共查询到20条相似文献,搜索用时 15 毫秒
1.
David Wing-Shing Cheung Chi-Man Koon Elaine Wat Chun-Hay Ko Judy Yuet-Wa Chan David Tai-Wai Yew Ping-Chung Leung Wai-Yee Chan Clara Bik-San Lau Kwok-Pui Fung 《Journal of ethnopharmacology》2013
Ethnopharmacological relevance
The herbal formula DG, containing roots of Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen), has long history in treating cardiovascular diseases. It has been shown to be able to reduce intima-media thickening in coronary patients in our previous clinical study. Since intima-media thickening is the hallmark of atherosclerotic disease, the etiology of which is inflammation of the arterial wall, the mechanism underlying the effect of DG may be related to its anti-inflammatory activities.Aim of study
The present study aims to determine the anti-inflammatory activity of DG and elucidate its underlying mechanisms with regards to its molecular basis of action.Materials and method
The anti-inflammatory effect of DG was studied by using lipopolysaccharide (LPS)-stimulated activation of nuclear factor κB (NFκB) pathway and subsequent production of inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and macrophage chemotactic protein-1 (MCP-1), in mouse RAW 264.7 macrophages.Results
The present study demonstrated that DG could suppress the production of NO and PGE2 through the inhibition of iNOS and COX-2 genes. DG could also inhibit the production of IL-1β, IL-6 and MCP-1, but not TNF-α, through the inhibition of respective mRNA expressions. Further investigations showed the inhibitory effect of DG on activation of IKKα/β and degradation of IκBα, thus preventing nuclear translocation of NFκB. All these results suggested the inhibitory effects of DG on the production of inflammatory mediators through the inhibition of the NFκB pathway.Conclusions
The inhibitory effects of DG on the production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, are accomplished by inhibiting the nuclear translocation of NFκB through inactivating IKKα/β and preventing degradation of IκBα. 相似文献2.
Myeong Sook Cheon Taesook Yoon Do Yeon Lee Goya ChoiByeong Cheol Moon A-Yeong LeeByung Kil Choo Ho Kyoung Kim 《Journal of ethnopharmacology》2009
Aims of study
Although the flowers of Chrysanthemum indicum Linné (Asteraceae) have long been used in traditional Korean and Chinese medicine to treat inflammatory diseases, the underlying mechanism(s) by which these effects are induced remains to be defined. We investigated the effects of a 70% ethanolic extract of C. indicum (CIE) on the activities of cellular signaling molecules that mediate inflammatory responses.Materials and methods
Production of NO, PGE2, TNF-α, and IL-1β by ELISA, mRNA and protein expression of iNOS and COX-2, phosphorylation of MAPKs, and activation of NF-κB by RT-PCR and Western blotting were examined in LPS-induced RAW 264.7 macrophages.Results
The CIE strongly inhibited NO, PGE2, TNF-α, and IL-1β production, and also significantly inhibited mRNA and protein expression of iNOS and COX-2 in LPS-induced RAW 264.7 macrophages, in a dose-dependent manner. Furthermore, the CIE clearly suppressed nuclear translocation of NF-κB p65 subunits, which correlated with an inhibitory effect on IκBα phosphorylation. The CIE also attenuated the activation of ERK1/2 and JNK in a dose-dependent manner.Conclusion
Our results suggest that the anti-inflammatory properties of CIE might result from the inhibition of inflammatory mediators, such as NO, PGE2, TNF-α, and IL-1β, via suppression of MAPKs and NF-κB-dependent pathways. 相似文献3.
4.
Aim of the study
The present study was performed to investigate the underlying mechanisms of anti-inflammatory effects with the extract of Euonymus alatus (EEA), and specially focused on nuclear factor κB (NF-κB) signaling pathway by targeting the IκB kinase β (IKKβ).Materials and methods
The effect of EEA for IKKβ activity was analyzed using an immobilized metal affinity for phosphochemicals (IMAP)-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay. The effect of EEA on lipopolysaccharide (LPS)-induced NF-κB activation in murine macrophage RAW 264.7 cells with western blotting and immunofluorescent staining was evaluated.Results
IKKβ studies based on IMAP-TR-FRET showed that EEA possesses a potent IKKβ inhibitory activity with IC50 value of 11.83 μg/ml. EEA (10, 30 μg/ml) also attenuated the LPS-induced IκBα phosphorylation/degradation, NF-κB translocation and subsequent NO synthesis in RAW 264.7 cells.Conclusions
These results suggest that EEA abrogates LPS-induced NF-κB signaling pathway by targeting the IKKβ in RAW 264.7 cells and these properties may provide a molecular basis for understanding the inhibitory effects of EEA on LPS-mediated inflammation. 相似文献5.
Salvia miltiorrhiza, a traditional Chinese herbal medicine, is used to treat various inflammatory diseases. In the present study, the antiinflammatory effects of S. miltiorrhiza lipid-soluble extracts (SMLE) were demonstrated in vitro and in vivo, along with its underlying mechanism of action. SMLE significantly inhibited the production of NO, TNF-α, IL-1β and IL-6 in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. SMLE also inhibited the LPS-induced degradation of IκB-α in the cytoplasm and the translocation of p65 to the nucleus in RAW 264.7 cells. In addition, SMLE inhibited the production of intracellular reactive oxygen species (ROS) and the surface expression of CD14 induced by LPS. In animal models, intraperitoneal administration of SMLE increased the survival rate of endotoxemia and sepsis in mice. The topical administration of SMLE significantly inhibited ear edema induced by PMA. It was found that SMLE inhibits the LPS-induced gene and protein expression of iNOS, TNF-α, IL-1β and IL-6 in macrophages by blocking NF-κB activation, and these effects are mediated, at least in part, through the inhibition of intracellular ROS generation and the surface expression of CD14. The results suggest a possible therapeutic application of SMLE in inflammatory diseases and provide scientific evidence in support of the traditional Chinese medical practice of treatment with S. miltiorrhiza. 相似文献
6.
7.
8.
Schmid D Gruber M Piskaty C Woehs F Renner A Nagy Z Kaltenboeck A Wasserscheid T Bazylko A Kiss AK Moeslinger T 《Journal of natural products》2012,75(5):870-875
Immunomodulatory effects of oenothein B (1), a macrocyclic ellagitannin from various Onagraceae species, have been described previously. However, the mechanisms underlying the anti-inflammatory activity of 1 have not been fully clarified. The effects of 1 were investigated on inducible nitric oxide synthase, TLR-dependent and TLR-independent signal transduction cascades, and cytokine expression using murine macrophages (RAW 264.7). Compound 1 (10-60 μg/mL) reduced NO production, iNOS mRNA, and iNOS protein levels in a dose-dependent manner, without inhibition of iNOS enzymatic activity. It reduced the binding of the NF-κB p50 subunit to the biotinylated-consensus sequence and decreased nuclear p65 translocation. Gallic acid as a subunit of the macrocyclic ellagitannin 1 showed a far lower inhibitory activity. Nitric oxide production was reduced by 1 after stimulation using TLR2 (Pam2CSK4) and TLR4 (Kdo2) agonists, but this compound did not inhibit inducible nitric oxide synthesis after stimulation using interferon-gamma. IL-1beta, IL-6, and TNF-alpha mRNA synthesis was clearly reduced by the addition of 1. Oenothein B (1) inhibits iNOS after stimulation with LPS, TLR2, and TLR4 agonists via inhibition of TLR/NF-κB-dependent inducible nitric oxide and cytokine synthesis independent from IFN-gamma/JAK/STAT pathways. The full molecular structure of this macrocyclic ellagitannin seems to be required for its immunomodulatory actions. 相似文献
9.
10.
Cheong MH Lee SR Yoo HS Jeong JW Kim GY Kim WJ Jung IC Choi YH 《Journal of ethnopharmacology》2011,137(3):1402-1408
Ethnopharmacological relevance
The root of Polygala tenuifolia Willd is a well-known traditional Oriental medicine and has been prescribed for treatment of dysfunction in memorial systems and various brain inflammatory diseases. The present study was designed to validate the anti-inflammatory effects of the water extract of Polygala tenuifolia root (WEPT).Materials and methods
The anti-inflammatory properties of WEPT were studied using lipopolysaccharide (LPS)-stimulated murine BV2 microglia model. As inflammatory parameters, the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were evaluated. We also examined the extract's effect on the activity of nuclear factor-kappaB (NF-κB), and toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (Myd-88) expression.Results
WEPT suppressed LPS-induced production of NO, PGE2, and expression of iNOS and COX-2 in a dose-dependent manner, without causing cytotoxicity. It also significantly reduced generation of proinflammatory cytokines, including IL-1β and TNF-α. In addition, WEPT suppressed NF-κB translocation by blockade of IkappaB-α (IκB-α) degradation and inhibited TLR4 and Myd-88 expression in LPS-stimulated BV2 cells.Conclusions
These results indicate that the inhibitory effects of WEPT on LPS-stimulated inflammatory mediator production in BV2 microglia are associated with suppression of the NF-κB and toll-like receptor signaling pathways. Therefore, Polygala tenuifolia extracts may be useful in treatment of neurodegenerative diseases by inhibition of inflammatory mediator production in activated microglia. 相似文献11.
12.
13.
Carsten Gründemann Manuel Garcia-Käufer Barbara Sauer Evi Stangenberg Mathias Könczöl Irmgard Merfort Martin Zehl Roman Huber 《Journal of ethnopharmacology》2013
Ethnopharmacological relevance
Extracts from Veronica officinalis L. are traditionally used for the treatment of lung diseases; however, the effective compounds and the mode of action are still unknown.Aim of the study
Here we analyzed the effects of a standardized Veronica extract on genes expression and signalling protein production associated with the development of inflammatory lung diseases.Material and methods
The degranulation capacity of primary mast cells, as well as gene expression and release of inflammatory mediators from human lung epithelial cells (A549 cells) were analyzed in relation to the synthetic drugs azelastine and dexamethasone. Gene and protein expression of cyclooxygenase-2 were investigated by semi-quantitative RT-PCR and western blotting, respectively. The involvement of phosphorylated mitogen-activated protein kinases and NF-κB signaling in regulation of these molecules were characterized by western blotting and electrophoretic mobility shift assays. Characteristic extract components were identified by LC–MS and verminoside was quantified by HPLC analysis.Results
We demonstrated that Veronica officinalis has a small influence on the degranulation capacity of mast cells but rather inhibits gene and protein expression of the chemokine eotaxin in A549 lung epithelial cells, which is essential for recruitment of inflammatory-associated cells in lung diseases. Furthermore, release of the inflammatory mediator PGE2 was diminished through inhibition of COX-2 expression via the NF-κB signaling pathway in TNF-α-activated A549 cells. Phytochemical analysis identified verproside and verminoside as the most abundant iridoid glycosides.Conclusion
Our results are a contribution to explaining the observed anti-inflammatory effects of Veronica offcinalis extract on a molecular level. However, its clinical potency has at first to be proven in animals and subsequently in clinical trials. 相似文献14.
15.
Hyo-Won Jung Un-Kyo Seo Jang-Hyun Kim Kang-Hyun Leem Yong-Ki Park 《Journal of ethnopharmacology》2009
Aim of the study
The root of Panax notoginseng (PN) is commonly used to treat chronic liver disease with its therapeutic abilities to stop haemorrhage in the circulation, while the PN flower (PN-F) is largely unknown in the biological activities on inflammation and mechanisms of its actions. In this study, the pharmacologic effects of PN-F methanol extract on inflammation were investigated to address potential therapeutic or toxic effects in LPS-stimulated mouse macrophage cells, RAW264.7 cells.Materials and methods
Production of NO, PGE2 and pro-inflammatory cytokines (TNF-α and IL-1β) in supernatant, the expression of iNOS, COX-2 and cytokines, the phosphorylation of MAPK moleduces (ERK1/2, JNK and p38 MAPK), and the activation of NF-κB in PN-F extract were assayed in LPS-stimulated RAW264.7 cells.Results
PN-F extract significantly inhibited the productions of NO, PGE2, TNF-α and IL-1β on the LPS-stimulated RAW264.7 cells. In addition, PN-F extract suppressed the mRNA and protein expressions of iNOS, COX-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. The molecular mechanism of PN-F extract-mediated attenuation in RAW264.7 cells has close a relationship to suppressing the phosphorylation of MAPK molecules such as ERK1/2, JNK and p38 MAPK, and the translocation of NF-κB p65 subunit into nuclear.Conclusion
These results indicate that PN-F extract inhibits LPS-induced inflammatory response via the blocking of NF-κB signaling pathway in macrophages, and demonstrated that PN-F extract possesses anti-inflammatory properties in vitro. 相似文献16.
Liang Feng Mao-mao Zhu Ming-hua Zhang Ru-shang Wang Xiao-bin Tan Jie Song Shu-min Ding Xiao-bin Jia Shao-ying Hu 《Journal of ethnopharmacology》2013
Ethnopharmacological relevance
Licorice (Glycyrrhiza uralensis roots) is used as a traditional medicine for the treatment of diabetes mellitus and its vascular complications. Glycyrrhizic acid (GA, also known as Glycyrrhizin), a triterpenoid saponin glycoside, is considered to be a bioactive component in Licorice and is beneficial to diabetic vascular complications.Aim of study
The present study was conducted to evaluate the potential protective activities on AGEs-induced endothelial dysfunction, including anti-apoptosis, antioxidant stress and anti-proinflammatory responses, and explore the underlying mechanism.Materials and methods
Human umbilical vein endothelial cells (HUVECs) were incubated and pre-treated with GA (10−9–10−6 M) or RAGE-Ab (5 μg/ml) in the presence or absence of 200 μg/ml AGEs. AO/EB fluorescence staining assay was performed to evaluate anti-apoptosis activity. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in cell supernatant were detected by kits while the intracellular reactive oxygen species (ROS) generation was determined by 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) kit. Immunocytochemistry analysis was designed to determine transforming growth factor beta1(TGF-β1) protein expression while immunofluorescence analysis for RAGE and NF-kB. The protein expressions of TGF-β1, RAGE and NF-kB were analyzed by Western blot analysis.Results
Pretreatment with GA at a concentration of 10−8–10−6 M significantly reduced the AGEs-induced apoptosis in HUVECs. GA significantly increased antioxidant enzyme SOD activity and decreased peroxide degradation product MDA level in a dose-dependent manner. Furthermore, GA also remarkably inhibited the overgeneration of AGEs-induced ROS. Both immunocytochemistry analysis and western blot analysis showed that GA significantly decreased the protein expression of poinflammatory cytokine TGF-β1 in a similar manner which RAGE-Ab did. Additionally, AGEs-induced RAGE and NF-kB protein expressions were down-regulated significantly by the pretreatment with GA or RAGE-Ab.Conclusion
These findings provide evidences that GA possesses protective activity on AGEs-induced endothelial dysfunction, including anti-apoptosis, anti-inflammation and antioxidant stress, via inhibiting RAGE/NF-kB pathway. GA might be an alternative for the prevention and treatment of diabetic vascular complications in an appropriate dosage. 相似文献17.
18.
19.
20.
Jeong-Eun Huh Byung-Kwan Seo Yeon-Cheol Park Jong-In Kim Jae-Dong Lee Do-Young Choi Yong-Hyeon Baek Dong-Suk Park 《Journal of ethnopharmacology》2012