首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In this study, we describe the application of a new analytical procedure based on capillary electrochromatographic (CEC) techniques for the characterization of different basic and acidic peptides using isocratic eluent conditions containing acetonitrile and ammonium acetate buffers of different molarities between pH 3.8 and 5.2. In particular, 10 immunogenic peptide analogs with isoelectric points ranging from 3.7 to 10.1 were investigated; nine of these peptides, 1 – 9 , were truncated analogs of the parent peptide, 10 , which is a peptidomimetic related to a HIV‐1 gp120 epitope. Several of these peptides have the propensity to form α‐helical secondary structures in solution. Electrochromatographic separations of these peptides were achieved with packed fused silica capillaries (25 cm packed length, 100 µm i.d.) containing 3 µm n‐octadecylsilica particles. The influence of temperature on the CEC elution behavior of these peptides, as well as the impact of changes in the eluent composition, e.g. pH, buffer concentration and acetonitrile content, were examined. The results confirm that improvements in the resolution and analysis of synthetic peptides by CEC procedures result from the increase in electro‐osmotic flow (EOF) as the temperature is increased. These findings emphasize the dominant influence of the temperature‐dependent viscosity parameter, η, on the EOF and thus on peptide resolution in CEC. Moreover, these investigations have shown that eluent properties can be specifically chosen to favor either electrophoretic mobility or chromatographic retention, with the overall CEC selectivity peptides of different sequence or composition reflecting the summated contributions from both separation mechanisms. Over the pH range 4.0–5.0, and using eluents with ionic strengths ranging from 6.2 to 15 mm ammonium acetate but containing a fixed volume fraction, ψ, of acetonitrile above ψ=0.40, the CEC retention behavior of peptides 1 – 10 correlated with a linear relationship linking the retention coefficient, κcec, and the differential frictional size‐to‐mass ratio parameter, ξfric, of these peptides. However, using eluents with a low acetonitrile content and low pH values, linear correlations were also observed between the incremental retention coefficient, Δκcec, and the product term [? 0.66(Δ∑χn) log(Mi/Mj)], which links the difference in intrinsic hydrophobicities and molecular masses of two peptides, Pi and Pj. This study thus demonstrates the power of CEC procedures in the analysis of synthetic bioactive peptides and provides a general experimental framework to evaluate, using CEC procedures, the influence of the key molecular attributes of peptides on their structure?retention dependencies. Finally, these studies provide additional, practical insights into the use of CEC procedures for the analysis, resolution and biophysical characterization of closely related peptide analogs derived from solid‐state peptide synthesis under conditions of different eluent composition or temperature.  相似文献   

2.
Alzheimer's disease is a neurodegenerative disorder associated with amyloid‐β (Aβ) fibrillation. N‐Methylated amyloid‐β peptides are potent inhibitors of amyloid‐β fibrillation. We investigated the inhibitory effect of N‐Methylated Aβ30–40 peptides on Aβ1–40 fibrillation. N‐Methylated Aβ30–40 peptides affected the fibrillation, and this effect was dependent on the concentration of N‐Methylated peptide and the number and position of N‐Methylated groups. N‐Methylated Aβ30–40 peptides were co‐aggregated with Aβ1–40. Spectroscopic technique was adopted to investigate an origin of the observed dependence. Suppression of thioflavin T (ThT) fluorescence count was correlated with the dissociation constant Kd of monomer–dimer equilibrium of each N‐Methylated Aβ30–40 peptide. Monomeric N‐Methylated peptides decreased ThT fluorescence count during Aβ1–40 fibrillation. Secondary structure content was not largely different between Aβ1–40 fibrils and co‐aggregates. These results suggested that N‐Methylated Aβ30–40 peptides disrupted the regular β‐sheet structure of Aβ1–40 fibrils and affected the ThT fluorescence count. The monomer–dimer equilibrium of N‐Methylated peptides was (partly) responsible for the observed dependence of their inhibitory effect on the concentration of N‐Methylated peptide and the number and position of N‐Methylated groups. Our study provides a hint to design new N‐Methylated inhibitor peptides of fibrillation.  相似文献   

3.
Abstract: A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid‐phase synthetic techniques. Each nonapeptide was rich in α,α‐dialkylated amino acids [one 4‐aminopiperidine‐4‐carboxylic acid (Api) and six α‐aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9‐fluorenylmethyloxycarbonyl (Fmoc)‐Aib‐Aib‐OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 310‐helical, amphipathic design of these peptides was born out most prominently in the N‐terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations ≤100 μm ) and the acetylated peptides (concentrations ≤200 μm ) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages.  相似文献   

4.
Abstract: βN‐tert‐butyloxycarbonyl‐N‐carboxyanhydrides are very reactive β‐amino acid derivatives. They react cleanly and smoothly with different nucleophiles like aminoesters, enolates, N‐methyl‐d ‐glucamine, amidoximes to afford in good to excellent yields peptides, β‐amino ketocompounds, β‐aminosugars and functionalized disubstituted 1,2,4‐oxadiazoles.  相似文献   

5.
Integrin ανβ3 is a receptor and is highly expressed on activated and proliferating endothelial cells during the growth and metastasis of solid tumors but not on resting endothelial cells and normal organs. Because RGD peptide binds to integrin ανβ3 receptor, a variety of radiolabeled RGD peptides have been evaluated for non‐invasive imaging of integrin ανβ3‐positive tumors. In an attempt to develop RGD‐based radiopharmaceuticals, a novel GluDTPA‐cyclo arginine‐glycine‐aspartic acid‐d ‐phenylalanine‐lysine (GluDTPA‐cycloRGDfK) was simply synthesized and radiolabeled with 177Lu. Also, tumor targeting and retention of the radiolabeled complex were evaluated in U87MG glioma‐bearing mice. The 177Lu‐labeled GluDTPA‐cyclo(RGDfK) was formulated with a high radiolabeling yield (>98%) under mild condition, and the radiochemical purity was sustained in both saline and serum for over 4 days at 37°C. The radiolabeled compounds were rapidly cleared from the blood pool and non‐target tissue. Tumor‐to‐blood ratio was 12.09 at 2 h post injection and increased to 134.67 at 24 h, while tumor to liver ratio was 2.01 at 24 h similar to that of 2 h. Though it is inappropriate for targeted therapy due to its low uptake in tumor (~ 1 %ID/g), the acceptable results on radiochemistry and biodistribution propose to take a further assessment for non‐invasive imaging and detection of integrin ανβ3‐positive tumors by applying diagnostic radionuclides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Biphalin, a synthetic opioid peptide with a broad affinity for all opioid receptors (δ, μ, and κ) and high antinociceptive activity, has been under extensive study as a potential analgesic drug. This study presents the synthesis and biological properties of four new analogues of biphalin containing amphiphilic α‐alkylserines in position 2 and 2′. The incorporation of bulky α,α‐disubstituted amino acids in the peptide chain using standard peptide chemistry is often unsuccessful. We synthesized depsipeptides, and then, the desired peptides were obtained by internal O,N‐migration of the acyl residue from the hydroxyl to the amino group under mild basic conditions. The potency and selectivity of the new analogues were evaluated by a competitive receptor‐binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Their binding affinity is strongly dependent on the chirality of α‐alkylserine, as analogues containing (R)‐α‐alkylserines displayed higher μ receptor affinity and selectivity than those incorporating the (S)‐isomers.  相似文献   

7.
Arginine–glycine–aspartic acid (RGD)‐containing peptides have been traditionally used as PET probes to noninvasively image angiogenesis, but recently, small selective molecules for α5β1 integrin receptor have been developed with promising results. Sixty‐one antagonists were screened, and tert‐butyl (S)‐3‐(2‐((3R,5S)‐1‐(3‐(1‐(2‐fluoroethyl)‐1H‐1,2,3‐triazol‐4‐yl)propanoyl)‐5‐((pyridin‐2‐ylamino)methyl)pyrrolidin‐3‐yloxy)acetamido)‐2‐(2,4,6‐trimethylbenzamido)propanoate (FPMt) was selected for the development of a PET tracer to image the expression of α5β1 integrin receptors. An alkynyl precursor (PMt) was initially synthesized in six steps, and its radiolabeling was performed according to the azide–alkyne copper(II)‐catalyzed Huisgen's cycloaddition by using 1‐azido‐2‐[18F]fluoroethane ([18F]12). Different reaction conditions between PMt and [18F]12 were investigated, but all of them afforded [18F]FPMt in 15 min with similar radiochemical yields (80–83%, decay corrected). Overall, the final radiopharmaceutical ([18F]FPMt) was obtained after a synthesis time of 60–70 min in 42–44% decay‐corrected radiochemical yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract: Rs‐AFPs are antifungal proteins, isolated from radish (Raphanus sativus) seed or leaves, which consist of 50 or 51 amino acids and belong to the plant defensin family of proteins. Four highly homologous Rs‐AFPs have been isolated (Rs‐AFP1–4). The structure of Rs‐AFP1 consists of three β‐strands and an α‐helix, and is stabilized by four cystine bridges. Small peptides deduced from the native sequence, still having biological activity, are not only important tools to study structure?function relationships, but may also constitute a commercially interesting target. In an earlier study, we showed that the antifungal activity of Rs‐AFP2 is concentrated mainly in the β2?β3 loop. In this study, we synthesized linear 19‐mer peptides, spanning the entire β2?β3 loop, that were found to be almost as potent as Rs‐AFP2. Cysteines, highly conserved in the native protein, are essential for maintaining the secondary structure of the protein. Surprisingly, in the 19‐mer loop peptides, cysteines can be replaced by α‐aminobutyric acid, which even improves the antifungal potency of the peptides. Analogous cyclic 19‐mer peptides, forced to adopt a hairpin structure by the introduction of one or two non‐native disulfide bridges, were also found to possess high antifungal activity. The synthetic 19‐mer peptides, like Rs‐AFP2 itself, cause increased Ca2+ influx in pregerminated fungal hyphae.  相似文献   

9.
Abstract: A series of short, amphipathic peptides incorporating 80% Cα,Cα‐disubstituted glycines has been prepared to investigate amphipathicity as a helix‐stabilizing effect. The peptides were designed to adopt 310‐ or α‐helices based on amphipathic design of the primary sequence. Characterization by circular dichroism spectroscopy in various media (1 : 1 acetonitrile/water; 9 : 1 acetonitrile/water; 9 : 1 acetonitrile/TFE; 25 mm SDS micelles in water) indicates that the peptides selectively adopt their designed conformation in micellar environments. We speculate that steric effects from ith and ith + 3 residues interactions may destabilize the 310‐helix in peptides containing amino acids with large side‐chains, as with 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c). This problem may be overcome by alternating large and small amino acids in the ith and ith + 3 residues, which are staggered in the 310‐helix.  相似文献   

10.
The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target‐specific molecular recognition. Peptides based on the cyclic Arg‐Gly‐Asp (RGD) sequence have been reported as high‐affinity agents for the α(ν)β(3) integrin. The aim of this research was to prepare a multimeric system of 177Lu‐labeled gold nanoparticles conjugated to c(RGDfK)C (cyclo(Arg‐Gly‐Asp‐Phe‐Lys)Cys) and to compare the radiation‐absorbed dose with that of 177Lu‐labeled monomeric and dimeric RGD peptides to α(ν)β(3) integrin‐positive U87MG tumors in mice. DOTA‐GGC (1,4,7,10‐tetraazacyclododecane‐N‐N′,N″,N?‐tetraacetic acid‐Gly‐Gly‐Cys) and c(RGDfK)C peptides were synthesized and conjugated to AuNPs by a spontaneous reaction of the thiol groups. Transmission electron microscopy, ultraviolet–visible, X‐ray photoelectron spectroscopy, Raman and far‐infrared spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. For the 177Lu‐AuNP‐c(RGDfK)C to be obtained, the 177Lu‐DOTA‐GGC radiopeptide was first prepared and added to a solution of AuNPs followed by c(RGDfK)C (25 µl, 5 µ m ) at 18 °C for 15 min. 177Lu‐DOTA‐GGC, 177Lu‐DOTA‐cRGDfK and 177Lu‐DOTA‐E‐c(RGDfK)2 were prepared by adding 177LuCl3 (370 MBq) to 5 µl (1 mg/ml) of the DOTA derivative diluted with 50 µl of 1 m acetate buffer pH 5. The mixture was incubated at 90 °C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. Biokinetic studies were accomplished in athymic mice with U87MG‐induced tumors. The radiochemical purity for all 177Lu‐RGD derivatives was 96 ± 2%. 177Lu‐absorbed doses per injected activity delivered to U87MG tumors were 0.357 ± 0.052 Gy/MBq (multimer), 0.252 ± 0.027 Gy/MBq (dimer) and 0.102 ± 0.018 Gy/MBq (monomer). 177Lu‐labeled dimeric and multimeric RGD peptides demonstrated properties suitable for targeted radionuclide therapy of tumors expressing α(ν)β(3) integrins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract: The structural perturbation induced by CαH→Nα exchange in azaamino acid‐containing peptides was predicted by ab initio calculation of the 6‐31G* and 3‐21G* levels. The global energy‐minimum conformations for model compounds, For‐azaXaa‐NH2 (Xaa = Gly, Ala, Leu) appeared to be the β‐turn motif with a dihedral angle of φ = ± 90°, ψ = 0°. This suggests that incorporation of the azaXaa residue into the i + 2 position of designed peptides could stabilize the β‐turn structure. The model azaLeu‐containing peptide, Boc‐Phe‐azaLeu‐Ala‐OMe, which is predicted to adopt a β‐turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (φi+1, ψi+1) (φi+2, ψi+2)] of the Phe‐azaLeu fragment in the model peptide, Boc‐Phe‐azaLeu‐Ala‐OMe, as [(?59°, 127°) (107°, ?4°)]. This solution conformation supports a βII‐turn structural preference in azaLeu‐containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i + 2 position in synthetic peptides is expected to provide a stable β‐turn formation, and this could be utilized in the design of new peptidomimetics adopting a β‐turn scaffold.  相似文献   

12.
Abstract: Single N‐methyl amino acid‐containing peptides related to the central hydrophobic region β16–20 (Lys‐Leu‐Val‐Phe‐Phe) of the β‐amyloid protein are able to reduce the cytotoxicity of natural β1–42 in PC12 cell cultures. N‐methyl phenylalanine analogs yield statistically significant increments in cell viability (Student's t‐test < 0.01%) and are nontoxic in the same assay. These promising results indicate that these peptide molecules could be a starting point for the development of potential therapeutic compounds for the treatment of Alzheimer's disease.  相似文献   

13.
Abstract: Two complete series of N‐protected oligopeptide esters to the pentamer level from 1‐amino‐cyclodecane‐1‐carboxylic acid (Ac10c), an α‐amino acid conformationally constrained through a medium‐ring Cαi ? Cαi cyclization, and either the l ‐Ala or Aib residue, along with the N‐protected Ac10c monomer and homo‐dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT‐IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z‐Ac10c‐OH and Fmoc‐Ac10c‐OH) and two peptides (the dipeptide ester Z‐Ac10c‐l ‐Phe‐OMe and the tripeptide ester Z‐Aib‐Ac10c‐Aib‐OtBu) were determined in the crystal state using X‐ray diffraction. The experimental results support the view that β‐bends and 310‐helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic Cα,α‐disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1‐amino‐cycloalkane‐1‐carboxylic acid (Acnc, with n = 3–12) series, which represents the prerequisite for our recent proposal of the ‘Acnc scan’ concept.  相似文献   

14.
γ‐Cyhalothrin is a single isomer, synthetic pyrethroid insecticide. This material was originally developed and marketed by Pytech Chemicals, a joint venture between Dow AgroSciences and Cheminova A/S. Cheminova A/S now wholly owns Pytech Chemical. As a part of registration studies, there was a need for a stable isotope of γ‐cyhalothrin to serve as an internal standard. This paper will discuss the 11‐step synthesis that was used to prepare an M + 7 stable isotope of γ‐cyhalothrin by utilizing triethyl phosphonoacetate‐d2 and acetone‐d6 to incorporate deuterium into the molecule. In the end, the diastereomers were separated by preparative reverse‐phase HPLC to give γ‐cyhalothrin‐d7 in an overall yield of 6%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

17.
γ‐Vinyl‐γ‐aminobutyric acid (GVG, Vigabatrin®), a suicide inhibitor of GABA‐transaminase (GABA‐T), has been suggested as a new drug for the treatment of substance abuse. In order to better understand its pharmacokinetics and potential side effects, we have developed a radiosynthesis of carbon‐11 (t1/2=20 min) labeled GVG for positron emission tomographic (PET) studies. We report here a novel synthetic strategy to prepare the precursor and to efficiently label GVG with C‐11. 5‐Bromo‐3‐(carbobenzyloxy)amino‐1‐pentene was synthesized in five steps from homoserine lactone, including reduction and methylenation. This was used in a one‐pot, two‐step radiosynthesis. Displacement of bromide with no‐carrier‐added [11C]cyanide followed by acid hydrolysis afforded [1‐11C]GVG with decay corrected radiochemical yields of 27±9% (n=6, not optimized) with respect to [11C]cyanide in a synthesis time of 45 min. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract: Human α‐defensins are small, Cys‐rich, cationic proteins expressed predominantly in neutrophils and intestinal epithelia. They play important roles in innate and adaptive immunity against infection. Progress in studying these molecules can be accelerated by access to large quantities of high‐quality materials, which have been obtained mainly from natural sources. Here, we report total synthesis of human α‐defensins 4, 5, and 6, also known as HNP4, HD5, and HD6, using the optimized N,N‐diisopropylethylamine (DIEA) in situ neutralization/2‐(1 H‐benzotriazolyl)‐1,1,3,3‐tetramethyluroniumhexafluorophosphate (HBTU) activation protocol for solid‐phase Boc chemistry. Oxidative folding/disulfide formation was achieved directly using crude peptides, resulting in an overall synthetic yield of 10–16% with high purity. Antimicrobial activity assays were performed with Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, using colony‐counting methods, and the results demonstrated differential activity against these strains. Our report describes a highly efficient synthetic approach that enables thorough structural and functional studies of these three important immunologic molecules.  相似文献   

19.
Abstract: A large and steadily growing subfamily of antimicrobially active peptides of animals and plants is formed by the defensins, which are highly disulfide‐bonded, cationic peptides with a molecular mass of about 4 kDa. The synthesis of the human β‐defensins 1 and 2 (hBD‐1, hBD‐2) as well as of the novel murine β‐defensins 7 and 8 (mBD‐7 and mBD‐8) is reported. The peptides were synthesized by solid‐phase peptide synthesis using fluorenylmethoxycarbonyl chemistry. The linear products were oxidized in the presence of the cysteine/cystine redox system to the biologically active molecules. The correct disulfide connectivity of the resulting cyclic products was partly verified by mass spectrometry and sequence analysis of the fragments obtained after tryptic cleavage. In addition, the recently discovered antimicrobially active human peptide LEAP‐1/hepcidin, which contains four disulfide bonds, was successfully synthesized and subsequently oxidized. For Liver‐expressed anti microbial peptide (LEAP)‐1/hepcidin and hBD‐1, the identity of native and synthetic peptides was demonstrated by high‐pressure liquid chromatography and capillary electrophoretic analysis. The general synthetic procedure is suitable to rapidly perform the total chemical synthesis of novel fully bioactive defensins, which are expected to be identified soon, as well as of structurally modified analogs.  相似文献   

20.
Abstract: We describe here a systematic study to determine the effect on secondary structure of d ‐amino acid substitutions in the nonpolar face of an amphipathic α‐helical peptide. The helix‐destabilizing ability of 19 d ‐amino acid residues in an amphipathic α‐helical model peptide was evaluated by reversed‐phase HPLC and CD spectroscopy. l ‐Amino acid and d ‐amino acid residues show a wide range of helix‐destabilizing effects relative to Gly, as evidenced in melting temperatures (ΔTm) ranging from ?8.5°C to 30.5°C for the l ‐amino acids and ?9.5°C to 9.0°C for the d ‐amino acids. Helix stereochemistry stability coefficients defined as the difference in Tm values for the l ‐ and d ‐amino acid substitutions [(ΔTm′ = TmL and TmD)] ranging from 1°C to 34.5°C. HPLC retention times [ΔtR(XL?XD)] also had values ranging from ?0.52 to 7.31 min at pH 7.0. The helix‐destabilizing ability of a specific d ‐amino acid is highly dependent on its side‐chain, with no clear relationship to the helical propensity of its corresponding l ‐enantiomers. In both CD and reversed‐phase HPLC studies, d ‐amino acids with β‐branched side‐chains destabilize α‐helical structure to the greatest extent. A series of helix stability coefficients was subsequently determined, which should prove valuable both for protein structure‐activity studies and de novo design of novel biologically active peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号