首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A receptors and an excitatory influence through 5-HT1B receptors.  相似文献   

2.
Summary 5-HT (10 and 40 g) and 8-OH-DPAT (1 and 5 g) were locally applied into the dorsal or median raphe nuclei in awake, unrestrained, rats. All animals were also treated with the 5-HTP and DOPA decarboxylase inhibitor NSD-1015, 100mg kg–1 SC, 30 min before decapitation. 5-HT or 8-OH-DPAT were administered 5 min before NSD-1015. The regional brain in vivo rate of tyrosine and tryptophan hydroxylase activity was estimated by measuring the accumulation of DOPA and 5-HTP. The following brain regions were sampled: neocortex, hippocampus, dorso-lateral neostriatum, ventro-medial neostriatum, nucleus accumbens, olfactory tubercle, globus pallidus, septum and the amygdala.Compared to normal controls, there were small and inconsistent effects on forebrain 5-HTP accumulation by saline injections into the dorsal or the median raphe (an increase in 3 out of 36 experiments), whereas strong effects by the injection procedure were noted on forebrain DOPA accumulation (an increase in 15 out of 36 experiments).Injections of 5-HT (same effect by 10 or 40 g) into the dorsal raphe, produced a decrease in 5-HTP accumulation in all forebrain areas except for the hippocampus and the septum, whereas no effects were seen in any area after median raphe injections. In contrast, 8-OH-DPAT preferentially produced a decrease in forebrain 5-HTP accumulation after median raphe injections and less, but statistically significant effects by dorsal raphe injections. The 8-OH-DPAT injection into the median raphe primarily affected limbic forebrain areas (hippocampus, nucleus accumbens, ventro-medial neostriatum, amygdala and the septum).This dissociation of the effects of 5-HT and 8-OH-DPAT on forebrain 5-HT synthesis after local application into the dorsal or the median raphe strongly supports the contention of heterogeniety in the brain 5-HT receptor population in terms of receptor subtypes and/or receptor regulation.  相似文献   

3.
The sustained administration of the 5-HT1A agonist gepirone (15 mg/kg/day, s.c.) in the rat produced an initial decrease of the firing activity of dorsal raphe 5-HT neurons which was followed by a progressive recovery to normal after 14 days of treatment. At this point in time, the effect of intravenous lysergic acid diethylamide (LSD) on the firing activity of 5-HT neurons was markedly reduced, whereas those of 8-hydroxy-2-N,N-propylamino-tetralin (8-OH-DPAT) and of gepirone were unchanged; however, the responsiveness of 5-HT neurons to direct microiontophoretic application of 5-HT, LSD, 8-OH-DPAT, and gepirone, but not of GABA, was reduced. The responsiveness of postsynaptic dorsal hippocampus pyramidal neurons to 5-HT, 8-OH-DPAT, and gepirone was not altered by the 14-day gepirone treatment. The effectiveness of the electrical stimulation of the ascending 5-HT pathway in reducing pyramidal neuron firing activity was not significantly modified in rats treated with gepirone for 14 days. Furthermore, this treatment did not alter the function of the terminal 5-HT autoreceptor. It is concluded that the progressive restoration of the firing activity of 5-HT neurons, due to a desensitization of the somatodendritic 5-HT autoreceptor, combined with the direct activation of normosensitive postsynaptic 5-HT1A receptor by gepirone, should result in an augmented tonic activation of postsynaptic 5-HT1A receptors. The progressive appearance of this phenomenon would be consistent with the time course of the clinical anxiolytic, and possibly antidepressant, effects of gepirone.  相似文献   

4.
Microiontophoretic applications of 5-HT and of the 5-HT3 agonist 2-methyl-5-HT produced a current-dependent suppression of firing activity of both hippocampal (CA1 and CA3) and cortical neurons in anesthetized rats. Concomitant microiontophoretic applications of the 5-HT3 antagonists BRL 46470A and S-zacopride, as well as their intravenous injection, did not antagonize the inhibitory effect of 5-HT and 2-methyl-5-HT. In contrast, the 5-HT1A antagonist BMY 7378, applied by microiontophoresis or administered intravenously, significantly reduced the inhibitory action of 5-HT and 2-methyl-5-HT. The firing activity of dorsal raphe 5-HT neurons was also reduced by 5-HT, 2-methyl-5-HT and the 5-HT1A agonist 8-OH-DPAT applied by microiontophoresis. While BRL 46470A (0.1 and 1 mg/kg, i.v.) did not antagonize the inhibitory effect of the three 5-HT agonists on 5-HT neuronal firing activity, only that of 8-OH-DPAT was attenuated by the 5-HT1A antagonist (+) WAY 100135. R-zacopride significantly reduced the duration of suppression of firing activity of CA3 pyramidal neurons induced by the electrical stimulation of the ascending 5-HT pathway, and this reducing effect was prevented by the three 5-HT3/5-HT4 antagonists renzapride, S-zacopride and tropisetron, but not by BRL 46470A. Finally, in in vitro superfusion experiments, both BRL 46470A and S-zacopride antagonized the enhancing action of 2-methyld-HT on the electrically-evoked release of [3H]-5-HT in both rat frontal cortex and hippocampus slices. These findings suggest that, in vivo, the suppressant effect of 2-methyl-5-HT on the firing activity of dorsal hippocampus pyramidal, somatosensory cortical, and dorsal raphe 5-HT neurons is not mediated by 5-HT3 receptors, but rather by 5-HT1A receptors. The attenuating effect of R-zacopride on the effectiveness of the stimulation of the ascending 5-HT pathway is not mediated by 5-HT3 receptors. In contrast, in vitro, the enhancing action of 2-methyl-5-HT on the electrically-evoked release of [3H]5-HT in both frontal cortex and hippocampus slices is mediated by 5-HT3 receptors. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Genetic deficiency of monoamine oxidase-A (MAO-A) induces major alterations of mood and behaviour in human. Because serotonin (5-HT) is involved in mood regulation, and MAO-A is responsible for the catabolism of 5-HT, we investigated 5-HT mechanisms in knock-out mice (2-month-old) lacking MAO-A, using microdialysis, electrophysiological, autoradiographic and molecular biology approaches. Compared to paired wild-type mice, basal extracellular 5-HT levels were increased in ventral hippocampus (+202%), frontal cortex (+96%) and dorsal raphe nucleus (DRN, +147%) of MAO-A mutant mice. Conversely, spontaneous firing rate of 5-HT neurons in the DRN (recorded under chloral hydrate anaesthesia) was approximately 40% lower in mutants. Acute 5-HT reuptake blockade by citalopram (0.2 and 0.8 mg/kg i.v.) produced a much larger increase in extracellular 5-HT levels (by approximately 4 fold) and decrease in DRN neuronal firing (with a approximately 4.5 fold decrease in the drug's ED50) in MAO-A knock-out mice, which expressed lower levels of the 5-HT transporter throughout the brain (-13 to -34% compared to wild-type levels). The potency of the 5-HT1A agonist 8-OH-DPAT to produce hypothermia and to reduce the firing of DRN serotoninergic neurons was significantly less in the mutants, indicating a desensitization of 5-HT1A autoreceptors. This was associated with a decreased autoradiographic labelling of these receptors (-27%) in the DRN. Altogether, these data indicate that, in MAO-A knock-out mice, the enhancement of extracellular 5-HT levels induces a down-regulation of the 5-HT transporter, and a desensitization of 5-HT1A autoreceptors which allows the maintenance of tonic activity of 5-HT neurons in the DRN.  相似文献   

6.
The present studies have examined whether the neuropeptide galanin can modulate brain serotoninergic (5-HT) neurotransmission in vivo and, particularly, 5-HT1A receptor-mediated transmission. For that purpose, we studied the ability of galanin (given bilaterally into the lateral ventricle, i.c.v.) to modify the impairment of passive avoidance retention induced by the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propyloamino)tetralin (8-OH-DPAT) when injected prior to training. This impairment appears to be mainly related to activation of 5-HT1A receptors in the CNS. Galanin dose-dependently (significant at 3.0 nmol/rat) attenuated the passive avoidance impairment (examined 24 h after training) induced by the 0.2 mg/kg dose of 8-OH-DPAT. This 8-OH-DPAT dose produced signs of the 5-HT syndrome indicating a postsynaptic 5-HT1A receptor activation. Furthermore, both the impairment of passive avoidance and the 5-HT syndrome were completely blocked by the 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg). Galanin (0.3 or 3.0 nmol) or WAY 100635 (0.1 mg/kg) failed by themselves to affect passive avoidance retention. 8-OH-DPAT given at a low dose 0.03 mg/kg, which presumably stimulates somatodendritic 5-HT1A autoreceptors in vivo, did not alter passive avoidance retention or induce any visually detectable signs of the 5-HT syndrome. Galanin (0.3 or 3.0 nmol) given i.c.v. in combination with the 0.03 mg/kg dose of 8-OH-DPAT, did not modify passive avoidance. The immunohistochemical study of the distribution of i.c.v. administered galanin (10 min after infusion) showed a strong diffuse labelling in the periventricular zone (100–200 μm) of the lateral ventricle. Furthermore, in the dorsal and ventral hippocampus galanin-immunoreactive nerve cells appeared both in the dentate gyrus and the CA1, CA2 and CA3 layers of the hippocampus. In the septum only endogenous fibres could be seen while in the caudal amygdala also galanin-immunoreactive nerve cells were visualized far away from the labelled periventricular zone. At the level of the dorsal raphe nucleus a thin periventricular zone of galanin immunoreactivity was seen but no labelling of cells. These results suggest that galanin can modulate postsynaptic 5-HT1A receptor transmission in vivo in discrete cell populations in forebrain regions such as the dorsal and ventral hippocampus and parts of the amygdala. The indication that galanin administered intracerebroventrically may be taken up in certain populations of nerve terminals in the periventricular zone for retrograde transport suggests that this peptide may also affect intracellular events.  相似文献   

7.
Two lines of mice were bred for their opposite helpless behavior in the tail suspension test, i.e., helpless (HL) mice and non helpless (NHL) mice. The 5-HT(1A) receptor labeling was quantified by means of autoradiography with (3)H-8-OH-DPAT on brain sections from mice of these two lines. We observed a significantly higher level of (3)H-8-OH-DPAT binding sites density in HL mice comparatively to NHL mice, in the medial prefrontal, cingulate, motor and sensorial cortices, in several regions of the limbic system, such as CA3 field of hippocampus, dentate gyrus, medial and baso-medial amygdala, and in dorsal and median raphe nuclei. A chronic 21-day treatment with the antidepressant fluoxetine (10 mg/kg, i.p. daily) attenuated significantly the spontaneous helplessness in HL mice but did not alter the behavior of NHL mice. In the brain of HL mice chronically injected with fluoxetine, the elevated (3)H-8-OH-DPAT binding sites density was no longer observed after treatment in several regions, among which the raphe nuclei. Conversely, the antidepressant treatment did not modify the (3)H-8-OH-DPAT binding sites density in NHL mice. The variation of 5-HT(1A) receptors binding density in the HL mice in response to a chronic fluoxetine treatment parallels the attenuation of the spontaneous helplessness observed in the tail suspension test, and may underlie this behavior.  相似文献   

8.
Sleep/waking stages and behavior were studied following the selective 5-HT1A agonist 8-OH-DPAT given subcutaneously (s.c.) (0.010–0.375 mg/kg) as well as perfused continuously (10 μM) for 6 h into the dorsal raphe nucleus (DRN) using microdialysis. Given systemically, 8-OH-DPAT at 0.375 mg/kg s.c. induced 5-HT behavioral syndrome, increased waking to 149% and reduced slow wave sleep (SWS) to 86%, transition to 76% and rapid eye movement (REM) sleep to 73%. The effect on deep SWS (SWS-2) was biphasic, with an increase after 2 h. 8-OH-DPAT at 0.010 mg/kg did not have any vigilance effects. 8-OH-DPAT perfusion in DRN produced a fourfold increase in REM sleep compared to perfusion of artificial cerebrospinal fluid. This is consistent with the hypothesis that reduced 5-HT neurotransmission following 5-HT1A autoreceptor stimulation will disinhibit cholinergic REM-promoting mesopontine neurons and thereby lead to a REM sleep increase. The other sleep/waking stages were not significantly affected by 8-OH-DPAT perfusion in DRN.  相似文献   

9.
The local application of 5-HT (0-40 micrograms side-1) into the nucleus accumbens was found to inhibit male rat sexual behavior, as evidenced by an increase in number of mounts and intromissions preceding ejaculation and in time to ejaculation. There were no effects on male rat sexual behavior after similar 5-HT injections into other striatal areas, including the dorsolateral, the ventromedial and the posterior neostriatum, as well as the olfactory tubercle. The same groups of animals were also scored for motor activity and body posture after the injection of 5-HT, and only animals injected into the nucleus accumbens showed a statistically significant decrease in motor activity and an increase in the display of a flat body posture. 8-OH-DPAT (0-5 micrograms side-1), injected into the nucleus accumbens, produced a facilitation of the male rat sexual behavior, as evidenced by a decrease in number of mounts and intromissions to ejaculation, as well as in the postejaculatory interval. 8-OH-DPAT injections into the nucleus accumbens produced a decrease in motor activity and an increase in the per cent animals with a flat body posture. Injections into the olfactory tubercle had no effects on the sexual behavior or on the motor activity, whereas the per cent flat body posture was increased. Local application of 8-OH-DPAT (0-5 micrograms) into the median raphe nucleus, facilitated male rat sexual behavior, as evidenced by a decrease in number of intromissions preceding ejaculation and in time to ejaculation. The same doses of 8-OH-DPAT injected into the dorsal raphe had no effects on the sexual behavior. In an additional experiment, 3 groups of animals were injected with 5-HT (40 micrograms) or 8-OH-DPAT (5 micrograms) into the nucleus accumbens, the dorsal and the median raphe nuclei and thereafter observed for treadmill performance. No statistically significant effects were found after injections in any of these brain areas. The present results strongly suggest an inhibitory role of ventral forebrain 5-HT in the mediation of male rat sexual behavior. The facilitation produced by 8-OH-DPAT is possibly due to a blockade of 5-HT2 receptors. Facilitation by 8-OH-DPAT of the male rat copulatory performance after median raphe injections is probably due to stimulation of 5-HT1A autoreceptors in this brainstem region. In contrast to their opposite effects on sexual behavior, both compounds produced a decrease in motor activity and an increased display of flat body posture after accumbens injections.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The distribution of the 2 main types (A and B) of 5-HT1 binding sites in the rat brain was studied by light-microscopic quantitative autoradiography. The 5-HT1A sites were identified using 3H-8-hydroxy-2-(N-dipropylamino)tetralin (3H-8-OH-DPAT) or 3H-5-HT as the ligand. In the latter case, it was shown that 3H-5-HT binding to 5-HT1A sites corresponded to that displaceable by 0.1 microM 8-OH-DPAT or 1 microM spiperone. The "non-5-HT1A" sites labeled by 3H-5-HT in the presence of 0.1 microM 8-OH-DPAT corresponded mainly to 5-HT1B sites. 5-HT1A binding was notably high in limbic regions (dentate gyrus, CA1 and CA3 hippocampal regions, lateral septum, frontal cortex), whereas 5-HT1B binding was particularly concentrated in extrapyramidal areas (caudate nucleus, globus pallidus, substantia nigra). Except in the latter regions, where only one class of 5-HT1 sites was found, both 5-HT1A and 5-HT1B sites existed in all areas examined. The selective degeneration of serotoninergic neurons produced by an intracerebral injection of 5,7-dihydroxytryptamine was associated only with a significant loss of 5-HT1A binding to the dorsal raphe nucleus (-60%) and of 5-HT1B binding to the substantia nigra (-37%). These results are discussed in relation to the possible identity of 5-HT1A and/or 5-HT1B sites with the presynaptic 5-HT autoreceptors controlling nerve impulse flow and neurotransmitter release in serotoninergic neurons.  相似文献   

11.
The present study investigated alterations of the regulation of serotonin (5-hydroxytryptamine; 5-HT) release by 5-HT1A autoreceptors following single and repeated treatment with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT). Rats were pretreated with 8-OH-DPAT (1.0 mg/kg, s.c.) for 1, 7, or 14 days. The ability of an acute challenge administration of 8-OH-DPAT (1.0 mg/kg, i.p.) to decrease 5-HT release in the ventral striatum and the ventral hippocampus of rats maintained under chloral hydrate anesthesia was examined 24 h after the last pretreatment injection using in vivo microdialysis. The decrease of 5-HT release in the striatum produced by the challenge dose of the 5-HT1A receptor agonist was diminished following 7 and 14 days of pretreatment, but not after 1 day of pretreatment, with 8-OH-DPAT. In contrast, decreases of 5-HT release in the hippocampus by the 8-OH-DPAT challenge were not altered after 1 or 7 days of pretreatment, and only a trend for attenuation appeared after pretreatment for 14 days. The results of the present study indicate that desensitization of 5-HT1A autoreceptors regulating 5-HT release in different brain regions by repeated treatment with 8-OH-DPAT occurs at different rates. Synapse 25:107–116, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
To gain further insight into the operation of 5-HT autoreceptor-mediated feedback control of 5-HT biosynthesis in serotonergic nerve terminal areas, the effect of the 5-HT1B and the 5-HT1A receptor agonists, TFMPP and 8-OH-DPAT, respectively, were investigated in the rat central nervous system (CNS) using in vivo and in vitro neurochemical approaches. TFMPP suppressed 5-HT synthesis (5-HTP accumulation after decarboxylase inhibition) both in vivo and in vitro. In vivo, the 5-HT synthesissuppressing effect of the drug (3.0 mg/kg, s.c.) proved resistant to either acute hemitransection or reserpine (5 mg/kg, i.p.; 90 min before) pretreatment. In vitro, in cortical, hippocampal and striatal slice preparations, TFMPP (0.1–10 μM) decreased 5-HT synthesis under basal and stimulated (30 mM K+) conditions, an effect which was unaltered by prior in vivo reserpine-induced 5-HT depletion but was attenuated in the presence of 5-HT1B receptor antagonists such as methiothepin, cyanopindolol or propranolol. The 8-OH-DPAT (0.1 mg/kg, s.c.)-induced decrease of 5-HT synthesis in vivo was abolished by hemitransection but resistant to acute reserpine pretreatment; 8-OH-DPAT (10 μM) did not decrease 5-HT synthesis in vitro. In conclusion, the present study confirms the importance of 5-HT autoreceptors in the feedback control of nerve terminal 5-HT biosynthesis. Specifically, our data indicate: (1) that the reduction of rat brain 5-HT synthesis after TFMPP is mediated by 5-HT1B autoreceptors located on the serotonergic axon terminals, and (2) that the effect is directly mediated and occurs independently of 5-HT neuronal firing and intact monoamine stores. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The present experiments tested the hypothesis that one of the critical mechanisms underlying genetically defined aggressiveness involves brain serotonin 5-HT1A receptors. 5-HT1A receptor density, the receptor mRNA expression in brain structures, and functional correlates for 5-HT1A receptors identified as 8-OH-DPAT-induced hypothermia and lower lip retraction (LLR) were studied in Norway rats bred for 59 generations for the lack of aggressiveness and for high affective aggressiveness with respect to man. Considerable differences between the highly aggressive and the nonaggressive rats were shown in all three traits. A significant decrease in B(max) of specific receptor binding of [3H]8-OH-DPAT in the frontal cortex, hypothalamus, and amygdala and a reduction in 5-HT1A receptor mRNA expression in the midbrain of aggressive rats were found. 5-HT1A receptor agonist 8-OH-DPAT (0.5 mg/kg, i.p.) produced a distinct hypothermic reaction in nonaggressive rats and did not affect significantly the body temperature in aggressive rats. Similar differences were revealed in 8-OH-DPAT-induced LLR: LLR was expressed much more in nonaggressive than in aggressive animals. Additionally, 8-OH-DPAT (0.5 mg/kg i.p.) treatment significantly attenuated the aggressive response to man. The results demonstrated an association of aggressiveness with reduced 5-HT1A receptor expression and function, thereby providing support for the view favoring the idea that brain HT1A receptor contributes to the genetically defined individual differences in aggressiveness.  相似文献   

14.
Ipsapirone, a high-affinity ligand for the 5-hydroxytryptamine1A (5-HT1A) receptor subtype, has been shown to be a full agonist at presynaptic serotonergic sites and a partial agonist at postsynaptic sites. Several recent studies have examined the effects of chronic treatment with ipsapirone or other structurally related pyrimidinylpiperazine compounds, including buspirone and gepirone, on 5-HT1A binding sites with mixed results. Since the neural mechanism responsible for the anxiolytic and antidepressant properties of these compounds is currently uncertain, further investigation of this issue appeared warranted. [3H]8-hydroxy-2-(di-n-propylamino)-tetralin ([3H]8-OH-DPAT), a ligand specific for the 5-HT1A site, has been used successfully to label these sites using both membrane binding assays and autoradiography. Experiments were performed to determine whether chronic treatment with ipsapirone would differentially affect binding to 5-HT1A receptors at different brain sites. Rats were treated twice daily with ipsapirone (10 mg/kg i.p.) for 1 day or for 1, 2, or 3 weeks. Quantitative analyses were done of autoradiograms of in vitro [3H]8-OH-DPAT binding to selected brain regions. Binding in vehicle-treated rats was highest in the hippocampus, septal nucleus, interpeduncular nucleus, entorhinal cortex, and dorsal raphe nucleus. Following 3 weeks of treatment with ipsapirone, a large decline in binding was measured in the dorsal raphe nucleus. This decline was not seen with ipsapirone treatments for shorter periods. With the 3-week treatment, there were less robust declines in [3H]8-OH-DPAT binding in the entorhinal cortex and interpeduncular nucleus. Binding in the other brain regions analyzed was unaltered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Physiological, pharmacological and radioautographic binding studies have suggested the presence of the 5-HT1A autoreceptors on midbrain serotoninergic neurons. The recent production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide has provided a tool to examine this problem directly. Using the immunoperoxidase method to localize the receptor protein, neurons of all the sizes and forms characterizing the neuronal populations in the dorsal and median raphe nuclei were stained. Reaction product was distributed along the neuronal surface, outlining the contours of perikarya and dendrites in a continuous but uneven manner. Intracellular staining was scarce and confined to the perinuclear region. Double immunohistochemical staining using the anti-5-HT1A receptor antibodies and an anti-serotonin (5-HT) antiserum showed that all the 5-HT1A receptor immunoreactive neurons in the dorsal raphe, and the vast majority of them in the median raphe, are serotoninergic neurons. These data provide the first direct demonstration of the existence of 5-HT1A autoreceptors on the perikarya and dendrites of serotoninergic neurons in the anterior raphe nuclei.  相似文献   

16.
S Puig  J P Rivot  J M Besson 《Neuroreport》1992,3(6):533-535
The effect of i.p. administration of the selective 5-HT1A agonist 8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT) (100 micrograms kg-1) has been investigated by in vivo 5-hydroxyindole electrochemical (peak 3) detection in the nucleus raphe magnus (NRM) and medullary dorsal horn (MDH) of acute anaesthetized and unanaesthetized freely moving rats. 8-OH-DPAT induced a small but significant decrease in peak 3 in the NRM and MDH of anaesthetized rats. In freely moving animals, a similar small effect was observed at both NRM and MDH levels. With reference to similar in vivo studies demonstrating differential responsiveness of ascending serotonergic systems to 8-OH-DPAT, it is concluded that the serotonergic NRM-dorsal horn system is slightly affected by this 5-HT1A agonist.  相似文献   

17.
Summary (S)-UH-301 [(S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin, 0.5–4.0 mg/kg i.V.] did not significantly alter the firing rate of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN) as a group, although some individual cells were activated whereas others were depressed. However, (S)-UH-301 (2.0mg/kg i.v.) consistently reversed the inhibition of DRN-5-HT cells produced by the selective 5-HT1A receptor agonist (R)-8-OH-DPAT (0.5 g/kg i.v.) and the dose-response curve for this effect of (R)-8-OH-DPAT was markedly shifted to the right by pretreatment with (S)-UH-301 (1.0mg/kg i.v.). These results support the notion that (S)-UH-301 acts as an antagonist at central 5-HT1A receptors.  相似文献   

18.
5-Hydroxytryptamine (5-HT, serotonin), synthesized in midbrain raphe nuclei and released in various hypothalamic sites, decreases food intake but the specific 5-HT receptor subtypes involved are controversial. Here, we have studied changes in the regional density of binding to 5-HT receptors and transporters and the levels of tryptophan hydroxylase, in rats with obesity induced by feeding a palatable high-energy diet for 7 weeks. We mapped binding at 5-HT receptor subtypes and transporters using quantitative autoradiography and determined tryptophan hydroxylase protein levels by Western blotting. In diet-induced obese (DiO) rats, specific binding to 5-HT1A receptors ([3H]8-OH-DPAT) was significantly increased in the dorsal and median raphe by 90% (P<0.01) and 132% (P<0.05), respectively, compared with chow-fed controls. 5-HT1B receptor binding sites ([125I]cyanopindolol) were significantly increased in the hypothalamic arcuate nucleus (ARC) of DiO rats (58%; P<0.05), as were 5-HT2A receptor binding sites ([3H]ketanserin) in both the ARC (44%; P<0.05) and lateral hypothalamic area (LHA) (121%; P<0.05). However, binding to 5-HT2C receptors ([3H]mesulgergine) in DiO rats was not significantly different from that in controls in any hypothalamic region. Binding to 5-HT transporters ([3H]paroxetine) was significantly increased (P<0.05) in both dorsal and median raphe, paraventricular nuclei (PVN), ventromedial nuclei (VMH), anterior hypothalamic area (AHA) and LHA of DiO rats, by 47%–165%. Tryptophan hydroxylase protein levels in the raphe nuclei were not significantly different between controls and DiO rats. In conclusion, we have demonstrated regionally specific changes in binding to certain 5-HT receptor subtypes in obesity induced by voluntary overeating of a palatable diet. Overall, these changes are consistent with reduced 5-HT release and decreased activity of the 5-HT neurons. Reduction in the hypophagic action of 5-HT, possibly acting at 5-HT1A, 5-HT1B and 5-HT2A receptors, may contribute to increased appetite in rats presented with highly palatable diet.  相似文献   

19.
In animal models of depression, the 5-HT1A agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone, gepirone and ipsapirone administered i.p. have been shown to mimic the behavioural effects of antidepressants. For instance, in the present study, using the learned helplessness paradigm, 8-OH-DPAT dose-dependently reversed helpless behaviour. To assess the possible role of pre- or postsynaptic 5-HT1A receptors in this effect, the ability of 8-OH-DPAT to reduce helpless behaviour was investigated following (1) i.p. administration (0.125 or 0.25 mg/kg/day) in rats whose ascending 5-HT neurons were partially destroyed by previous 5,7-dihydroxytryptamine (5,7-DHT) injection (5 micrograms free base in 0.6 microliter) into the raphe nuclei or (2) after local microinjection (0.1 or 1.0 microgram in 0.5 microliter) into the raphe nuclei or into the septum. The reversal of helpless behaviour by 8-OH-DPAT (i.p.) was still observed in 5,7-DHT-treated rats with telencephalic 5-HT uptake reduced by 50-75% depending on the region. 8-OH-DPAT microinjected into the raphe nuclei did not reverse helpless behaviour; in contrast, 8-OH-DPAT microinjected into the septum reversed helpless behaviour. These results suggest that the ability of 8-OH-DPAT to reverse helpless behaviour probably involved the stimulation of postsynaptic rather than presynaptic 5-HT1A receptors.  相似文献   

20.
The effect of chronic cocaine exposure on the central serotonergic system in the rat was investigated using a selective 5-HT1A receptor agonist, [3H]8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), and a 5-HT2A receptor antagonist, [3H]ketanserin, as tritiated ligands in a quantitative autoradiography study. Rats were administered cocaine in a “binge” pattern, 15 mg/kg/injection, three times a day, at 1-h intervals for 14 days to mimic the pattern often seen in human cocaine addicts. A significant decrease in the binding of [3H]8-OH-DPAT was found in the ventromedial hypothalamus (P < 0.001) and the dorsal dentate gyrus (P < 0.01) in rats administered cocaine as compared with rats injected with saline. No significant difference in the binding of [3H]ketanserin was found in frontal, parietal, agranular insular, and piriform cortices, caudate-putamen, olfactory tubercle, nucleus accumbens, thalamus, septohippocampal nucleus, and claustrum. Several studies have shown that 5-HT1A receptor agonists have antidepressant properties. Other studies, in animal models, have shown that 5-HT1A receptor agonists stimulate the hypothalamic–pituitary–adrenal axis, which is of interest, since chronic activation of this axis has been related to anxiety and depression. Our data show that the 5-HT1A component of the serotonergic system is altered following chronic “binge” pattern cocaine administration in an animal model and may be related to changes in the HPA axis and behavior. Synapse 30:166–171, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号