首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
1. The effects of a number of purine analogues were examined on the rat isolated colon muscularis mucosae. Adenosine, adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), 2-methylthioATP (MeSATP), adenosine 5'-(2-fluorodiphosphate) (ADP beta F), adenosine 5'-(beta, gamma-methylene)triphosphonate (AMPPCP) and adenosine 5'-(alpha, beta-methylene)triphosphonate (AMPCPP) each contracted the muscularis mucosae in the concentration range 1-100 microM. 2. MeSATP was the most potent purine agonist, with a threshold concentration for contraction of 0.05 microM and an EC50 of approximately 0.3 microM, and AMPCPP was less potent than ATP. The enantiomer of AMPPCP, L-AMPPCP, was inactive at concentrations up to 100 microM. 3. The adenosine receptor antagonist 8-(p-sulphophenyl)theophylline (8-SPT, 50 microM) produced approximately 50 fold shifts of the dose-response curves to adenosine, AMP and AMPPCP, whereas those to ATP, MeSATP and substance P (SP) were unaffected. Intermediate shifts were observed for the dose-response curves to ADP, ADP beta F and AMPCPP. With a lower concentration of 8-SPT (10 microM) a dose ratio of approximately 11 was observed for the inhibition of the effects of both adenosine and AMPPCP. 4. ATP was rapidly degraded by the tissue to ADP, AMP and adenosine, ADP beta F was more slowly degraded to AMP and adenosine, and no significant degradation of AMPPCP was detected during 20 min incubation. 5. The results are consistent with the existence in the rat colon muscularis mucosae of a mixed population of purine receptors of P2Y and P1 types. The colon thus contains the first documented incidence of a P2Y-receptor mediating contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. ATP and ATP analogues induced prostacyclin (PGI2) secretion from human cultured umbilical vein endothelial cells. 2. The threshold active concentration for ATP was less than or equal to 1 microM. The rank order of potency of analogues was 2-chloroadenosine 5'-triphosphate (2-ClATP) greater than 2-methylthioadenosine 5'-triphosphate (2-MeSATP) greater than ATP greater than ADP, while adenosine 5'-(alpha,beta-methylene)triphosphonate, AMP and adenosine were inactive, indicating the presence of P2y-purinoceptors. 3. In contrast to their actions on P2y-receptors in guinea-pig taenia coli, isopolar analogues of 2-methylthioadenosine 5'-(beta, gamma-methylene)triphosphonate were less effective than ATP. 4. ATP and ATP analogues increased intracellular free calcium ions, [Ca2+]i, giving a rapid transient peak due predominantly to release from intracellular stores, followed by a maintained steady-state elevated level due to influx. 5. The dose-response curves for peak [Ca2+]i induced by ATP, 2-ClATP and 2-MeSATP were very similar to those for PGI2 production. 6. Elevations of [Ca2+]i, above a threshold value of 0.8-1 microM, were necessary for PGI2 production in response to P2y-receptor activation. 7. The dose relationships between PGI2 release and peak [Ca2+]i were equivalent whether [Ca2+]i was raised by ionomycin or via P2y-receptor activation by ATP or 2-ClATP, indicating that elevations of [Ca2+]i provide the major, if not the exclusive intracellular pathway for P2y-purinoceptor-mediated PGI2 synthesis.  相似文献   

3.
ATP and ATP gamma S(10-100 microM) stimulated the release of prostacyclin (PGI2) from bovine aortic smooth muscle cells. This effect was reproduced by UTP, ITP and partially by GTP. ADP and ADP beta S, the P2X-selective agonist alpha, beta-methylene ATP (APCPP), AMP and adenosine were all inactive. This effect of ATP gamma S was not inhibited by Reactive Blue 2, an antagonist of P2Y receptors. The stimulation of PGI2 production in aortic smooth muscle cells by these nucleotides thus seems to involve receptors distinct from both P2X and P2Y subtypes, which are responsible for smooth muscle contraction and PGI2 release from endothelial cells, respectively.  相似文献   

4.
Purine receptors in the trachea: is there a receptor for ATP?   总被引:10,自引:9,他引:1       下载免费PDF全文
In guinea-pig trachea adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-phosphate (AMP), adenosine and adenine were similarly potent in causing relaxation of the smooth muscle. This is in contrast to gut where ATP and ADP are 30 times more potent than adenosine. Studies with dipyridamole suggest that in trachea, as in gut, nucleotides are rapidly metabolized to adenosine. A polyphosphate modified analogue of ATP, the alpha,beta-methylene isostere, which resists degradation to adenosine was inactive in trachea although it is a potent relaxant in gut. This result may suggest that the intact ATP molecule is also inactive in the tracheal preparation: i.e. ATP acts only via its adenosine metabolite implying that receptors for adenosine but not ATP are present in the tissue.  相似文献   

5.
1. We have studied both the electrophysiological and contractile effects of the purine nucleotide, adenosine-5'-triphosphate (ATP), as well as a number of its structural analogues as agonists at P2X purinoceptors in the rat vas deferens in vitro. 2. Electrophysiological effects were investigated by a whole cell voltage clamp technique (holding potential-70 mV) with fast flow concentration-clamp applications of agonists in single isolated smooth muscle cells. ATP, 2-methylthio adenosine-5'-triphosphate (2-MeSATP) and alpha,beta methylene adenosine-5'-triphosphate (alpha,beta-meATP) all evoked inward currents over a similar concentration range (0.3-10 microM), being approximately equipotent with similar concentrations for threshold effects (0.3 microM). ADP (10 microM) also evoked a rapid current of similar peak amplitude to that seen with ATP (10 microM). 3. alpha,beta-meATP was the most potent agonist in producing concentrations of the rat vas deferens whole tissue preparation, with a threshold concentration equal to that in the electrophysiological studies (0.3 microM). However, ATP and 2-MeSATP were at least ten times less potent in studies measuring contraction than in the electrophysiological studies. Furthermore, their concentration-effect curves were shallow with smaller maximal responses than could be achieved with alpha,beta-meATP. ADP, AMP and adenosine were inactive at concentrations up to 1 mM. The rank order of agonist potencies observed for contraction was alpha,beta-meATP >> ATP = 2-MeSATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling.  相似文献   

7.
Purinoceptors in the rat heart   总被引:2,自引:2,他引:0       下载免费PDF全文
The effects of an intracoronary bolus of adenosine triphosphate (ATP), alpha, beta-methylene ATP (APCPP), beta, gamma-methylene ATP (APPCP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine on coronary tone and ventricular myocardial contraction were investigated in the perfused rat heart. Adenine nucleotides, given by bolus injection were negatively inotropic in amounts greater than 3 X 10(-7) mol. The potency order was ATP greater than ADP greater than AMP. Adenosine (less than 1 X 10(-5)mol) had no effect on ventricular myocardial contraction. Adenine nucleotides and adenosine (1 X 10(-10)-1 X 10(-7) mol) reduced coronary tone. The potency order was ATP greater than ADP greater than AMP = adenosine. The ATP analogue APPCP was less active than ATP at reducing coronary tone, and APCPP had no vasodilator effect. This suggests the presence of a P2-purinoceptor, subclass P2Y, which mediates vasodilation. ATP and ADP increased the concentration of prostacyclin (measured as 6-keto prostaglandin F1 alpha) in the perfusate, but only after injection of greater than 3 X 10(-7) mol, suggesting that the vasodilator responses to ATP and ADP were not mediated by prostacyclin. AMP and adenosine had no effect, even at 1 X 10(-5) mol. At a dose of 3 X 10(-9) mol, approximately 40% of ATP and 70% of ADP was converted to AMP and adenosine whilst passing through the heart. The amounts of AMP and adenosine formed, however, were insufficient to account for the vasodilator effects of ATP and ADP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Dilatory responses of extracellular nucleotides were examined in the precontracted isolated rat mesenteric artery. Dilatation mediated by endothelium-derived hyperpolarising factor (EDHF) was studied in the presence of Nomega-nitro-L-arginine (L-NOARG) and indomethacin, and was most potently induced by the selective P2Y(1) receptor agonist adenosine 5'-O-thiodiphosphate (ADPbetaS), while 2-methylthioadenosine triphosphate (2-MeSATP) and adenosine triphosphate (ATP) were almost inactive. However, after P2X receptor desensitisation (with alphabeta-methylene-adenosine triphosphate, alphabeta-MeATP), 2-MeSATP and ATP potently stimulated EDHF-mediated dilatation. This can be explained by simultaneous activation of endothelial P2Y receptors that release EDHF, and depolarising P2X receptors on smooth muscle cells. Uridine triphosphate (UTP) also induced potent dilatation, suggesting EDHF release via P2Y(2)/P2Y(4) receptors. Uridine diphosphate (UDP) had only minor dilatory effects, and when pretreated with hexokinase it was almost inactive, suggesting a minor role for P2Y(6) receptors. The nitric oxide (NO) mediated dilatation was studied in the presence of charybdotoxin, apamin and indomethacin. ADPbetaS, 2-MeSATP, ATP and UTP were all potent relaxant agonists suggesting NO release via P2Y(1) and P2Y(2)/P2Y(4) receptors, while UDP was much less potent and efficacious. P2X receptor desensitisation had only minor effect on the NO-mediated dilatations. In conclusion, both EDHF and NO-mediated dilatation can be induced by activation of P2Y(1) and P2Y(2)/P2Y(4) receptors. P2X receptor stimulation of smooth muscle cells selectively counteracts the dilatory effect of EDHF.  相似文献   

9.
The contractile and relaxant effects of the different P2 receptors were characterized in the rat isolated mesenteric artery by use of extracellular nucleotides, including the stable pyrimidines uridine 5'-O-thiodiphosphate (UDPbetaS) and uridine 5'-O-3-thiotriphosphate (UTPgammaS). The selective P2X receptor agonist, alphabeta-methylene-adenosine triphosphate (alphabeta-MeATP) stimulated a potent (pEC(50)=6.0) but relatively weak contraction (E:(max)=57% of 60 mM K(+)). The contractile concentration-response curve of adenosine triphosphate (ATP) was biphasic when added in single concentrations. The first part of the response could be desensitized by alphabeta-MeATP, indicating involvement of P2X receptors, while the second part might be mediated by P2Y receptors. The contractile P2Y receptors were further characterized after P2X receptor desensitization with 10 microM alphabeta-MeATP. Uridine diphosphate (UDP), uridine triphosphate (UTP) and ATP stimulated contraction only in high concentrations (1 - 10 mM). The selective P2Y(6) agonist, UDPbetaS, and the P2Y(2)/P2Y(4)-receptor agonists UTPgammaS and adenosine 5'-O-3-thiotriphosphate (ATPgammaS) were considerably more potent and efficacious (E:(max) approximately 250% of 60 mM K(+)). Adenosine 5'-O-thiodiphosphate (ADPbetaS) was inactive, excluding contractile P2Y(1) receptors. After precontraction with 1 microM noradrenaline, UTP, ADP and ATP induced relaxations with similar potencies (pEC(50) approximately 5.0). UTPgammaS, ADPbetaS and ATPgammaS were approximately one log unit more potent indicating the presence of endothelial P2Y(1) and P2Y(2)/P2Y(4) receptors. The P2Y(6) receptor agonist, UDPbetaS, had no effect. UDPbetaS and UTPgammaS are useful tools when studying P2 receptors in tissue preparations with ectonucleotidase activity. Contractile responses can be elicited by stimulation of P2Y(6) and, slightly less potently, P2Y(2)/P2Y(4) receptors. The P2X response was relatively weak, and there was no P2Y(1) response. Stimulation of P2Y(1) and P2Y(2)/P2Y(4) receptors elicited relaxation, while P2Y(6) did not contribute.  相似文献   

10.
11.
The effects of adenosine, adenosine triphosphate (ATP) and structural analogues have been studied on glucagon secretion from the isolated perfused pancreas of the rat in the presence of glucose (2.8 mM). Adenosine induced a transient increase of glucagon secretion. This effect was concentration-dependent in the range of 0.165 to 165 microM. ATP also induced an increase, but the effect was no greater at 165 microM than at 16.5 microM. 2-Chloroadenosine, an analogue more resistant to metabolism or uptake systems than adenosine, was more effective. Among the three structural analogues of ATP or ADP studied, beta, gamma-methylene ATP which can be hydrolyzed into AMP and adenosine had an effect similar to adenosine or ATP at the same concentrations (1.65 and 16.5 microM); in contrast alpha, beta-methylene ATP and alpha, beta-methylene ADP (resistant to hydrolysis into AMP and adenosine) were ineffective. Theophylline (50 microM) a specific blocker of the adenosine receptor, suppressed the glucagon peak induced by adenosine, 2-chloroadenosine, ATP and beta, gamma-methylene ATP (1.65 microM). An inhibitor of 5' nucleotidase, alpha, beta-methylene ADP (16.5 microM), reduced the glucagon increase induced by ATP and did not affect the response to adenosine (1.65 microM). These results support the hypothesis of adenosine receptors (P1-purinoceptors) on the pancreatic glucagon secretory cells and indicate that ATP acts after hydrolysis to adenosine.  相似文献   

12.
The rat P2Y(1) nucleotide receptor, the P2Y subtype abundant in the brain, was heterologously expressed in rat superior cervical ganglion neurones by micro-injection of the receptor cRNA or cDNA. ADP inhibited the N-type Ca(2+) current by 64%, with EC(50) 8.2 nM, an action blocked competitively by the P2Y(1) receptor antagonist adenosine 3', 5'-bis-phosphate (K(i) 0.7 microM). 2-Methylthio-ADP inhibited the Ca(2+) current likewise, but with EC(50) 0.57 nM, giving the highest potency reported therewith for P2Y(1). Significantly, ATP and 2-methylthio-ATP were also agonists, the latter again at a very high potency (EC(50) 2.5 nM). We propose that this neuronal receptor, when present in brain at a high density as at synapses, can respond to very low concentrations of ATP and ADP as agonists, and that this would result in inhibition of N-type Ca(2+) currents and hence can reduce transmitter release or increase neuronal excitability.  相似文献   

13.
1 5'-N-ethylcarboxamidoadenosine (NECA) is an adenosine analogue which is 22,900 times more potent than adenosine as a vasodilator. Adenosine and some of its analogues are also inhibitors of human platelet aggregation. NECA was tested for its effects on human platelets. 2 NECA (1 microM) inhibited human platelet aggregation induced by adenosine 5'-diphosphate (ADP), adrenaline, 5-hydroxytryptamine (5-HT) and thrombin more powerfully than adenosine. NECA was 5 to 10 times more potent than adenosine at inhibiting ADP- and adrenaline-induced aggregation. 3 NECA, like adenosine, caused dose-dependent increases in levels of platelet adenosine 3',5'-cyclic monophosphate (cyclic AMP), which were competitively inhibited by theophylline, an adenosine antagonist. 4 These effects of NECA, like those of adenosine, were completely stereospecific as the L-enantiomer of NECA was inactive. 5 NECA did not interfere with the inhibition by ADP of prostaglandin E1 (PGE1)-stimulated adenylate cyclase. 6 NECA is the most potent analogue of adenosine tested so far on human platelets, and is the first example of a 5' modification to retain affinity for the platelet adenosine receptor.  相似文献   

14.
1. The endothelium-dependent relaxation of blood vessels induced by P2Y-purinoceptor activation has often been shown to involve prostacyclin and/or nitric oxide (NO) release. In this work, we have investigated the mechanisms involved in the relaxant effect of the P2Y agonist, adenosine -5'-O-(2-thiodiphosphate) (ADP beta S) using two complementary preparations: rat pancreatic vascular bed and aortic ring. 2. On the pancreatic vascular bed, ADP beta S (1.5 and 15 microM) infused for 30 min induced a concentration-dependent vasodilatation; it was progressive during the first 10 min (first period) and sustained from 10 to 30 min (second period). Indomethacin (10 microM) delayed ADP beta S-induced vasodilatation (1.5 and 15 microM) by about 6 min. N omega-nitro-L-arginine methyl ester (L-NAME) (200 microM) suppressed the relaxation for about 5 min but thereafter ADP beta S at the two concentrations progressively induced an increase in the flow rate. Even the co-administration of L-NAME and indomethacin did not abolish the ADP beta S-induced vasorelaxation. 3. On 5-hydroxy tryptamine (5-HT) precontracted rings mounted in isometric conditions in organ baths, we observed that ADP beta S induced a concentration-dependent relaxation of rings with a functional endothelium; this effect was stable for 25 min. The ADP beta S relaxant effect was strongly inhibited by Reactive Blue 2 (30 microM) and was suppressed by pretreatment of rings with saponin (0.05 mg ml-1 for 30 min), which also abolished the acetylcholine-induced relaxation. 4. ADP beta S-induced relaxation of 5-HT precontracted rings is largely inhibited by indomethacin (100 or 10 microM) or L-NAME (100 microM). 5. We conclude that: the ADP beta S-induced relaxation is endothelium-dependent, mediated by P2Y-purinoceptors, and at least in part linked to NO and prostacyclin release, depending on the preparation used. Furthermore, on the pancreatic vascular bed, (an)other mechanism(s) than prostacyclin and NO releases may be involved in ADP beta S-induced vasodilatation.  相似文献   

15.
1. We have examined the phospholipase C responses in bovine aortic endothelial cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. The cells responded to purines in a manner consistent with the presence of P2y purinoceptors; both 2-methylthioadenosine 5'-triphosphate (2MeSATP) and adenosine 5'-0-(2-thiodiphosphate) (ADP beta S) were potent agonists (EC50 0.41 microM and 0.85 microM respectively) while beta, gamma-methylene ATP at 300 microM was not. 3. The cells also responded to UTP. The maximal response to UTP was less than that for either 2MeSATP and ADP beta S while adenosine 5'-0-(3-thiotriphosphate) (ATP gamma S) gave the largest maximal response. 4. The concentration-effect curve to UTP was additive in the presence of either 2MeSATP or ADP beta S. However, the concentration-effect curves to ATP gamma S reached the same maximum in the presence or absence of UTP. 5. Suramin, at concentrations between 10 microM and 100 microM was a competitive antagonist for the response to ADP beta S and 2MeSATP but not the response to UTP. 6. The results show that there are two separate, co-existing, receptor populations: P2y-purinoceptors (responding to purines) and nucleotide receptors (responding to both purines and pyrimidines). We conclude that purines such as ATP/ADP may regulate aortic endothelial cells by interacting with two phospholipase C-linked receptors.  相似文献   

16.
1 Adenosine 5'-diphosphate (ADP) induces human platelet aggregation and noncompetitively inhibits stimulated human platelet adenylate cyclase; these two effects are mediated by the same ADP receptor, at which adenosine 5'-triphosphate (ATP) is a competitive antagonist. 2 Two ADP analogues, 2-azidoadenosine 5'-diphosphate (2-azido-ADP) and 2-methylthioadenosine 5'-diphosphate (2-methylthio-ADP) have been reported to be more potent as inhibitors of adenylate cyclase than they are as aggregating agents, but no evidence has been presented that these actions are mediated solely by the ADP receptor. 3 We therefore tested the ability of ATP to inhibit the actions of these compounds and of another ADP analogue, 2-chloroadenosine 5'-diphosphate (2-chloro-ADP). 4 2-Chloro-ADP, 2-azido-ADP and 2-methylthio-ADP each induced aggregation and inhibited stimulated adenylate cyclase. Both of these actions were competitively inhibited by ATP (50 microM) with pA2 values similar to those previously found for inhibition by ATP of these effects of ADP. 5 The reported greater potency of 2-azido-ADP and of 2-methylthio-ADP as inhibitors of adenylate cyclase than as aggregating agents is therefore due only to their greater efficacy for this effect, not to some extra actions elsewhere.  相似文献   

17.
We tested how the green fluorescent protein (GFP) tag affects signaling of the nucleotide-activated P2Y1 receptor. Therefore, we generated stably transfected human embryonic kidney 293 cells expressing the rat P2Y1 wild-type receptor (rP2Y1-wt) or the receptor tagged at the C-terminus with the enhanced GFP (rP2Y1-eGFP). The chimeric rP2Y1-eGFP receptor is localized mainly to the plasma membrane as revealed by Western blotting of subcellular fractions. Both receptors were analyzed by measuring Ca2+ responses to short pulses of the agonists in single cells by continuous superfusion with medium. The rP2Y1-eGFP receptor was coupled to Ca2+ release as was the rP2Y1-wt receptor. 2-Methylthio adenosine 5'-diphosphate and -triphosphate (2-MeSATP and 2-MeSADP) were the most potent agonists at the heterologously expressed receptors, with EC50 values of 50 to 70 nM for rP2Y1-eGFP and 0.06 to 0.4 nM for rP2Y1-wt. These potencies of the two P2Y-selective agonists at rP2Y1-wt receptor-expressing cells are the highest values reported so far. This increase is probably due to a receptor reserve. In both rP2Y1-wt- and in rP2Y1-eGFP-expressing cells, the effect of 2-MeSATP was inhibited equally by the antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid. We established that ATP as well as adenosine 5'-O-(1-thiotriphosphate) (ATPalphaS) are full agonists at the rP2Y1 receptor at both transfected cell lines. The rP2Y1-eGFP receptor has the same ligand selectivity as the rP2Y1-wt receptor (2-MeSADP = 2-MeSATP > ADP > ATPalphaS, ATP > UTP). Thus, the GFP-tagged P2Y1 receptor is fully active and shows regular signal transduction coupling. It provides the means for biochemical characterization, since it can be solubilized and is a tool for further physiological analysis.  相似文献   

18.
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.  相似文献   

19.
20.
1 RP and SP diastereoisomers of adenosine 5'-O-(1-thiodiphosphate) ((R)-ADP-alpha-S and (S)-ADP-alpha-S), an adenosine 5'-diphosphate (ADP) analogue, were tested on intact human platelets. 2 Each diastereoisomer induced aggregation, (S)-ADP-alpha-S being 5 times more potent than (R)-ADP-alpha-S but they achieved only 75% of the maximal effect of ADP. 3 Aggregation induced by each diastereoisomer was competitively inhibited by ATP (50 microM). 4 Simultaneous addition of each diastereoisomer inhibited aggregation induced by ADP but not by 11 alpha, 9 alpha-epoxymethano prostaglandin H2, a stable endoperoxide analogue. Both diastereoisomers are therefore partial agonists at the ADP receptor mediating aggregation. 5 Unlike ADP, neither diastereoisomer inhibited prostaglandin E1 (PGE1)-stimulated adenylate cyclase, but each competitively inhibited the effect of aDP, with (S)-ADP-alpha-S again being 5 times more potent than (R)-ADP-alpha-S. 6 These are the first reported examples of ADP analogues to induce platelet aggregation without inhibiting PGE1-stimulated adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号