首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
OBJECTIVE: Endothelial progenitor cells (EPCs) are used for angiogenic therapies or as biomarkers to assess cardiovascular disease risk. However, there is no uniform definition of an EPC, which confounds EPC studies. EPCs are widely described as cells that coexpress the cell-surface antigens CD34, AC133, and vascular endothelial growth factor receptor-2 (VEGFR-2). These antigens are also expressed on primitive hematopoietic progenitor cells (HPCs). Remarkably, despite their original identification, CD34+AC133+VEGFR-2+ cells have never been isolated and simultaneously plated in hematopoietic and endothelial cell (EC) clonogenic assays to assess the identity of their clonal progeny, which are presumably the cellular participants in vascular regeneration. METHODS: CD34+AC133+VEGFR-2+ cells were isolated from human umbilical cord blood (CB) or granulocyte colony-stimulating factor-mobilized peripheral blood and assayed for either EPCs or HPCs. RESULTS: CD34+AC133+VEGFR-2+ cells did not form EPCs and were devoid of vessel forming activity. However, CD34+AC133+VEGFR-2+ cells formed HPCs and expressed the hematopoietic lineage-specific antigen, CD45. We next tested whether EPCs could be separated from HPCs by immunoselection for CD34 and CD45. CD34+CD45+ cells formed HPCs but not EPCs, while CD34+CD45- cells formed EPCs but not HPCs. CONCLUSIONS: Therefore, CD34+AC133+VEGFR-2+ cells are HPCs that do not yield EC progeny, and the biological mechanism for their correlation with cardiovascular disease needs to be reexamined.  相似文献   

2.
OBJECTIVES: With the use of highly active antiretroviral therapy, the identification of HIV reservoirs within the body has become an important issue. However, the testis has been largely ignored despite representing a pharmacologic sanctuary which could act as a viral reservoir. DESIGN: Because alterations in testosterone production have frequently been reported in HIV-infected individuals, we investigated whether the testosterone-producing Leydig cells could become directly infected by HIV-1, HIV-2 or SIV. METHODS: Purified Leydig cells were infected with a panel of HIV-1, HIV-2 and SIV strains and examined for expression of HIV/SIV receptors. Additionally, the impact of CD4 transduction on Leydig cell infection was determined. RESULTS: Leydig cells were unable to support productive infection of the seven HIV-1 isolates tested. No CD4, CXCR4 or CCR5 expression was evident on the surface of Leydig cells and transduction with a CD4 expressing adenovirus did not induce HIV-1 infection. In contrast, some primary and laboratory adapted CD4-independent HIV-2 and SIV strains were able to enter and replicate productively in Leydig cells. CONCLUSIONS: Our results suggest that Leydig cells do not represent a target for HIV-1 infection within the testis. In contrast, Leydig cells support HIV-2 and SIV infection and thus represent a potential target for infection. Receptor use and significance of HIV-2/SIV infection of Leydig cells remain to be determined.  相似文献   

3.
Controversy exists as to whether hematopoietic progenitor cells are infected by human immunodeficiency virus-1 (HIV-1) in vivo. Most studies have focused on patients with acquired immunodeficiency syndrome (AIDS)/AIDS-related complex, and little data are available on asymptomatic patients with well preserved CD4+ T-cell counts. To determine if CD34+ hematopoietic progenitor cells are infected early in the course of HIV-1 disease, we evaluated 10 asymptomatic HIV-1 seropositive (HIV-1+) patients. The CD34+ cell fraction was purified by a two-step procedure consisting of both affinity chromatography and fluorescence-activated cell sorting that resulted in a median purity of over 99%. Using conventional and nested polymerase chain reaction (PCR) assays, we evaluated the presence and frequency of HIV-1 proviral DNA. Both bone marrow mononuclear cells and CD34- cells from all 10 patients were strongly positive for the HIV-1 pol and/or gag gene sequences. In contrast, sorted CD34+ cells from only two of 10 patients were positive, and the number of copies of proviral DNA in these samples was estimated to be from 2 to 5 per 250,000 cells. To test the in vitro functional capacity of CD34+ progenitors, these cells were assayed in both methylcellulose and long-term stromal culture. We found no significant reduction in the number of colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), or colony-forming unit- granulocyte macrophage (CFU-GM) colonies, or in the frequency of cobblestone area forming cells from limit dilution analysis in HIV-1+ asymptomatic patients. Pooled methylcellulose colonies generated from CD34+ cells were HIV-1- in nine of 10 samples. All progeny from long- term cultures of CD34+ cells were HIV-1-. We conclude that the CD34+ hematopoietic progenitor compartment is not infected in the majority of asymptomatic HIV-1+ patients, and that these cells may represent a suitable target for strategies designed to protect developing CD4+ T cells from infection.  相似文献   

4.
Identifying cellular reservoirs of human immunodeficiency virus type 1 (HIV-1) in patients on antiretroviral therapy (ART) is critical to finding a cure for HIV-1. In addition to resting CD4(+) T cells, CD34(+) hematopoietic progenitor cells have been proposed as another reservoir. We obtained bone marrow aspirates from 11 patients on ART who had undetectable plasma HIV-1 RNA. HIV-1 DNA was detected in CD4(+) T cells from peripheral blood in all patients and from bone marrow cellular fractions containing T cells in most patients. We did not find HIV-1 DNA in highly purified CD34(+) populations using either a sensitive real-time polymerase chain reaction assay or a coculture assay for replication-competent HIV-1.  相似文献   

5.
6.
Within the phenotypically and functionally heterogeneous group of circulating progenitor cells (CPC), a subclass of cells with vascular repair potential have been identified. These CPC are detected and isolated based on single or combined expression of CD34, CD133 and VEGFR-2, and referred to as endothelial progenitor cells. Here we asked whether CPC subsets defined by single expression of these markers exhibit functional heterogeneity. As functional parameters, we chose the capacity of CPC to differentiate into endothelial cells. Moreover, we studied their role in remodeling by recruitment of inflammatory cells, an aspect that has been little explored. We established an in vivo model in which the intrinsic functional capacity of these human CPC subsets was studied. Human CD34+ CPC, but not CD133+ or VEGFR-2+ CPC, seeded in Matrigel pellets and transplanted subcutaneously in a nude mouse host, contributed little to donor-derived neovascularization. However, host angiogenesis in the Matrigel implant, as demonstrated by the presence of capillaries containing erythrocytes and expressing mouse CD31, was strong in response to implantation of human CD34+ CPC and significantly lower in response to the other two CPC subsets. Moreover, the CD34+ CPC subset was significantly superior to CD133+ CPC and VEGFR-2+ CPC in the recruitment of host monocytes/macrophages. These three CPC populations were further dissected into seven discrete subsets, based on three-parameter flow cytometry analysis of combined expression patterns of CD34, CD133 and VEGFR-2. In conclusion, in our system, CD34+ CPC contribute marginally to neovascularization by differentiation but are potent regulators of the host angiogenic and pro-inflammatory response, suggesting a possible role for these cells in the remodeling of vascular lesions.  相似文献   

7.
Hematologic abnormalities occur in the majority of patients with acquired immunodeficiency syndrome (AIDS). Infection of the hematopoietic progenitor cells has been proposed as a potential explanation. In this study, different bone marrow cell populations, including the CD34+ hematopoietic progenitor cells, were purified by a fluorescence-activated cell sorter (FACS) and analyzed for the presence of human immunodeficiency virus-1 (HIV-1) proviral DNA using the polymerase chain reaction. A group of 14 patients with AIDS or AIDS-related complex (ARC) was studied (11 with peripheral blood cytopenias). The CD4+ helper cells in the bone marrow were found positive for HIV-1 DNA in all patients. In contrast, CD34+ progenitor cells were positive in only one patient. Two monocyte samples and two samples of CD4-/CD34- lymphocytes/blasts (mainly B and CD8 lymphocytes) were positive. Proviral DNA could not be detected in granulocytes. FACS analysis showed that the percentage of CD34+ hematopoietic progenitor cells was not altered in the bone marrow of AIDS patients in comparison with the HIV-1 seronegative controls. In contrast, the number of CD4+ lymphocytes was markedly reduced in the bone marrow of AIDS patients. These results show that the hematologic abnormalities in AIDS patients are neither explained by direct infection of the hematopoietic progenitor cells with HIV-1 nor by a depletion of progenitor cells.  相似文献   

8.
Young  JC; Bruno  E; Luens  KM; Wu  S; Backer  M; Murray  LJ 《Blood》1996,88(5):1619-1631
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage.  相似文献   

9.
Haemopoietic progenitor cells are reduced in aplastic anaemia   总被引:9,自引:0,他引:9  
Summary We investigated the frequencies of early populations of progenitors in aplastic anaemia (AA) bone marrow, from patients with a range of disease severity, compared with normal. Double-colour immunofluorescent staining for CD34 and CD33 was carried out on bone marrow mononuclear cells (BMMC) and analysed using fluorescence activated cell sorting (FACS), AA CD34+ cells were reduced by 68% compared to normal. In addition, AA CD33+ cells and the three progenitor subsets (CD34+/CD33, CD34+/CD33+ and CD34/CD33+) were reduced by 44–80%. Our data lend further support for an early stem cell deficiency in AA.  相似文献   

10.
11.
12.
HIV subtype C has previously been shown to infect hematopoietic progenitor cells (HPCs) at a significantly higher rate than subtype B. To better understand the subtype-specific nature of HPC infection, we examined the prevalence of HPC infection in vivo by HIV-1 subtypes A and D. HIV-1 infection of HPC was examined in 40 individuals, 19 infected with subtype A and 21 with subtype D, using a single colony assay format. DNA from 1177 extracted colonies was tested for integrated viral DNA of the p24 gene. Four colonies were found to be stably infected, three of 462 colonies (0.65%) from HIV-1A-infected individuals (1/19 individuals) and one of 715 colonies (0.14%) from HIV-1D-infected individuals (1/22 individuals). These rates of colony infection were comparable to the rates observed in PBMCs from the same subjects. Additionally, no correlation was observed between cell colony density and circulating viral load or proviral load. Our findings suggest that HIV-1 subtypes A and D do not preferentially infect colony-forming HPCs over mature HIV target cells in vivo.  相似文献   

13.
Genetic editing of induced pluripotent stem (iPS) cells represents a promising avenue for an HIV cure. However, certain challenges remain before bringing this approach to the clinic. Among them, in vivo engraftment of cells genetically edited in vitro needs to be achieved. In this study, CD34+ cells derived in vitro from iPS cells genetically modified to carry the CCR5Δ32 mutant alleles did not engraft in humanized immunodeficient mice. However, the CD34+ cells isolated from teratomas generated in vivo from these genetically edited iPS cells engrafted in all experiments. These CD34+ cells also gave rise to peripheral blood mononuclear cells in the mice that, when inoculated with HIV in cell culture, were resistant to HIV R5-tropic isolates. This study indicates that teratomas can provide an environment that can help evaluate the engraftment potential of CD34+ cells derived from the genetically modified iPS cells in vitro. The results further confirm the possibility of using genetically engineered iPS cells to derive engraftable hematopoietic stem cells resistant to HIV as an approach toward an HIV cure.

A major objective of recent HIV research is to develop a “cure” for this virus infection that avoids lifelong adherence to antiretroviral therapy (ART). One of the approaches toward reaching this objective has been to genetically delete or mutate genes encoding for proteins that promote HIV infection and spread. An attractive candidate for this strategy is the Ccr5 gene, for which a genetic mutation causing a 32-bp deletion has been shown to be associated with natural protection from HIV infection and disease (1, 2). The Ccr5 gene encodes CCR5, a human cell-surface chemokine receptor that is a coreceptor for HIV attachment and infection of cells (3, 4). The Ccr5 allele with its 32-bp deletion results in a truncated isoform of the CCR5 receptor, CCR5Δ32, which is not expressed at the cell surface. Thus, entry of the virus into the cell is blocked (5).Induced pluripotent stem (iPS) cells (6), because of their capacity to differentiate into CD34+ hematopoietic stem cells (HSCs) (7), can reconstitute a full immune system (8, 9). These iPS cells are therefore a target of choice for genetic engineering. Our group and others have demonstrated that iPS cells generated from the peripheral blood mononuclear cells (PBMC) of both healthy individuals (10) and HIV-infected patients under ART (11) can have their wild-type allele of the Ccr5 gene genetically edited to carry the Ccr5 Δ32 mutation (12, 13). Notably, using CRISPR/Cas9 technology, the Ccr5 gene can be modified to have the naturally occurring Δ32 variant allele that has been associated with resistance to R5-tropic viruses. Moreover, while it is not present at the cell surface, the truncated CCR5Δ32 protein is still expressed and, as such, could have other important physiological roles (1417).We have confirmed that the genetically modified Ccr5 Δ32 iPS cells can be differentiated into CD34+ HSCs in vitro (10, 18). Under appropriate cell culture conditions, they can give rise to various myeloid and lymphoid cell lineages (10, 11, 18). This result can also be observed with the formation of teratomas following the injection of large quantities of iPS cells into mice. Teratomas are multicellular tumors composed of many different cell types including HSCs. Notably, immune cells with the CCR5Δ32 mutation differentiated in vitro from the genetically modified iPS cell-derived HSCs and inoculated with HIV are resistant to R5-tropic virus infection (10, 18).These results have suggested that editing Ccr5 in iPS cells from HIV-infected subjects can be a promising strategy toward an HIV cure. The pluripotent stem cells can be induced from a small number of PBMC from the patients and genetically modified to become resistant to HIV infection (10, 11, 18). In this case, leukapheresis to obtain large amounts of these cells (19) is not required. The edited HSCs could then be transplanted back to the original patient without concern for immune cell rejection. Therefore, because these experiments were performed in cell culture, an important remaining question is whether in vitro-edited iPS cells can differentiate into HSCs that can be transplanted back into a recipient in vivo (20).To address this question, transplantation of the in vitro-derived CD34+ cells was attempted under various conditions in animal models of humanized or immunodeficient mice (21). In approaches to obtain sufficient numbers of CD34+ cells for transplantation, our ability to grow them in vitro offered an opportunity. However, although we could expand CD34+ cells substantially in culture (18), we observed that engraftment of these cell culture-derived CD34+ cells in humanized NSG-BLT mice did not occur. Thus, alternatively, to study the genetically edited cells in vivo, we explored the use of differentiated CD34+ cells in vivo via the generation of teratomas from iPS cells. We found that not only did these teratomas successfully yield human CD34+ cells, but importantly, these CD34+ cells could engraft in recipient immunodeficient NSG mice. This observation has been made by Nakauchi and colleagues (22) with different mouse strains. Finally, we confirmed that the PBMC formed in mice from these teratoma-derived genetically edited CD34+ cells are resistant to ex vivo R5-tropic HIV infection when they carry the mutant Δ32 Ccr5 allele.  相似文献   

14.
15.
目的探讨骨髓CD34^+细胞向血管内皮细胞转分化的诱导方法。方法采集犬骨髓,经免疫磁珠分离出内皮祖细胞,内皮细胞生长因子(VEGF)诱导分化为内皮细胞并扩增,倒置相差显微镜、免疫细胞化学和摄取DilAc—LDL试验鉴定。将所得细胞种植于人工血管,扫描电镜观察细胞形态,并与MNCs作对比。结果经流式细胞仪测定,分离后的细胞中CD34^+细胞占78.46%±6.37%;CD34^+细胞培养2周后细胞基本铺满培养瓶底面,细胞呈“鹅卵石”状排列,CD34^+和Ⅷ因子免疫细胞化学染色均为阳性。扫描电镜下观察可见内皮细胞平铺于人工血管表面,有伪足伸出并长入血管内表面微孔内。结论通过免疫磁珠方法可分离得到高纯度的骨髓CD34^+细胞,经体外培养VEGF诱导后可定向分化为内皮细胞。  相似文献   

16.
17.
Systemic delivery of lentiviral vector (LV) in immunocompetent mice leads to efficient in vivo cell transduction and expression of the encoded protein under the control of the ubiquitous promoter of human cytomegalovirus (CMV). However, antitransgene immune response results in clearance of transduced cells 4 weeks after injection. T regulatory cells (Tregs), which have been demonstrated to control immune responses in vivo, were tested for their ability to suppress antitransgene response leading to stable long-term expression. Adoptive transfer of natural CD4(+)CD25(+) Tregs (nTregs) isolated from wild type (wt) mice or from transgene tolerant transgenic (tg) mice did not suppress the antitransgene immune response after LV delivery. These data demonstrate that neither increasing the endogenous pool of natural Tregs nor transferring nTregs selected in a transgene-expressing thymus can modulate the immune response and mediate sustained transgene expression. Conversely, adoptive transfer of antigen-presenting cells (APCs) isolated from transgene-tolerant tg mice efficiently reduced the immune response leading to stable LV-encoded protein expression in vivo. Reduction of CD8(+) effector T cells was observed in LV-treated mice coinjected with transgene-expressing APCs compared with control mice. These data indicate that antitransgene immune response can be modulated by transgene-expressing APCs possibly through deletion of effector T cells.  相似文献   

18.
目的探讨HIV-1感染者外周血CD8~+T细胞上CD73的表达特点及其与T细胞异常活化和疾病进展的关系。方法研究入选65例HIV-1感染者和27例健康对照。通过流式细胞术检测研究对象外周血CD73~+CD8~+T细胞的频率和绝对计数,并将患者CD73~+CD8~+T细胞绝对计数和频率与其CD4~+T细胞计数、HIV-1载量以及CD38~+CD8~+T细胞频率进行相关性分析。结果与健康对照相比,HIV-1感染者外周血CD73~+CD8~+T细胞绝对计数和频率均明显降低(P均0.05);HIV-1感染者外周血CD73~+CD8~+T细胞绝对计数和频率与CD4~+T细胞计数呈正相关(r=0.555,P=0.001;r=0.342,P=0.005),与CD38~+CD8~+T细胞频率呈负相关(r=-0.384,P=0.002;r=-0.387,P=0.001);HIV-1感染者CD73~+CD8~+T细胞的绝对计数与HIV-1载量呈弱负相关(r=-0.261,P=0.035)。结论 HIV-1感染者外周血CD73~+CD8~+T细胞的减少不但与患者T细胞的活化程度呈显著负相关,而且与AIDS疾病进展相关。  相似文献   

19.
Fackler  MJ; Krause  DS; Smith  OM; Civin  CI; May  WS 《Blood》1995,85(11):3040-3047
CD34 is expressed on human and murine hematopoietic stem and progenitor cells and its clinical usefulness for isolation of stem/progenitor cells has been well established. Although expression of CD34 is regulated in a developmental stage-specific manner, the function of CD34 is not known. Recently we have shown that both a full-length and truncated form of CD34 protein is expressed by hematopoietic cells (Blood 84:691, 1994). To test whether failure to suppress either form of CD34 could affect terminal myeloid differentiation, we constitutively expressed these CD34 proteins in murine M1 myeloid leukemia cells, which can be terminally differentiated to macrophages by treatment with interleukin-6 of leukemia inhibitory factor. Surprisingly our results show that forced expression of the full-length but not the truncated form of CD34 impedes terminal differentiation by these agents. Because the difference between the two forms of CD34 protein resides in the length of their respective cytoplasmic tail domains, our findings strongly suggest that the cytoplasmic domain region of full-length CD34 is responsible for the observed maturation arrest phenotype. These findings suggest a potential negative regulatory role for full-length CD34 in hematopoietic cell differentiation and may explain, at least in part, the block in maturation observed in CD34+ acute myeloid leukemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号