首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vast majority of Foxp3+ regulatory T cells (Tregs) are generated in the thymus, and several factors, such as cytokines and unique thymic antigen-presenting cells, are known to contribute to the development of these thymus-derived Tregs (tTregs). Here, we report the existence of a specific subset of Foxp3+ Tregs within the thymus that is characterized by the expression of IL-1R2, which is a decoy receptor for the inflammatory cytokine IL-1. Detailed flow cytometric analysis of the thymocytes from Foxp3hCD2xRAG1GFP reporter mice revealed that the IL-1R2+ Tregs are mainly RAG1GFP– and CCR6+CCR7, demonstrating that these Tregs are recirculating cells entering the thymus from the periphery and that they have an activated phenotype. In the spleen, the majority of IL-1R2+ Tregs express neuropilin-1 (Nrp-1) and Helios, suggesting a thymic origin for these Tregs. Interestingly, among all tissues studied, the highest frequency of IL-1R2+ Tregs was observed in the thymus, indicating preferential recruitment of this Treg subset by the thymus. Using fetal thymic organ cultures (FTOCs), we demonstrated that increased concentrations of exogenous IL-1β blocked intrathymic Treg development, resulting in a decreased frequency of CD25+Foxp3+ tTregs and an accumulation of CD25+Foxp3 Treg precursors. Interestingly, the addition of IL-1R2+ Tregs, but not IL-1R2 Tregs, to reaggregated thymic organ cultures (RTOCs) abrogated the IL-1β-mediated blockade, demonstrating that these recirculating IL-1R2+ Tregs can quench IL-1 signaling in the thymus and thereby maintain thymic Treg development even under inflammatory conditions.  相似文献   

2.
CD4+CD25+Foxp3+ regulatory T lymphocytes are crucial for maintenance of immunological tolerance to self and innocuous non-self, are known to modulate immunity to tumors and infectious agents and can induce transplantation tolerance. Surprisingly, only a single genetic polymorphism is known to modulate regulatory T cell (Treg) development in the thymus, leading to a lethal autoimmune disorder. Here, we show that considerably different levels of Tregs are found in the thymi of distinct common laboratory mouse strains. We demonstrate that distinct levels of phenotypically and functionally identical Tregs develop with similar kinetics in the studied mice, that the responsible locus acts in a thymocyte-intrinsic manner and that levels of thymic Foxp3+ Tregs correlate to those found in the periphery. Using several congenic mouse strains, we mapped one of the at least two genetic loci capable of quantitatively modulating thymic Treg development to a 相似文献   

3.
Thymic dendritic cells (DCs) are suggested to be involved in T cell selection; however, their exact origin and function remain to be established. Although DCs in the adult thymus are mostly CD8alpha(+)CD11b(-), we found that CD8alpha(-)CD11b(+) DCs were abundantly present in the fetal thymus and they possessed antigen-presenting activity. Interestingly, these CD11b(+) DCs were significantly decreased in mice deficient for TNFR-associated factor 6 (TRAF6), a key signaling molecule downstream of IL-1 and tumor necrosis factor-alpha that have been known to induce DCs from intra-thymic precursor cells. CD11b(+) DCs were induced from CD4(-)CD8(-) thymocytes by fetal thymic epithelial cells (TECs). Analysis of cytokine expression in TECs revealed that none of the cytokines previously shown to induce DCs were expressed. Instead, we found strong expression of IL-18 that transmits signals through TRAF6. IL-18 induced CD11b(+) DCs from CD4(-)CD8(-) thymocytes in vitro, which exhibited strong antigen-presenting activity and formed conjugates with CD4(+)CD8(+) T cells efficiently. Taken together, these results strongly suggest that CD11b(+) DCs are differentiated from CD4(-)CD8(-) thymocytes by IL-18 produced from TECs and that they are involved in T cell selection in the fetal thymus.  相似文献   

4.
Jeon EJ  Yoon BY  Lim JY  Oh HJ  Park HS  Park MJ  Lim MA  Park MK  Kim KW  Cho ML  Cho SG 《Autoimmunity》2012,45(6):460-469
Maintaining an appropriate balance between subsets of CD4(+) helper T cells and T regulatory cells (Tregs) is a critical process in immune homeostasis and a protective mechanism against autoimmunity and inflammation. To identify the role of vitamin A-related compounds, we investigated the regulation of interleukin (IL)-17-producing helper T cells (Th17 cells) and Tregs treated with all-trans-retinal (retinal). CD4(+)T cells or total cells from the spleens of C57BL/6 mice were stimulated under Treg-polarizing (anti-CD3/CD28 and TGF-β) or Th17-polarizing (anti-CD3/CD28, TGF-β, and IL-6) conditions in the presence or absence of retinal. To analyze their suppressive abilities, retinal-induced Tregs or TGF-β-induced Tregs were co-cultured with responder T cells. Collagen-induced arthritis (CIA) was established in interferon (IFN)-γ knockout mice. On day 13, retinal-induced Tregs were adoptively transferred to mice with established CIA after second immunizations. Compared with TGF-β-induced Treg cells, retinal-induced Tregs showed increased Foxp3 expression and mediated stronger suppressive activity. Under Th17-polarizing conditions, retinal inhibited the production of IL-17 and increased the expression of Foxp3.Retinal-induced Tregs showed therapeutic effects in IFN-γ knockout CIA mice. Thus, we demonstrated that retinal reciprocally regulates Foxp3(+) Tregs and Th17 cells. These findings suggest that retinal, a vitamin A metabolite, can regulate the balance between pro- and anti-inflammatory immunity. A better understanding of the manipulation of Foxp3 and Tregs may enable the application of this tremendous therapeutic potential in various autoimmune diseases.  相似文献   

5.
"Suppressor T cells" were historically defined within the CD8(+) T-cell compartment and recent studies have highlighted several naturally occurring CD8(+) Foxp3(-) Treg populations. However, the relevance of CD8(+) Foxp3(+) T cells, which represent a minor population in both thymi and secondary lymphoid organs of nonmanipulated mice, remains unclear. We here demonstrate that de novo Foxp3 induction in peripheral CD8(+) Foxp3(-) T cells is counter-regulated by DC-mediated co-stimulation via CD80/CD86. CD8(+) Foxp3(+) T cells fail to develop in TCR-transgenic mice with Rag1(-/-) background, similar to classical CD4(+) Foxp3(+) Tregs. Notably, both naturally occurring and induced CD8(+) Foxp3(+) T cells express bona fide Treg markers including CD25, GITR, CTLA4 and CD103, and show defective IFN-γ production upon restimulation when compared with their CD8(+) Foxp3(-) counterparts. However, utilizing DEREG transgenic mice for the isolation of Foxp3(+) cells by eGFP reporter expression, we demonstrate that induced CD8(+) Foxp3(+) T cells similar to activated CD8(+) Foxp3(-) T cells only mildly suppress T-cell proliferation and IFN-γ production. We therefore categorize CD8(+) Foxp3(+) T cells as a tightly controlled population sharing certain developmental and phenotypic properties with classical CD4(+) Foxp3(+) Tregs, but lacking potent suppressive activity.  相似文献   

6.
IL-2Rbeta links IL-2R signaling with Foxp3 expression   总被引:2,自引:0,他引:2  
Immunological tolerance to self antigens is a tightly regulated process. Recent work has demonstrated that the forkhead family member Foxp3 is a critical element in the differentiation and function of mouse CD4(+)CD25(+) regulatory T cells (Treg). Recent work has suggested an important role for IL-2 in the development and maintenance of Treg. To directly assess the effect of IL-2 signaling on Treg development and function, we analyzed mice that were genetically deficient in components of the IL-2 receptor (IL-2R). Mice lacking CD25 (IL-2Ralpha) displayed a slight decrease in Treg within the thymus, while peripheral numbers are unchanged. In contrast, we found that mice deficient in CD122 (IL-2Rbeta) had a profound reduction in both thymic and peripheral Treg, coinciding with more rapid development of a fatal lymphoproliferative disease. Expression of a Foxp3 transgene restored Treg and protected against the onset of autoimmunity. Thus, a signal mediated by IL-2Rbeta is essential for the development and homeostasis of Foxp3(+) Treg in vivo.  相似文献   

7.
Tolerance to self-antigens expressed in peripheral organs is maintained by CD4(+) CD25(+) Foxp3(+) Treg cells, which are generated as a result of thymic selection or peripheral induction. Here, we demonstrate that steady-state migratory DCs from the skin mediated Treg conversion in draining lymph nodes of mice. These DCs displayed a partially mature MHC II(int) CD86(int) CD40(hi) CCR7(+) phenotype, used endogenous TGF-β for conversion and showed nuclear RelB translocation. Deficiency of the alternative NF-κB signaling pathway (RelB/p52) reduced steady-state migration of DCs. These DCs transported and directly presented soluble OVA provided by s.c. implanted osmotic minipumps, as well as cell-associated epidermal OVA in transgenic K5-mOVA mice to CD4(+) OVA-specific TCR-transgenic OT-II T cells. The langerin(+) dermal DC subset, but not epidermal Langerhans cells, mediated conversion of naive OT-II×RAG-1(-/-) T cells into proliferating CD4(+) CD25(+) Foxp3(+) Tregs. Thus, our data suggest that steady-state migratory RelB(+) TGF-β(+) langerin(+) dermal DCs mediate peripheral Treg conversion in response to epidermal antigen in skin-draining lymph nodes.  相似文献   

8.
9.
10.
The CD4(+)CD25(+)Foxp3(+) cells are essential for regulation of the immune response, and the integrin, CD103 (α(E)β(7)), identifies a potent subset of these cells. Defects in CD4(+)CD25(+)Foxp3(+) cells are thought to contribute to susceptibility to autoimmune disease in predisposed individuals. Studies evaluating the quality and quantity of CD4(+)CD25(+)Foxp3(+) regulatory cell populations in the context of autoimmune disease susceptibility have been inconclusive, and few if any, have analyzed the CD103 subset. In this study, we analyzed regulatory T cells (Tregs) from different strains of mice with varying degrees of susceptibility to autoimmune disease. We found no differences in the ability of CD4(+)CD25(+) or the CD103(+) subset of Tregs from young female (NZB?×?NZW)F1 (BWF1), SJL, C57BL/6, or BALB/c mice to suppress CD4(+)CD25(-?) responders in vitro. Analysis of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cell frequencies in lymphoid organs revealed that BWF1 mice had dramatically lower percentages of both populations in the lymph node (LN) than the other strains, and lower percentages in the spleen in all but the C57BL/6 strain. We next determined whether these findings extended to another autoimmune-prone strain. Similar to BWF1 mice, percentages of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cells were significantly lower in predisease NOD mice. The low frequencies of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cells in BWF1 and NOD mice were not due to deficiencies in either thymic production or homeostatic proliferation. These data indicate that decreased percentages of CD4(+)Foxp3(+) cells and particularly, CD4(+)CD25(+)CD103(+) cells in LN correlate with the predisposition to spontaneous development of autoimmune disease.  相似文献   

11.
How do CD4+CD25+ regulatory T cells control autoimmunity?   总被引:18,自引:0,他引:18  
Any scientist opening up an immunology journal today will observe immediately that suppressor T cells, renamed 'regulatory T cells' (Tregs) have become a central concept in the immunology lexicon. Hundreds of Treg publications over the past few years have validated the existence of this unique T cell lineage armed with an ability to regulate autoimmunity. The CD4(+)CD25(+)Foxp3(+) Treg subset develops in the thymus, can be induced in the periphery during the course of normal immune responses and utilizes a T cell repertoire skewed towards autoantigens. Despite these advances, however, there is still controversy over their mechanism of action. This confusion stems from the differences observed in in vitro versus in vivo studies. Recent in vivo analyses support a model in which Tregs directly or indirectly alter the activation and differentiation of pathogenic T cells through an effect on antigen presenting cells.  相似文献   

12.
Heme oxygenase-1 (HO-1) has been viewed as a cytoprotective protein, ameliorating the effects of inflammatory cellular damage, and as beneficial in allograft protection from acute and chronic rejection, suggesting important functions in both innate and adaptive immune responses. Mice deficient in HO-1 exhibit defective immune regulation characterized by a proinflammatory phenotype. We examined if impaired regulatory T cell (Treg) function contributes to the immunoregulatory defects observed in HO-1(-/-) mice. HO-1(-/-) mice exhibited a significantly higher proportion of Foxp3-expressing cells among total CD4(+) and CD4(+)CD25(+) cells in comparison to HO-1(+/+) mice, and HO-1(-/-) Treg cells were at least as effective as HO-1(+/+) Treg cells in suppressing proliferation of effector T cells in vitro from either HO-1(+/+) or HO-1(-/-) mice. However, the absence of HO-1 in antigen-presenting cells abolished the suppressive activity of Treg cells on effector T cells. These findings demonstrate that HO-1 activity in antigen-presenting cells is important for Treg-mediated suppression, providing an explanation for the apparent defect in immune regulation in HO-1(-/-) mice.  相似文献   

13.
14.
To assess regulatory T cells (Treg) in chronic hepatitis B (CHB) infected patients and to evaluate the presence of a possible relation between them and hepatitis B markers, flow cytometry analysis was carried out to calculate the percentages of Tregs, Tregs secreting IL-10 and CD4(+) T cells secreting interferon-γ (IFN-γ) and enzyme-linked immunosorbent assay was used to detect hepatitis B virus (HBV) markers in 59 patients and 32 healthy controls. CD4(+)CD25(+), CD4(+)CD25(+)Foxp3(+), CD4(+)D25(high), CD4(+)CD25(high)Foxp3(+) and CD4(+)CD25(-)Foxp3(+) T cells and Treg cells secreting IL-10 were higher in CHB patients than in healthy controls. CD4(+)CD25(+), CD4(+)CD25(-), and total CD4(+)T cells secreting IFN-γ were generally lower in CHB patients than in healthy controls. Fair correlations were observed between CD4(+)CD25(+)Foxp3(+) T cells and alanine aminotransferase (ALT) levels and between HBsAb and both CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(high)Foxp3(+) T cells. CD4(+)CD25(+) T cells were significantly higher in CHB virus infected patients positive for HBeAg than in those negative for HBeAg and a good correlation was observed between CD4(+)CD25(+) T cells and HBeAg. Fair negative correlations were observed between CD4(+)CD25(high) T cells and both HBeAb and HBcAb. These data suggest that Tregs contribute to viral persistence. It was not possible to say that Tregs were the cause of immune suppression in this group of patients.  相似文献   

15.
Regulatory T cells (Tregs) play a critical role in the maintenance of a pregnancy. While the kinetics of the number of peripheral blood Tregs has been satisfactorily described in mouse models, analysis of these cell populations in human pregnancy is complicated by high variability in the quantity of Tregs and inconsistencies in the markers used for detecting different types of Treg. In the light of this, we set out to investigate the kinetics of various types of Treg, including CD45RA, GARP and PD‐1(+) Tregs, in the peripheral blood of pregnant women in the first, second and third trimester, and at the time of delivery. Tregs, defined as a CD4(+)CD25(++)CD127(dim)Foxp3(+) population of leucocytes, were detected using flow cytometry. Natural thymus‐derived Tregs and induced Tregs in the peripheral blood were distinguished by the expression or absence of a Helios marker, respectively. Our results showed that during normal pregnancy the sizes of various Treg subpopulations varied across women and also in an individual woman did not remain constant but varied significantly, most notable being the decrease observed at the time of delivery. Helios(?) cells were significantly less frequent in the peripheral blood of healthy pregnant women than Helios(+) cells, and the majority of Tregs were Helios(+)PD‐1(+) Tregs.  相似文献   

16.
17.
Our previous studies have demonstrated that splenocytes, transduced with glutamate decarboxylate 65 (GAD) and IgG fusion construct, protect non-obese diabetes (NOD) mice from diabetes. However, the mechanism by which this strategy prevents diabetes is not well understood. Here, we found that CD4(+)Foxp3(+)Treg cells, in vitro induced by GAD-IgG-transduced splenocytes, after transfer, were responsible for prevention of diabetes in NOD mice. Further studies suggested that GAD-IgG-transduced B cells could secrete high level of TGF-beta and stimulated CD4(+)T cells to secrete high level of IFN-gamma. Finally, we found that when TGF-beta and/or IFN-gamma were blocked, CD4(+)Foxp3(-)T cells were not converted into CD4(+)Foxp3(+)Treg cells. The results suggest that GAD-IgG-transduced B cells via TGF-beta and IFN-gamma in vitro induce the CD4(+)Foxp3(+)Treg cells which are responsible for prevention of diabetes in NOD mice by GAD-IgG-gene transfer.  相似文献   

18.
It is controversial how cytotoxic T lymphocyte antigen (CTLA)-4, a co-inhibitory molecule, contributes to immunological tolerance and negative control of immune responses. Its role as an inducer of cell-intrinsic negative signals to activated effector T cells is well documented. However, there is accumulating evidence that CTLA-4 is essential for the function of naturally occurring Foxp3(+) regulatory T (Treg) cells, which constitutively express the molecule. CTLA-4 deficiency in Foxp3(+) Treg cells indeed impairs their in vivo and in vitro suppressive function. Further, Treg cells can modulate the function of CD80- and CD86-expressing antigen-presenting cells via CTLA-4. Here we discuss how CTLA-4 expression by one T cell can influence the activation of another in a cell non-autonomous fashion and thus control immune responses.  相似文献   

19.
目的构建基于shRNA介导的中枢免疫耐受缺损模型。方法分离妊娠后13.5 d的胎鼠胸腺,除去淋巴细胞,获得原代胸腺基质细胞,利用慢病毒将小鼠TRAF6基因特异性shRNA慢病毒质粒(LV-T6-shRNA)导入原代胸腺基质细胞中,重新聚集这些胸腺基质细胞得到LV-T6-shRNA重塑胸腺,将此重塑胸腺移植入无胸腺的雌性小鼠肾脏荚膜下,饲养8周。结果慢病毒可有效转导LV-T6-shRNA慢病毒质粒入原代胸腺髓质上皮细胞中;移植LV-T6-shRNA重塑胸腺的小鼠饲养8周后,胸腺明显较小,成熟的胸腺髓质上皮细胞减少,脾脏肿大,脾脏中活化的T淋巴细胞增多,肺脏中出现淋巴细胞浸润等现象,这些表现型与TRAF6-/-小鼠的表现型相似。结论中枢免疫耐受缺损模型构建成功。  相似文献   

20.
The molecular mechanisms directing the development of 'natural' CD4+CD25+Foxp3+ regulatory T cells (T(reg) cells) in the thymus are not thoroughly understood. We show here that conditional deletion of transforming growth factor-beta receptor I (TbetaRI) in T cells blocked the appearance of CD4+CD25+Foxp3+ thymocytes at postnatal days 3-5. Paradoxically, however, beginning 1 week after birth, the same TbetaRI-mutant mice showed accelerated expansion of thymic CD4+CD25+Foxp3+ populations. This rapid recovery of Foxp3+ thymocytes was attributable mainly to overproduction of and heightened responsiveness to interleukin 2, as genetic ablation of interleukin 2 in TbetaRI-mutant mice resulted in a complete absence of CD4+CD25+Foxp3+ cells from the thymus and periphery. Thus, transforming growth factor-beta signaling is critical to the thymic development of natural CD4+CD25+Foxp3+ T(reg) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号