首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core pellets containing methylene blue, a highly water-soluble drug, lactose and polyvinylpyrrolidone (PVP) were produced and coated by pan technology with ethylcellulose 7 cp. Scanning electron microscopy revealed that larger microcapsules were aggregates of smaller microcapsules which remained intact during the dissolution testing. The coating appeared porous with rough and smooth areas. Polymer disc studies confirmed a lack of swelling of the ethylcellulose used when in contact with the dissolution medium. Modifications of the coating applied included addition of hydroxypropylmethylcellulose (a cofilm former), diethyl phthalate, di-n-butylphthalate and castor oil (plasticizers), talc (an extender and anti-tack agent) and paraffin wax and hydrogenated castor oil (waxy sealants) to the coating solution. Most products had released 50% drug after about 20 min dissolution treatment although the inclusion of the waxy sealants in the coating markedly retarded release during the first 60 min. In contrast, the inclusion of hydrogenated castor oil or polyethylene powder in the core, retarded dissolution of the drug over 3 h but tended to produce a coarser product. Other modifications of the core were addition of hydroxypropylmethylcellulose, carnauba wax-beeswax (1:1) and carnauba wax, with little retardation of drug release. The mechanism of drug release from the microcapsules was complex involving mainly diffusion.  相似文献   

2.
用喷雾干燥法制备吡哌酸缓释微囊,以乙基纤维素作囊材,硬脂酸作阻滞剂,制备的微囊能明显延缓药物的释放。药物释放速率随其含量增加而增加,释药的表观扩散系数随微囊粒径降低而降低。家兔体内药物动力学研究结果表明,与片剂相比,吡哌酸微囊口服后,血药浓度维持时间较长。  相似文献   

3.
Microcapsules containing the pharmaceutical substance alkannin were prepared by the solvent evaporation method to enhance alkannin stability (reduce photo-oxidation, polymerization), to decrease its hydrophobicity and to control its release rate. The effect of various parameters, such as the type of polymeric matrix, the type of surfactant used for microcapsules preparation and the addition of Pistacia lentiscus resin in the core, on the characteristics of the produced microcapsules and the release rate of alkannin were investigated experimentally. Among the polymers tested for matrix, ethylcellulose of viscosity 46cp was the most successful, while ethylcellulose 10cp gave microcapsules with good morphological characteristics but high release rate. Beeswax resulted in flocculation and P. lentiscus resin with or without colophony as the matrix resulted in compact particles with no pores and much slower release, but did not allow alkannin to release easily from the matrix. Sodium dodecyl sulfate resulted in microcapsules with desirable morphological and physicochemical characteristics, while acacia and tragacanth gums were not indicated as surfactants in alkannin microencapsulation since they gave a high release rate and a great extent of particle size, respectively. The incorporation of Pistacia lentiscus resin in the capsule core increased loading and microencapsulation efficiency. Ethylcellulose of 46cp viscosity with sodium dodecyl sulfate as surfactant had the best characteristics studied for alkannin microencapsulation. Finally, the dissolution rate of alkannin from microcapsules was studied in a simulated intestinal and gastric environment and an external environment. Alkannin-containing microcapsules with improved properties can be used internally and externally as a new drug-delivery system.  相似文献   

4.
Microcapsules containing the pharmaceutical substance alkannin were prepared by the solvent evaporation method to enhance alkannin stability (reduce photo-oxidation, polymerization), to decrease its hydrophobicity and to control its release rate. The effect of various parameters, such as the type of polymeric matrix, the type of surfactant used for microcapsules preparation and the addition of Pistacia lentiscus resin in the core, on the characteristics of the produced microcapsules and the release rate of alkannin were investigated experimentally. Among the polymers tested for matrix, ethylcellulose of viscosity 46cp was the most successful, while ethylcellulose 10cp gave microcapsules with good morphological characteristics but high release rate. Beeswax resulted in flocculation and P. lentiscus resin with or without colophony as the matrix resulted in compact particles with no pores and much slower release, but did not allow alkannin to release easily from the matrix. Sodium dodecyl sulfate resulted in microcapsules with desirable morphological and physicochemical characteristics, while acacia and tragacanth gums were not indicated as surfactants in alkannin microencapsulation since they gave a high release rate and a great extent of particle size, respectively. The incorporation of Pistacia lentiscus resin in the capsule core increased loading and microencapsulation efficiency. Ethylcellulose of 46cp viscosity with sodium dodecyl sulfate as surfactant had the best characteristics studied for alkannin microencapsulation. Finally, the dissolution rate of alkannin from microcapsules was studied in a simulated intestinal and gastric environment and an external environment. Alkannin-containing microcapsules with improved properties can be used internally and externally as a new drug-delivery system.  相似文献   

5.
This study reports the laboratory optimization for the preparation of sustained release amoxicillin (AMX) ethylcellulose microcapsules by an emulsion solvent evaporation process by adjusting the viscosity and concentration of ethylcellulose, ratio of amoxicillin to ethylcellulose, and concentration of emulsifier and pore inducer. When ethylcellulose with a viscosity of 45 mPa.s was used, almost no material stuck to the inside wall of the beaker and uniform microcapsules were prepared. The average diameter of microcapsules increased and yield and release rate decreased as the concentration of ethylcellulose increased from 1% to 8%. The release of amoxicillin from microcapsules was influenced by the ratio of the weight of drug to that of ethylcellulose and ratios of 2:1 and 4:1 were most suited for optimum amoxicillin release. The average diameter of microcapsules decreased and the release rate increased as the concentration of the emulsifier increased from 1.5% to 6.0%, however, the size distribution became significantly wider with the increase in the concentration of sorbitan monooleate. Addition of small amounts of a water-soluble agent sucrose improved the release of active ingredient from the microcapsule matrix without influencing the morphology and particulate properties of the microcapsules.  相似文献   

6.
Indomethacin was microencapsulated with ethylcellulose using a modified spherical agglomeration process, aiming at a sustained release preparation without side effects on the stomach. The surface morphology of the microcapsules was examined using scanning electron microscopy. The microcapsules were porous and spherical, and their porosity increased with increasing the viscosity of ethylcellulose.In vitro dissolution process followed Higuchi’s diffusion model for first 3 hr. Release rate of the drug from microcapsules decreased as the viscosity of ethylcellulose or the weight ratio of indomethacin to ethylcellulose was decreased. The release rate also decreased with increasing the microcapsule size. The microcapsules induced less gastric ulcer in rats than raw drug.  相似文献   

7.
Microcapsules, containing the pharmaceutical substance shikonin, were prepared by the solvent evaporation method in order to enhance shikonin stability (reduce photo-oxidation, polymerization), decrease its hydrophobicity and control its release rate. The effect of various parameters, such as type of polymer, type and concentration of surfactant, solvent volume and mastic gum (Pistacia lentiscus resin) content/concentration as core additive, on the characteristics of the produced microcapsules and the release rate of shikonin, were experimentally investigated. Among the polymers tested for matrix, ethylcellulose (EC) of viscosity 10 cp was the most successful; EC 100 cp and mastic gum result in larger/compact particles with no pores and much slower release. Sodium dodecyl sulphate (SDS) results in microcapsules with desirable morphological and physicochemical characteristics, while polyethylene glycol (PEG) and polyvinyl alcohol (PVA) are not indicated as surfactants in shikonin microencapsulation. Decreasing the solvent volume (dichloromethane) results in increased mean particle size and, thus, in slower release rate of shikonin, while the incorporation of mastic gum in the capsule core results in better control of shikonin release. Finally, the combination of EC 10 cp as matrix, mastic gum as core additive, low dichloromethane (DCM) volume and low SDS concentration results in microcapsules with the best characteristics in terms of efficiency, loading, release and particle size distribution.  相似文献   

8.
Microcapsules, containing the pharmaceutical substance shikonin, were prepared by the solvent evaporation method in order to enhance shikonin stability (reduce photo-oxidation, polymerization), decrease its hydrophobicity and control its release rate. The effect of various parameters, such as type of polymer, type and concentration of surfactant, solvent volume and mastic gum (Pistacia lentiscus resin) content/concentration as core additive, on the characteristics of the produced microcapsules and the release rate of shikonin, were experimentally investigated. Among the polymers tested for matrix, ethylcellulose (EC) of viscosity 10 cp was the most successful; EC 100 cp and mastic gum result in larger/compact particles with no pores and much slower release. Sodium dodecyl sulphate (SDS) results in microcapsules with desirable morphological and physicochemical characteristics, while polyethylene glycol (PEG) and polyvinyl alcohol (PVA) are not indicated as surfactants in shikonin microencapsulation. Decreasing the solvent volume (dichloromethane) results in increased mean particle size and, thus, in slower release rate of shikonin, while the incorporation of mastic gum in the capsule core results in better control of shikonin release. Finally, the combination of EC 10 cp as matrix, mastic gum as core additive, low dichloromethane (DCM) volume and low SDS concentration results in microcapsules with the best characteristics in terms of efficiency, loading, release and particle size distribution.  相似文献   

9.
Microcapsules of isoniazid were prepared by phase separation coacervation process induced by non-solvent addition and using ethylcellulose (EC) as coating polymer. When polyisobutylene (PIB)--a protective colloid was present at sufficient concentration, film coated drug particles were formed. At 0-6% PIB concentration, the microcapsules were aggregated. Increase of colloid concentration produced microcapsules of less aggregation and higher drug content because coating became progressively thinner. PIB concentration also controlled the particle size and the release rate of drug from microcapsules. Wall thickness and EC loss were calculated from drug content. Microcapsules coated with EC were prepared with 7-9% PIB. Scanning Electron Microscopy was used to study the nature of aggregation and coating behaviour. The in vitro dissolution study confirmed the first order release pattern and also the Higuchi Matrix model.  相似文献   

10.
Bacampicillin hydrochloride has been microencapsulated to mask its very bitter taste. The objective of the study was to compare the in vitro release and bioavailability of bacampicillin hydrochloride from microcapsules coated with two principally different polymers: a water-insoluble polymer, ethylcellulose, and an acid-soluble polymer, Eudragit E 100. The last mentioned was supposed to have advantages from a bioavailability point of view since this polymer should dissolve rapidly upon reaching the stomach. In vitro release studies were performed in different types of media by using a flow-through cell technique and USP paddle apparatus. The in vivo study was performed on 20 healthy volunteers taking single 400 mg doses of the drug in the two microcapsule suspensions and a reference tablet according to a randomized cross-over design. When standard dissolution fluids were used, the Eudragit E 100-coated microcapsules revealed very rapid dissolution but were greatly dependent on buffer concentration and ionic strength. The ethylcellulose-coated microcapsules released the drug much more slowly than Eudragit E 100 when using standard dissolution fluids. They were also affected by buffer concentration and ionic strength. The reference tablet had a significantly higher bioavailability than the two microcapsule suspensions. In vitro-in vivo correlation was not obtained when using standard dissolution fluids according to USP. However when stimulated intestinal fluid was adjusted to have an ionic strength similar to intestinal fluid, a better in vitro-in vivo correlation was obtained. The Eudragit E 100 polymer did not give better bioavailability than ethylcellulose as a coating polymer on bacampicillin microcapsules.  相似文献   

11.
Microcapsules containing isoniazid were produced by the fluidized bed method with ethylcellulose by varying the total atomization time. The kinetics of capsules growth during the preparation was discussed on the basis of the distribution of particle size. The quality of the capsules was evaluated using the particle size characteristics, the total content of ethylcellulose, the particle and wall density, and the time needed for the 50 per cent release of the drug. An increase in the atomization time of the ethylcellulose solution gave rise to an increase in the mean diameter of particles and the ethylcellulose content of capsules; it also produced a more dense product with a prolonged release of the drug. The release of the drug from tabletted microcapsules was further prolonged.  相似文献   

12.
Abstract

Using cellulose triacetate as an added complementary coating material in preparing sustained-release ethylcellulose-cellulose triacetate microcapsules of theophylline, three microencapsulation techniques were investigated. Ethylcellulose-cellulose triacetate composite microcapsules, ethylcellulose-cellulose triacetate dual-walled microcapsules and ethylcellulose microcapsules containing cellulose triacetate matrices were prepared using the non-solvent addition phase separation method. The effects of cellulose triacetate on the release of theophylline from the different ethylcellulose-cellulose triacetate microcapsules were obtained from dissolution studies. The results showed that the release rates of ethylcellulose-cellulose triacetate microcapsules were slower than those obtained from the ethylcellulose microcapsules prepared with similar core to wall ratios. The ethylcellulose microcapsules containing cellulose triacetate matrices had longer release half-times and smaller surface areas than the other capsule preparation. The release patterns of theophylline from the different ethylcellulose-cellulose triacetate microcapsules fitted first-order kinetics. Scanning electron micrographs showed that the surfaces of various ethylcellulose-cellulose triacetate microcapsules were different from those of theophylline, cellulose triacetate matrices of cellulose triacetate microcapsules, and that the surface morphology of ethylcellulose-cellulose triacetate microcapsules was affected by the preparative method.  相似文献   

13.
The aim of this study was to develop ethylcellulose microspheres for prolonged drug delivery with reduced burst effect. Ethylcellulose microspheres loaded with ibuprofen were prepared with and without polystyrene, which was used to retard drug release from ethylcellulose microspheres. Ibuprofen-loaded ethylcellulose microspheres with a polystyrene content of 0-25% were prepared by the solvent evaporation technique and characterized by drug loading, infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The in vitro release studies were performed to study the influence of polystyrene on ibuprofen release from ethylcellulose microspheres. The microspheres showed 28-46% of drug loading and 80-92% of entrapment, depending on polymer/drug ratio. The infrared spectrum and thermogram showed stable character of ibuprofen in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 0.1-4 microm. Ethylcellulose/polystyrene microspheres showed prolonged drug release and less burst effect when compared to microspheres prepared with ethylcellulose alone. Microspheres prepared with an ethylcellulose/polystyrene ratio of 80:20 gave a required release pattern for oral drug delivery. The presence of polystyrene above this ratio gave release over 24 h. To find out the mechanism of drug release from ethylcellulose/polystyrene microspheres, the data obtained from in vitro release were fitted in various kinetic models. High correlation was obtained in Higuchi and Korsmeyer-Peppas models. The drug release from ethylcellulose/polystyrene microspheres was found to be diffusion controlled.  相似文献   

14.
Isoprinosine, an antiviral agent with a bitter taste, has been clinically used up to a maximum of 4 g daily in 4–8 doses. In this investigation, isoprinosine was microencapsulated with ethylcellulose 22 cps, 50 cps and 100 cps by means of polymer deposition from cyclohexane through temperature change. Complete removal of cyclohexane from the microcapsules was necessary, since ethylcellulose-coated microcapsules obtained from cyclohexane medium were heavily solvated with cyclohexane and formed lumps even after drying. The displacement of cyclohexane byn-hexane during isolation of microcapsules (Method III) or the freezing of the final-washed microcapsules before drying (Method II) provided the dried products which were more discrete microcapsules than those which were simply dried in the air overnight (Method I). Method III was especially the most effective procedure in preparing finer and more discrete microcapsules. The drug-release from microcapsules was influenced by the ratio of core to wall, the viscosity grade of ethylcellulose and the overall microcapsule size. The release rate was adequately fitted to both the first-order and the diffusion-controlled processes. It is therefore possible to design the release-controlled microcapsules with ethylcellulose of different viscosity along with various core to wall ratio.  相似文献   

15.
The aim of this study was to develop ethylcellulose microspheres for prolonged drug delivery with reduced burst effect. Ethylcellulose microspheres loaded with ibuprofen were prepared with and without polystyrene, which was used to retard drug release from ethylcellulose microspheres. Ibuprofen-loaded ethylcellulose microspheres with a polystyrene content of 0–25% were prepared by the solvent evaporation technique and characterized by drug loading, infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The in vitro release studies were performed to study the influence of polystyrene on ibuprofen release from ethylcellulose microspheres. The microspheres showed 28–46% of drug loading and 80–92% of entrapment, depending on polymer/drug ratio. The infrared spectrum and thermogram showed stable character of ibuprofen in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 0.1–4μm. Ethylcellulose/polystyrene micro-spheres showed prolonged drug release and less burst effect when compared to microspheres prepared with ethylcellulose alone. Microspheres prepared with an ethylcellulose/polystyrene ratio of 80:20 gave a required release pattern for oral drug delivery. The presence of polystyrene above this ratio gave release over 24 h. To find out the mechanism of drug release from ethylcellulose/polystyrene microspheres, the data obtained from in vitro release were fitted in various kinetic models. High correlation was obtained in Higuchi and Korsmeyer-Peppas models. The drug release from ethylcellulose/polystyrene microspheres was found to be diffusion controlled.  相似文献   

16.
The major aim of this study was to identify an efficient tool to adjust drug release patterns from aqueous and organic ethylcellulose (a gastrointestinal insoluble polymer) coated pellets and to evaluate the long term stability of the film coatings. Drug release was monitored during open and closed storage at 25 °C/60% RH (ambient conditions) and 40 °C/75% RH (stress conditions) for up to 24 months. Release of vatalanib succinate, a poorly soluble drug that demonstrates pH-dependent solubility, from pure ethylcellulose coated pellets was slow irrespectively of the type of coating and release medium. By addition of the enteric polymer methacrylic acid/ethyl acrylate copolymer (applied as aqueous Kollicoat MAE 30 DP dispersion or organic solution of Kollicoat MAE 100 P) to ethylcellulose broad ranges of drug release patterns could be achieved. For aqueous film coatings the addition of Kollicoat MAE 30 DP to ethylcellulose dispersions resulted in unaltered drug release kinetics during closed storage at ambient and stress conditions. The storage stabilizing effect of the added enteric polymer might be explained by the more hydrophilic nature of Kollicoat MAE 30 DP compared to ethylcellulose trapping water during film formation and improving polymer particle coalescence. However, during open storage of aqueous coated ethylcellulose:Kollicoat MAE 30 DP pellets at stress conditions drug release decreased due to further gradual polymer particle coalescence. In contrast, drug release rates from organic coated ethylcellulose:Kollicoat MAE 100 P pellets stored at ambient and stress conditions did not change which could be explained by differences in the film formation process. This clearly indicates that the presented concept of the addition of methacrylic acid/ethyl acrylate copolymer to ethylcellulose film coatings in combination with an organic coating process is able to achieve broad ranges of drug release patterns and to overcome storage instability.  相似文献   

17.
Sulfisoxazole, a chemotherapeutic agent, was microencapsulated with ethylcellulose by means of phase separation from cyclohexane by temperatture change. The size distribution was determined by use of standard sieves and the effect of core to wall ratio was noted. To examine their shapes and surface characteristics, the microcapsules were observed with a scanning electron microscope. Release of the drug from microcapsules into pH 7.5 buffer medium was studied. The release pattern was found to have similar properties to the release of a drug from an insoluble porous matrix reported. The apparent diffusion coefficient of sulfisoxazole was measured for the transport of the drug from the core of microcapsules into the surrounding sink condition. The apparent diffusion coefficient increased with increasing capsule size.  相似文献   

18.
Abstract

Two types of coacervation-inducing agents (EVA, PIB) and three cooling rates (0.01998, 0.03482 and 0.06725d`C/min) affecting the preparation, micromeritic and drug release properties of bleomycin hydrochloride microcapsules were investigated. Particle size distribution of microcapsules induced by EVA significantly depended on the cooling rate, but that induced by PIB was independent of the cooling rate. Higher viscosity of PIB led to a smaller particle size of microcapsules than when EVA was used. The surface topography of the microcapsules for both types of coacervation-inducing agents was obviously different. We found that the release behaviour of bleomycin hydrochloride from the microcapsules also depended on the type of coacervation-inducing agent and the cooling rate. In general, the slower the cooling rate the more prolonged the release of the drug. Higuchi matrix model was followed for bleomycin hydro chloride released from the microcapsules. T50 of both types of microcapsules decreased with the increase of the cooling rate. To simulate the absorption behaviour of the GI tract, the continuous flow dialysis method was modified for drug release from the microcapsules. The data indicate that the diffusion of the dissolution medium and dissolved drug through the ethylcellulose wall of the microcapsules is the rate-limiting step before dialysis. This also implies that the release rate of the drug from dosage form significantly determined the absorption in the GI tract.  相似文献   

19.
To determine the necessary technology by which sustained drug release is obtained after drug is delivered to the colon, two kinds of microcapsules were prepared and were filled in a pressure-controlled colon delivery capsule (PCDC). As a model drug 5-aminosalicylic acid (5-ASA) was used, because the target site of 5-ASA is the entire large intestine. 5-ASA was microencapsulated using a water-insoluble polymer, ethylcellulose (EC) or with pH-sensitive polymers, Eudragit L-100 or S-100 and encased in PCDC. The particle size of these microcapsules was around 800 microns and the loading efficiencies of 5-ASA were approximately 90%. In vitro dissolution tests were performed with the prepared microcapsules. The release rate of 5-ASA from the microcapsules was significantly prolonged as compared to 5-ASA powder, although there were no significant differences in the release rates between these microcapsules. By incorporating the 5-ASA microcapsules into PCDC, sustained release PCDCs for colon delivery were prepared and in vivo evaluation was performed using beagle dogs. As a fast release colon delivery system, PCDCs were prepared with 5-ASA powder suspended in suppository base. After oral administration of the test preparations to beagle dogs, plasma 5-ASA concentrations were measured and sustained release characteristics of 5-ASA from the test preparations were evaluated from the plasma 5-ASA concentration-time profiles. The first appearance time of 5-ASA into the systemic circulation after oral administration were 3 h for all the colon delivery preparations and it was thought that these test preparations were delivered to the colon. Both EC microcapsules and Eudragit S-100/RS-100 microcapsules in PCDC showed longer the mean residence time MRT, 8.2 +/- 0.6 h and 8.7 +/- 0.9 h, than Eudragit L-100/RS-100 microcapsules in PCDC where the MRT was 6.6 +/- 0.2 h. Since PCDCs containing 5-ASA powder exhibited a MRT of 7.0 +/- 1.0 h, these two types of preparations have suggested sustained release characteristics.  相似文献   

20.
Poly(lactic acid) microcapsules of oxytetracycline hydrochloride were prepared by precipitation of the polymer from a solution when a non-solvent was added to a polymer solution in which the drug had been dispersed. Three types of microcapsules were prepared by varying the amount of drug encapsulated, as well as by using two samples of polymer with different molecular weights. The product obtained was of a matrix character consisting of agglomerated capsules. The drug release in vitro, for the best batch, was completed within 12 hours. Serum levels of the drug in rabbits treated by intramuscular injection were prolonged maximally up to 24 hours depending upon the type of microcapsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号