首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic spines, small bulbous postsynaptic compartments emanating from neuronal dendrites, have been thought to serve as basic units of memory storage. Despite their small size (~0.1 femtoliter), thousands of species of proteins exist in the spine, including receptors, channels, scaffolding proteins and signaling enzymes. Biochemical signaling mediated by these molecules leads to morphological and functional plasticity of dendritic spines, and ultimately learning and memory in the brain. Here, we review new insights into the mechanisms underlying spine plasticity brought about by recent advances in imaging techniques to monitor molecular events in single dendritic spines. The activity of each protein displays a specific spatiotemporal pattern, coordinating downstream events at different microdomains to change the function and morphology of dendritic spines.  相似文献   

2.
The study aimed to elucidate the effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis. A cortical infarct was induced by a permanent ligation of the middle cerebral artery distal to the striatal branches in 6-month-old spontaneously hypertensive rats. Bromodeoxyuridine (BrdU) was administered as 7 consecutive daily injections starting 24 hours after surgery and animals were housed in standard or enriched environment. Four weeks after completed BrdU administration, BrdU incorporation and its co-localization with the neuronal markers NeuN and calbindin D28k, and the astrocytic marker glial fibrillary acidic protein in the granular cell layer and subgranular zone of the hippocampal dentate gyrus were determined with immunohistochemistry and were quantified stereologically. Compared with sham-operated rats, rats with cortical infarcts had a five-to sixfold ipsilateral increase in BrdU-labeled cells. About 80% of the new cells were neurons. Differential postischemic housing did not influence significantly the total number of surviving BrdU-labeled cells or newborn neurons. However, postischemic environmental enrichment increased the ipsilateral generation of astrocytes normalizing the astrocyte-to-neuron ratio, which was significantly reduced in rats housed in standard environment postischemically.  相似文献   

3.
The dynamic nature of synaptic connections has presented morphologists with considerable problems which, from a structural perspective, have frustrated the development of ideas on synaptic plasticity. Gradually, however, progress has been made on concepts such as the structural remodelling and turnover of synapses. This has been considerably helped by the recent elaboration of unbiased stereological procedures. The major emphasis of this review is on naturally occurring synaptic plasticity, which is regarded as an ongoing process in the postdevelopmental CNS. The focus of attention are PSs, with their characteristically discontinuous synaptic active zone, since there is mounting evidence that this synaptic type is indicative of synaptic remodelling and turnover in the mature CNS. Since the majority of CNS synapses can only be considered in terms of their relationship to dendritic spines, the contribution of these spines to synaptic plasticity is discussed initially. Changes in the configuration of these spines appears to be crucial for the plasticity, and these can be viewed in terms of the significance of the cytoskeleton, of various dendritic organelles, and also of the biophysical properties of spines. Of the synaptic characteristics that may play a role in synaptic plasticity, the PSD, synaptic curvature, the spinule, coated vesicles, polyribosomes, and the spine apparatus have all been implicated. Each of these is assessed. Especial emphasis is placed on PSs because of their ever-increasing significance in discussions of synaptic plasticity. The possibility of their being artefacts is dismissed on a number of grounds, including consideration of the results of serial section studies. Various roles, other than one in synaptic plasticity have been put forward in discussing PSs. Although relevant to synaptic plasticity, these include a role in increasing synaptic efficacy, as a more permanent type of synaptic connection, or as a route for the intercellular exchange of metabolites or membrane components. The consideration of many estimates of synaptic density, and of PS frequency, have proved misleading, since studies have reported diverse and sometimes low figures. A recent reassessment of PS frequency, using unbiased stereological procedures, has provided evidence that in some brain regions PSs may account for up to 40% of all synapses. All ideas that have been put forward to date regarding the role of PSs are examined, with particular attention being devoted to the major models of Nieto-Sampedro and co-workers, Carlin and Siekevitz, and Dyson and Jones. New ideas based on recent analysis of quantitative data and of 3-dimensional reconstructions of PSs are discussed. According to these, PSs constitute a separate, and more enduring, component of the synaptic population than NPSs, and have a major role in the maintenance of synaptic efficacy in the mature CNS.  相似文献   

4.
The density of dendritic spines was determined by counting spines on 34-μm segments from basal branches of pyramidal cells in layers II and III of the rat occipital cortex. Counts began at the first bifurcation site from the soma, and one segment from each side of the neuron was studied. The results of this investigation indicated a marked decrease in spines with a lollipop (type L) configuration from 90 to 414 days of age. After this decrease, the density of type L spines increased to 630 days to the same density as they were at 90 days. The presence or absence of type L spines was not affected by housing the animals in an enriched environment. In contrast to the type L spines, another type of spine, those with a nubbin configuration (type N) increased in density at each age. The density of these type N spines also appeared subject to environmental influences in the oldest group. We conclude that type L spines, after decreasing to the adult level, increase as the animal approaches senescence perhaps as a compensatory mechanism. On the other hand, type N spines increase with age and are responsive to the environment in the old animals. Type N spines possibly represent degenerating spines.  相似文献   

5.
An enriched environment promotes structural changes in both injured and intact brain and improves behavioral performance. In 2 different experimental approaches, the effects of enriched surroundings were analyzed utilizing DNA microarrays. First, gene expression patterns of the sensorimotor cortex and the hippocampus of noninjured adult rats with enriched housing were compared with analogous regions of rats kept in standard cages. Second, circumscribed infarcts affecting the forelimb area of the sensorimotor cortex were induced, and gene expression patterns of the non-necrotic ipsilesional as well as the contralesional homotopic cortex of rats (postlesionally enriched housing versus standard) were analyzed. In the intact brain, the hippocampus, which had 43 upregulations and 15 downregulations showed more changes than the sensorimotor cortex, which had 13 upregulations and 4 downregulations, indicating a greater responsiveness of the hippocampus to environmental stimuli. In the injured brain, enrichment led ipsilesionally to 28 downregulations and 14 upregulations, while in the contralesional cortex, upregulations prevailed with 46 upregulations and 13 downregulations. The larger number of genes responsive to enrichment in the contralesional cortex (59 gene regulations) as compared to the analogous area (i.e. sensorimotor cortex) of the intact brain (17 gene regulations) likely reflects increased susceptibility for plastic changes due to injury. With the exception of the perilesional cortex, similar functional groups of genes were differentially regulated in different brain regions/paradigms, suggesting basically similar molecular cascades being involved in reorganizing the brain following external stimuli. Many of the genes detected here correspond to molecular pathways known to be involved in neuroplasticity, whereas others provide new and hitherto unrecognized entry points.  相似文献   

6.
T Hosokawa  T V Bliss  A Fine 《Neuroreport》1992,3(6):477-480
A number of theories on the cellular basis of learning and memory propose that long-term changes in synaptic strength are encoded by changes in the properties of dendritic spines. Such theories imply that individual spines retain their identity over time. Using a new technique for fluorescent labelling of synaptic structures together with confocal microscopy, we have found that the appearance of individual spines on viable cells remains unchanged over observations periods of up to 5 hours. Even in slices exposed to kainic acid at concentrations that abolished synaptic transmission, groups of spines remained identifiable on cells clearly damaged by the toxin. The robust persistence of individual spines demonstrated here establishes an essential prerequisite for their potential role as mnemonic elements.  相似文献   

7.
Examination of axospinous synapses in serial sections obtained from the middle molecular layer of the rat dentate gyrus has revealed that some of them involve double-healed dendritic spines. Each spine head is apposed by a separate axon terminal with which it always forms a perforated synaptic contact distinguished by a discontinuous postsynaptic density. The number of perforated synapses on double-headed spines was estimated as a synapse-to-neuron ratio with the aid of the disector technique and found to be significantly increased in rats kindled via medial perforant path stimulation. These results support the notion that perforated synapses involving double-headed dendritic spines represent a structural modification related to enhanced synaptic efficacy.  相似文献   

8.
Modifications of the size, shape and number of dendritic spines is thought to be an important component of activity-dependent changes of neuronal circuits, and may play an important role in the plasticity of drug addiction. The present study examined whether homeostatic increases in synaptic N-methyl-d-aspartate (NMDA) receptors in response to chronic ethanol exposure is associated with corresponding morphological changes in dendritic spines. Prolonged exposure of rat hippocampal cultures to either the NMDA receptor antagonist d(-)-2-amino-5-phosphono-pentanoic acid or to ethanol increased punctate staining of F-actin and the postsynaptic density protein-95 (PSD-95). The increase in dendritic F-actin occurred only with clusters that co-localized with PSD-95 clusters, indicating that these actin structures likely represent dendritic spines. The ethanol-induced increases in PSD-95 and F-actin clusters were activity-dependent and reversible. Finally, inhibition of protein palmitoylation prevented ethanol-induced increases in synaptic NMDA receptor clustering and F-actin without altering the basal clustering of either F-actin or PSD-95. These observations support a model in which chronic ethanol exposure induces homeostatic increases of NR2B-containing NMDA receptors and PSD-95 to the postsynaptic density. This in turn may provide a scaffolding platform for the subsequent recruitment of actin signaling cascades that alter actin cycling and promote spine enlargement.  相似文献   

9.
10.
11.
Matus A  Brinkhaus H  Wagner U 《Hippocampus》2000,10(5):555-560
Dendritic spines form the postsynaptic element at most excitatory synapses in the brain. The spine cytoskeleton consists of actin filaments which, in time-lapse recordings of living neurons expressing actin labeled with green fluorescent protein, can be seen to undergo rapid, dynamic changes. Because actin dynamics are associated with changes in cell shape, these cytoskeletal rearrangements may form a molecular basis for the morphological plasticity at brain synapses. The rapidity of these dynamic events in dendritic spines raises new questions. First, do the changes in actin cytoskeleton that are visible by light microscopy really correspond to changes in spine morphology, or do they represent changes in the relationship between actin and its many binding partners at postsynaptic sites? Second, how are these changes regulated by synaptic transmission? Third, to what extent do these changes occur in organized brain tissue? Answers to these questions are now beginning to emerge.  相似文献   

12.
Cajal was probably the first neurobiologist to suggest that plasticity of nerve cells almost completely disappeared during aging. However, we know today that neural plasticity is still present in the brain during aging. In this review we suggest that aging is a physiological process that occurs asynchronously in different areas of the brain and that the rate of that process is modulated by environmental factors and related to the neuronal-synaptic-molecular substrates of each area. We review here some of the most recent results on aging of the brain in relation to the plastic changes that occur in young and aged animals as a result of living in an enriched environment. We highlight the results from our own laboratory on the dynamics of neurotransmitters in different areas of the brain. Specifically we review first the effects of aging on neurons, dendrites, synapses, and also on molecular and functional plasticity. Second, the effects of environmental enrichment on the brain of young and aged animals. And third the effects of an enriched environment on the age-related changes in neurogenesis and in the extracellular concentrations of glutamate and GABA in hippocampus, and on dopamine, acetylcholine, glutamate and GABA under a situation of acute mild stress in the prefrontal cortex.  相似文献   

13.
The posterior cerebellum is strongly involved in motor coordination and its maturation parallels the development of motor control. Climbing and mossy fibers from the spinal cord and inferior olivary complex, respectively, provide excitatory afferents to cerebellar Purkinje neurons. From post-natal day 19 climbing fibers form synapses with thorn-like spines located on the lower primary and secondary dendrites of Purkinje cells. By contrast, mossy fibers transmit synaptic information to Purkinje cells trans-synaptically through granule cells. This communication occurs via excitatory synapses between the parallel fibers of granule cells and spines on the upper dendritic branchlets of Purkinje neurons that are first evident at post-natal day 21. Dendritic spines influence the transmission of synaptic information through plastic changes in their distribution, density and geometric shape, which may be related to cerebellar maturation. Thus, spine density and shape was studied in the upper dendritic branchlets of rat Purkinje cells, at post-natal days 21, 30 and 90. At 90 days the number of thin, mushroom and thorn-like spines was greater than at 21 and 30 days, while the filopodia, stubby and wide spines diminished. Thin and mushroom spines are associated with increased synaptic strength, suggesting more efficient transmission of synaptic impulses than stubby or wide spines. Hence, the changes found suggest that the development of motor control may be closely linked to the distinct developmental patterns of dendritic spines on Purkinje cells, which has important implications for future studies of cerebellar dysfunctions.  相似文献   

14.
Traumatic brain injury is an important global public health problem. Traumatic brain injury not only causes neural cell death, but also induces dendritic spine degeneration. Spared neurons from cell death in the injured brain may exhibit dendrite damage, dendritic spine degeneration, mature spine loss, synapse loss, and impairment of activity. Dendritic degeneration and synapse loss may significantly contribute to functional impairments and neurological disorders following traumatic brain injury. Normal function of the nervous system depends on maintenance of the functionally intact synaptic connections between the presynaptic and postsynaptic spines from neurons and their target cells. During synaptic plasticity, the numbers and shapes of dendritic spines undergo dynamic reorganization. Enlargement of spine heads and the formation and stabilization of new spines are associated with long-term potentiation, while spine shrinkage and retraction are associated with long-term depression. Consolidation of memory is associated with remodeling and growth of preexisting synapses and the formation of new synapses. To date,there is no effective treatment to prevent dendritic degeneration and synapse loss. This review outlines the current data related to treatments targeting dendritic spines that propose to enhance spine remodeling and improve functional recovery after traumatic brain injury. The mechanisms underlying proposed beneficial effects of therapy targeting dendritic spines remain elusive, possibly including blocking activation of Cofilin induced by beta amyloid, Ras activation, and inhibition of GSK-3 signaling pathway. Further understanding of the molecular and cellular mechanisms underlying synaptic degeneration/loss following traumatic brain injury will advance the understanding of the pathophysiology induced by traumatic brain injury and may lead to the development of novel treatments for traumatic brain injury.  相似文献   

15.
16.
Three-dimensional structure of dendritic spines in the rat neostriatum   总被引:3,自引:0,他引:3  
Dendritic spines of rat neostriatal neurons were examined by light microscopy and high voltage stereo electron microscopy (HVEM) following selective staining by intracellular microinjection of horseradish peroxidase. Conventionally prepared material also was used for quantitative analysis of dendritic spines from serial thin sections of neostriatum. Stereo electron microscopy of semithin sections from rat neostriatum fixed using a protocol designed to preserve cytoskeletal integrity was employed to examine the organization of the dendritic spine cytoplasm. Light microscopic and HVEM examination of spiny dendrites and quantitative analysis of serial thin sections from normal material revealed no distinct spine types but rather continuous and independent variation of spine head diameter, stalk diameter, and stalk length. Likewise, there was no systematic relationship between any of these spine dimensions and dendritic diameter. Spine head membrane surface area was directly related to the area of the synaptic junctional membrane of the spine head. In semithin sections, the cytoplasm of the spine contained membranous saccules of spine apparatus and a delicate cytoskeletal network composed of microfilaments and a set of finer and more variable cytoskeletal filaments. It is proposed that this cytoskeletal network together with the spine apparatus is responsible for the maintenance and alteration of spine shape and in this way controls the effectiveness of axospinous synapses.  相似文献   

17.
18.
The effect of insulin-induced hypoglycemia following 10.5 minutes of forebrain ischemia was studied in the rat. All groups received preischemic glucose loading (2 gm/kg) to promote brain infarction. Following completion of ischemia, rats received either 2 to 3 IU/kg (low-dose group) or 8 to 20 IU/kg (high-dose group) insulin. During the survival period, blood glucose concentrations were maintained in the ranges of 1.2 to 2.9 mM and 2.9 to 4.9 mM, respectively, for the low-dose and high-dose insulin groups. Control rats were given 2 gm/kg glucose immediately following ischemia. During the recovery period, until perfusion at 7 days, they were given glucose, 2 gm/kg, twice daily by intraperitoneal injection, and their drinking water was supplemented with 25% glucose. Mortality (p less than 0.05) and postischemic seizure incidence (p less than 0.01) were significantly reduced in the low-dose insulin group compared to the control group. Mortality was increased in the high-dose insulin group compared to the control group and was associated with an increased incidence of postischemic seizures. Neuropathological examination revealed no cortical infarction in the low-dose or high-dose insulin-treated rats compared to a 60% incidence of cortical infarction in the control group. In addition, the high-dose insulin-treated group showed a significant reduction in striatal and hippocampal CA1 selective neuronal necrosis compared to control rats with comparable survivals (p less than 0.05). The findings suggest that postischemic blood glucose concentrations play an important role in modulating both ischemic infarction and selective neuronal necrosis.  相似文献   

19.
Sorra KE  Harris KM 《Hippocampus》2000,10(5):501-511
There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of the Hippocampus. Leaders in the field provide a discussion at the level of advanced under-graduates, with sufficient detail to be a contemporary resource for research scientists. Critical reviews are presented on topics ranging from spine structure, formation, and maintenance, to molecular composition, plasticity, and the role of spines in learning and memory. Dendritic Spines of the Hippocampus provides a timely discussion of our current understanding of form and function at these excitatory synapses. We asked authors to include areas of controversy in their papers so as to distinguish results that are generally agreed upon from those where multiple interpretations are possible. We thank the contributors for their insights and thoughtful discussions. In this paper we provide background on the structure, composition, function, development, plasticity, and pathology of hippocampal dendritic spines. In addition, we highlight where each of these subjects will be elaborated upon in subsequent papers of this special issue of Hippocampus.  相似文献   

20.
Hypobaric hypoxia (HH), a predisposing environmental condition at high altitude (HA) encountered by many mountaineers jeopardizes their normal physiology like motor coordination and cognitive functions. Our previous studies revealed that the HH induces oxidative stress and neurodegeneration, which is associated with spatial memory impairment in rats. However, the dendritic changes after exposure to different duration of HH remain largely unknown. The aim of the present study was to investigate the duration-dependent dendritic changes in CA1, CA3 and entorhinal cortex (EC) of hippocampus and layer II of prefrontal cortex (PFC) with spatial memory functions in rats on exposure to different duration of HH. The rats were exposed to simulated HA of 6100 m for 3, 7, 14 and 21 days and the spatial reference memory was investigated using Morris water maze (MWM) and the morphological alteration of CA1, CA3, EC and layer II of PFC were investigated. There was a significant decrease in dendritic arborization and spine number along with increased number of damaged neurons, after 3, 7 and 14 days of HH but after 21 days of HH exposure the structural recovery was noted in all the regions. There was impairment of spatial memory after 3 and 7 days of exposure, but slight improvement of spatial memory was noted after 14 and 21 days of exposure. Our studies suggested that HH induces dendritic plasticity of PFC and hippocampal pyramidal neurons of rat brain, which might be associated with improvement of spatial memory function after 21 days of HH exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号