higher significance on the right in the DR task and theleft in the DM task, and extended to the anterolateral prefrontalcortex in the DM condition. Active representation of spatiallocation in the DR task was associated with co-activation ofthe medial and lateral parietal cortex and the extrastriatevisual cortex. Active representation of shape in the DM taskwas associated with co-activation of the medial and lateralparietal cortex and the inferior temporal cortex. Response-relatedactivity was observed in both tasks. Activation of anteriorcingulate, inferior frontal, lateral premotor and rostral inferiorparietal cortex was observed in the DR condition, a task characterizedby preparation of a movement to a predetermined location. Incontrast, preparation to move to an undetermined location inthe DM task was associated with activation predominantly inrostral SMA.  相似文献   

2.
Studies of cognitive and neural aging have recently provided evidence of a shift from an early- to late-onset cognitive control strategy, linked with temporally extended activity in the prefrontal cortex (PFC). It has been uncertain, however, whether this age-related shift is unique to PFC and executive control tasks or whether the functional location might vary depending on the particular cognitive processes that are altered. The present study tested whether an early-to-late shift in aging (ELSA) might emerge in the medial temporal lobes (MTL) during a protracted context memory task comprising both anticipatory cue (retrieval preparation) and retrieval probe (retrieval completion) phases. First, we found reduced MTL activity in older adults during the early retrieval preparation phase coupled with increased MTL activity during the late retrieval completion phase. Second, we found that functional connectivity between MTL and PFC regions was higher during retrieval preparation in young adults but higher during retrieval completion in older adults, suggesting an important interactive relationship between the ELSA pattern in MTL and PFC. Taken together, these results critically suggest that aging results in temporally lagged activity even in regions not typically associated with cognitive control, such as the MTL.  相似文献   

3.
We analyzed the behavioral data from 104 neuroimaging studies using positron emission tomography or functional magnetic resonance imaging that reported activation peaks in rostral prefrontal cortex (PFC), approximating Brodmann's area 10. The distribution of absolute x coordinates of activation peaks (i.e., x coordinate regardless of hemisphere) differed significantly from a unimodal normal distribution, reflecting distinct clusters of activation in lateral and medial subregions. These 2 clusters were associated with different patterns of behavioral data. Lateral activations were associated with contrasts between experimental and control conditions where response times (RTs) were slower in the experimental condition. Medial activations were associated with contrasts where RTs were, if anything, faster in experimental than control conditions. These findings place important constraints on theories of rostral PFC functions.  相似文献   

4.
Spatiotemporal and recognition memory are affected by aging in humans and macaque monkeys. To investigate whether these deficits are coupled with atrophy of memory-related brain regions, T(1)-weighted magnetic resonance images were acquired and volumes of the cerebrum, ventricles, prefrontal cortex (PFC), calcarine cortex, hippocampus, and striatum were quantified in young and aged rhesus monkeys. Subjects were tested on a spatiotemporal memory procedure (delayed response [DR]) that requires the integrity of the PFC and a medial temporal lobe-dependent recognition memory task (delayed nonmatching to sample [DNMS]). Region of interest analyses revealed that age inversely correlated with striatal, dorsolateral prefrontal cortex (dlPFC), and anterior cingulate cortex volumes. Hippocampal volume predicted acquisition of the DR task. Striatal volume correlated with DNMS acquisition, whereas total prefrontal gray matter, prefrontal white matter, and dlPFC volumes each predicted DNMS accuracy. A regional covariance analysis revealed that age-related volumetric changes could be captured in a distributed network that was coupled with declining performance across delays on the DNMS task. This volumetric analysis adds to growing evidence that cognitive aging in primates arises from region-specific morphometric alterations distributed across multiple memory-related brain systems, including subdivisions of the PFC.  相似文献   

5.
Emerging ideas of brain function emphasize the context-dependency of regional contributions to cognitive operations, where the function of a particular region is constrained by its pattern of functional connectivity. We used functional magnetic resonance imaging to examine how modality of input (auditory or visual) affects prefrontal cortex (PFC) functional connectivity for simple working memory tasks. The hypothesis was that PFC would show contextually dependent changes in functional connectivity in relation to the modality of input despite similar cognitive demands. Participants were presented with auditory or visual bandpass-filtered noise stimuli, and performed 2 simple short-term memory tasks. Brain activation patterns independently mapped onto modality and task demands. Analysis of right ventral PFC functional connectivity, however, suggested these activity patterns interact. One functional connectivity pattern showed task differences independent of stimulus modality and involved ventromedial and dorsolateral prefrontal and occipitoparietal cortices. A second pattern showed task differences that varied with modality, engaging superior temporal and occipital association regions. Importantly, these association regions showed nonzero functional connectivity in all conditions, rather than showing a zero connectivity in one modality and nonzero in the other. These results underscore the interactive nature of brain processing, where modality-specific and process-specific networks interact for normal cognitive operations.  相似文献   

6.
The neural system involved in cognitive control includes the anterior cingulate cortex (ACC) and the lateral prefrontal cortex (PFC). Neural activity within these structures is sensitive to aging. We investigated the hypothesis that decline in performance with age results in increased cognitive control, as indexed by greater activity within the ACC and lateral PFC. Using positron emission tomography we measured neural activity during a range of verbal decision-making tasks in 16 subjects aged 37-83 years. Conditions were separated behaviorally on the basis of their sensitivity to aging. This allowed the comparison of age-dependent and age-independent conditions, revealing the neural correlates of age-dependent decline in performance. We then modeled the relationship between age, decision type, performance, and frontal lobe activity. ACC activity was independently predicted by age and decision-making accuracy, indicating that in older individuals ACC response is more sensitive to declining performance. We also found strong functional connectivity between the ACC and lateral PFC and observed that activation of the lateral PFC was qualitatively different over time in different age groups. Thus, the ACC and lateral PFC show distinct responses to age-related decline in decision-making performance. This suggests that greater cognitive control is employed as individuals age and their performance declines.  相似文献   

7.
Although patient data have traditionally implicated the left prefrontal cortex (PFC) in hypothesis generation, recent lesion data implicate right PFC in hypothesis generation tasks that involve set shifts (lateral transformations). To test the involvement of the right prefrontal cortex in a hypothesis generation task involving set shifts, we scanned 13 normal subjects with fMRI as they completed Match Problems (a classic divergent thinking task) and a baseline task. In Match Problems subjects determined the number of possible solutions for each trial. Successful solutions are indicative of set shifts. In the baseline condition subjects evaluated the accuracy of hypothetical solutions to match problems. A comparison of Match Problems versus baseline trials revealed activation in right ventral lateral PFC (BA 47) and left dorsal lateral PFC (BA 46). A further comparison of successfully versus unsuccessfully completed Match Problems revealed activation in right ventral lateral PFC (BA 47), left middle frontal gyrus (BA 9) and left frontal pole (BA 10), thus identifying the former as a critical component of the neural mechanisms of set-shift transformation. By contrast, activation in right dorsal lateral PFC (BA 46) covaried as a function of the number of solutions generated in Match Problems, possibly due to increased working memory demands to maintain multiple solutions 'on-line', conflict resolution, or progress monitoring. These results go beyond the patient data by identifying the ventral lateral (BA 47) aspect of right PFC as being a critical component of the neural systems underlying lateral transformations, and demonstrate a dissociation between right VLPFC and DLPFC in hypotheses generation and maintenance.  相似文献   

8.
The prefrontal cortex (PFC) plays an important role in higher cognitive processes, and in the regulation of stress-induced hypothalamic-pituitary-adrenal (HPA) activity. Here we examined the effect of repeated restraint stress on dendritic spine number in the medial PFC. Rats were perfused after receiving 21 days of daily restraint stress, and intracellular iontophoretic injections of Lucifer Yellow were carried out in layer II/III pyramidal neurons in the anterior cingulate and prelimbic cortices. We found that stress results in a significant (16%) decrease in apical dendritic spine density in medial PFC pyramidal neurons, and confirmed a previous observation that total apical dendritic length is reduced by 20% in the same neurons. We estimate that nearly one-third of all axospinous synapses on apical dendrites of pyramidal neurons in medial PFC are lost following repeated stress. A decrease in medial PFC dendritic spines may not only be indicative of a decrease in the total population of axospinous synapses, but may impair these neurons' capacity for biochemical compartmentalization and plasticity in which dendritic spines play a major role. Dendritic atrophy and spine loss may be important cellular features of stress-related psychiatric disorders where the PFC is functionally impaired.  相似文献   

9.
We used functional magnetic resonance imaging and a 1-back task to assess working memory (WM) for spatial (sound location) and nonspatial (sound category) auditory information in younger and older adults. A mixed block-event-related design was used to measure sustained activity during each task block and transient activity to targets (repetitions of location or category). In both groups, there was increased sustained activity for category WM in left anterior temporal cortex and inferior prefrontal cortex (PFC) and increased activity for location WM in right inferior parietal cortex and dorsal PFC. There were no reliable age differences in this pattern of activity. Older adults had more sustained activity than younger adults in left PFC during both tasks, suggesting that additional PFC recruitment in older adults reflects nonspecific engagement of frontally mediated task-monitoring processes. Both groups showed lower transient than sustained activity in auditory cortex bilaterally; however, older adults showed smaller target-related reductions of activity during the category task. A greater reduction of activity to category targets in left auditory cortex was associated with better performance on this task in older adults, suggesting that a failure to modulate activity appropriately when a stimulus is repeated, or when a particular feature of the stimulus is repeated, could lead to reduced ability to detect this repetition.  相似文献   

10.
The prefrontal cortex (PFC) of the rat supports cognitive flexibility, the ability to spontaneously adapt goal-directed behavior in response to radically changing situational demands. We have shown previously that transient inactivation of the rat medial PFC (mPFC) impairs initial reversal learning in a spatial 2-lever discrimination task. Given the importance of dopamine (DA) for PFC function, we studied DA (and noradrenaline [NA]) efflux in the mPFC during reversal learning. We observed a higher and more extended increase in DA efflux in rats performing the first reversal compared with controls performing the previously acquired discrimination. The results of an additional experiment suggest that such a difference between the reversal- and control-induced DA increases was absent during a third reversal. During the extinction session, DA efflux did not increase from basal levels. Increases in NA efflux were less than in DA and did not differ between control and any condition. We conclude that prefrontal DA activity is increased during execution of instrumental discrimination tasks and that this increase is amplified during the acquisition of a first, but not of later reversals. These data corroborate our previous findings and indicate that DA is critically involved in this form of cognitive flexibility.  相似文献   

11.
Cognitive control impairments in healthy older adults may partly reflect disturbances in the ability to actively maintain goal-relevant information, a function that depends on the engagement of lateral prefrontal cortex (PFC). In 2 functional magnetic resonance imaging studies, healthy young and older adults performed versions of a task in which contextual cues provide goal-relevant information used to bias processing of subsequent ambiguous probes. In Study 1, a blocked design and manipulation of the cue-probe delay interval revealed a generalized pattern of enhanced task-related brain activity in older adults but combined with a specific delay-related reduction of activity in lateral PFC regions. In Study 2, a combined blocked/event-related design revealed enhanced sustained (i.e., across-trial) activity but a reduction in transient trial-related activation in lateral PFC among older adults. Further analyses of within-trial activity dynamics indicated that, within these and other lateral PFC regions, older adults showed reduced activation during the cue and delay period but increased activation at the time of the probe, particularly on high-interference trials. These results are consistent with the hypothesis that age-related impairments in goal maintenance abilities cause a compensatory shift in older adults from a proactive (seen in young adults) to a reactive cognitive control strategy.  相似文献   

12.
Anterior cingulate cortex (ACC) may play a key role in cognitive control by monitoring for the occurrence of response conflict (i.e. simultaneous activation of incompatible response tendencies). Low-frequency responding might provide a minimal condition for eliciting such conflict, as a result of the need to overcome a prepotent response tendency. We predicted that ACC would be selectively engaged during low-frequency responding, irrespective of the specific task situation. To test this hypothesis, we examined ACC activity during the performance of simple choice-discrimination tasks, using rapid event-related functional magnetic resonance imaging. Subjects were scanned while performing three tasks thought to tap different cognitive processes: 'Go/No-go' (response inhibition), 'oddball' (target detection), and two-alternative forced- choice (response selection). Separate conditions manipulated the frequency of relevant task events. Consistent with our hypothesis, the same ACC region was equally responsive to low-frequency events across all three tasks, but did not show differential responding when events occurred with equal frequency. Subregions of the ACC were also identified that showed heightened activity during the response inhibition condition, and on trials in which errors were committed. Task-sensitive activity was also found in right prefrontal and parietal cortex (response inhibition), left superior temporal and tempoparietal cortex (target detection), and supplementary motor area (response selection). Taken together, the results are consistent with the hypothesis that the ACC serves as a generic detector of processing conflict arising when low-frequency responses must be executed, but also leave open the possibility that further functional specialization may occur within ACC subregions.  相似文献   

13.
Previous neuroimaging studies have implicated the prefrontal cortex (PFC) and nearby brain regions in deception. This is consistent with the hypothesis that lying involves the executive control system. To date, the nature of the contribution of different aspects of executive control to deception, however, remains unclear. In the present study, we utilized an activation likelihood estimate (ALE) method of meta-analysis to quantitatively identify brain regions that are consistently more active for deceptive responses relative to truthful responses across past studies. We then contrasted the results with additional ALE maps generated for 3 different aspects of executive control: working memory, inhibitory control, and task switching. Deception-related regions in dorsolateral PFC and posterior parietal cortex were selectively associated with working memory. Additional deception regions in ventrolateral PFC, anterior insula, and anterior cingulate cortex were associated with multiple aspects of executive control. In contrast, deception-related regions in bilateral inferior parietal lobule were not associated with any of the 3 executive control constructs. Our findings support the notion that executive control processes, particularly working memory, and their associated neural substrates play an integral role in deception. This work provides a foundation for future research on the neurocognitive basis of deception.  相似文献   

14.
Context shapes perception, thought, and action, but little is known about the neural mechanisms supporting these modulations. Here, we addressed the role of lateral prefrontal cortex (PFC) in context updating and maintenance from an information-theoretic perspective. Ten patients with PFC lesions and 10 age-matched controls responded to bilaterally displayed visual targets intermixed with repetitive and novel distracters in 2 different task contexts. In a predictable context, targets were always preceded by a novel event, whereas this temporal contingency was removed in an unpredictable context condition. We applied information theory to the analysis and interpretation of behavioral and electrophysiological data. The results revealed deficits in both the selection and the suppression of familiar versus novel information mainly observed at the visual hemifield contralateral to PFC damage due to disrupted frontocortical and frontosubcortical connectivity. The findings support a deficit in the representation of the temporal contingency between contextually related novel and familiar stimulation subsequent to lateral PFC damage.  相似文献   

15.
Alterations of the prefrontal cortex (PFC) could contribute to cognitive decline in older adults. We examined the specificity of age-related PFC degeneration and whether cognitive abilities were related to volumetric measurements. Older and younger subjects were tested using a battery of tasks supported by different subregions within the PFC. The cognitive data from older subjects were related to PFC volumetric measurements in order to determine whether cortical morphology was predictive of individual differences in task performance within this age range (72-94 years). Working memory performance best distinguished older from younger subjects. Working memory measures but not other measures were correlated with age in both groups. A larger orbital PFC volume was related to a worse working memory performance and a larger superior PFC volume was related to worse conditional association learning. The volumes of these regions were not related to performance on other tasks. These results suggest that working memory is a sensitive measure of cognitive aging and that regional morphology is associated with specific cognitive abilities in older adults.  相似文献   

16.
The prefrontal cortex (PFC) appears to be important for processing both cognitive and motivational context information. Primate lateral PFC (LPFC) neurons are involved in cognitive context-dependent stimulus coding by responding differently to an identical stimulus according to the task situation. Such context-dependent LPFC activity appears to be supported by context-representing activity, observed also in LPFC neurons, in which the baseline activity differs as a function of the task. In LPFC, there are also neurons that code stimulus on the basis of motivational context. This motivational context is represented in differential baseline activity as a function of the reward context. In the orbitofrontal cortex (OFC), there are neurons that code stimuli depending on the motivational context as well as neurons that represent motivational context information. Furthermore, we found LPFC neurons that coded the stimulus depending on both the cognitive and motivational context, as well as LPFC neurons that represented both the cognitive and motivational context. For adaptive behavior, it is important to code the meaning of the environmental situation based on the context. While OFC is predominantly concerned with processing motivational context information, LPFC seems to play important roles in integrating the cognitive and motivational context for adaptive goal-directed behavior.  相似文献   

17.
Posttraumatic stress disorder (PTSD) has been linked to deficits in response inhibition, and neuroimaging research suggests this may be due to differences in prefrontal cortex recruitment. The current study examined relationships between PTSD from intimate partner violence (IPV) and neural responses during inhibition. There were 10 women with PTSD from IPV and 12 female control subjects without trauma history who completed the stop signal task during functional magnetic resonance imaging. Linear mixed models were used to investigate group differences in activation (stop–nonstop and hard–easy trials). Those with PTSD exhibited greater differential activation to stop–nonstop trials in the right dorsolateral prefrontal cortex and the anterior insula and less differential activation in several default mode regions (d = 1.12–1.22). Subjects with PTSD exhibited less differential activation to hard–easy trials in the lateral frontal and the anterior insula regions (driven by less activation to hard trials) and several default mode regions (i.e., medial prefrontal cortex, posterior cingulate; driven by greater activation to easy trials; d = 1.23–1.76). PTSD was associated with difficulties disengaging default mode regions during cognitive tasks with relatively low cognitive demand, as well as difficulties modulating executive control and salience processing regions with increasing cognitive demand. Together, these results suggest that PTSD may relate to decreased neural flexibility during inhibition.  相似文献   

18.
We assessed time-dependent neuronal activity accompanying learning using functional magnetic resonance imaging (fMRI). An artificial grammar learning paradigm enabled us to dissociate activations associated with individual item learning from those involved in learning the underlying grammar system. We show that a localized region of right prefrontal cortex (PFC) is preferentially sensitive to individual item learning during the early stages of the experiment, while the left PFC region is sensitive to grammar learning which occurred across the entire course of the experiment. In addition to dissociating these two types of learning, we were able to characterize the effect of rule acquisition on neuronal responses associated with explicit learning of individual items. This effect was expressed as modulation of the time-dependent right PFC activations such that the early increase in activation associated with item learning was attenuated as the experiment progressed. In a further analysis we used structural equation modelling to explore time-dependent changes in inter-regional connectivity as a function of both item and grammar rule learning. Although there were no significant effects of item learning on the measured path strengths, rule learning was associated with a decrease in right fronto-parietal connectivity and an increase in connectivity between left and right PFC. Further fronto-parietal path strengths were observed to change, with an increase in left fronto-parietal and a decrease in right fronto-parietal connectivity path strength from right PFC to left parietal cortex. We interpret our findings in terms of a left frontal system mediating the semantic analysis of study items and directly influencing a right fronto-parietal system associated with episodic memory retrieval.  相似文献   

19.
The orbitofrontal cortex has been ascribed a role in the inhibitory control, as well as in the emotional control, of behaviour. While damage to the orbitofrontal cortex in humans and non-human primates can cause inflexibility, impulsiveness and emotional disturbance, the relationship between these effects are unclear. Excitotoxic lesion studies in marmosets comparing the effects of cell loss within specific regions of the prefrontal cortex on performance of a range of behavioural tests reveal that mechanisms of response inhibition are not unique to the orbitofrontal cortex. Instead they are present in distinct cognitive domains for lowerorder as well as higher-order processing throughout the prefrontal cortex. Thus, the lateral prefrontal cortex is involved in the selection and control of action based upon higher-order rules while the orbitofrontal and medial prefrontal cortex may be involved in different but complementary forms of lower-order rule learning, their roles dissociable, as a result of their differential contribution to different types of associative learning.  相似文献   

20.
Frontal and parietal lobe activation during transitive inference in humans   总被引:2,自引:0,他引:2  
Cortical areas engaged in knowledge manipulation during reasoning were identified with functional magnetic resonance imaging (MRI) while participants performed transitive inference (TI) on an ordered list of 11 items (e.g. if A < B and B < C, then A < C). Initially, participants learned a list of arbitrarily ordered visual shapes. Learning occurred by exposure to pairs of list items that were adjacent in the sequence. Subsequently, functional MR images were acquired as participants performed TI on non-adjacent sequence items. Control tasks consisted of height comparisons (HT) and passive viewing (VIS). Comparison of the TI task with the HT task identified activation resulting from TI, termed 'reasoning', while controlling for rule application, decision processes, perception, and movement, collectively termed 'support processes'. The HT-VIS comparison revealed activation related to support processes. The TI reasoning network included bilateral prefrontal cortex (PFC), pre-supplementary motor area (preSMA), premotor area (PMA), insula, precuneus, and lateral posterior parietal cortex. By contrast, cortical regions activated by support processes included the bilateral supplementary motor area (SMA), primary motor cortex (M1), somatic sensory cortices, and right PMA. These results emphasize the role of a prefrontal-parietal network in manipulating information to form new knowledge based on familiar facts. The findings also demonstrate PFC activation beyond short-term memory to include mental operations associated with reasoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号