首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The slow dissolution rate exhibited by poorly water-soluble drugs is a major challenge in the drug development process. Following oral administration, drugs with slow dissolution rates generally show erratic and incomplete absorption which may lead to therapeutic failure. The aim of this study was to improve the dissolution rate and subsequently the oral absorption and bioavailability of a model poorly water-soluble drug. Microparticles containing the model drug (griseofulvin) were produced by spray drying the drug in the absence/presence of a hydrophilic surfactant. Poloxamer 407 was chosen as the hydrophilic surfactant to improve the particle wetting and hence the dissolution rate. The spray dried particles were characterized and in vitro dissolution studies and in vivo absorption studies were carried out. The results obtained showed that the dissolution rate and absolute oral bioavailability of the spray dried griseofulvin/Poloxamer 407 particles were significantly increased compared to the control. Although spray drying griseofulvin alone increased the drug's in vitro dissolution rate, no significant improvement was seen in the absolute oral bioavailability when compared to the control. Therefore, it is believed that the better wetting characteristics conferred by the hydrophilic surfactant was responsible for the enhanced dissolution rate and absolute oral bioavailability of the model drug.  相似文献   

2.
PURPOSE: Nonlinear oral absorption due to poor solubility often impedes drug development. The purpose of this study was to elucidate the rate-limiting process in oral absorption of Biopharmaceutical Classification System (BCS) class II (low solubility-high permeability) drugs in order to predict nonlinear absorption of dose caused by solubility-limited absorption. METHODS: Oral absorption of danazol, griseofulvin, and aprepitant was predicted from a miniscale dissolution test and a physiologically-based model. The effect of particle size reduction and dose increase on absorption was investigated in vitro and in vivo to clarify the rate-limiting steps of dissolution-rate-limited and solubility-limited absorption. RESULTS: The rate-limiting steps of oral absorption were simulated and increase in the dissolution rate and administration dose showed a shift from dissolution rate-limited to solubility-limited absorption. In the study in dogs, particle size reduction improved the oral absorption of large particle drugs but had little effect on small particle drugs. Dose nonlinearity was observed with small particles at a high dose. Our model quantitatively predicted results observed in vivo, including but not exclusively, dissolution-rate-limited and solubility-limited absorption. CONCLUSION: The present study provides a powerful tool to predict dose nonlinearity and will aid in the success of BCS class II drug development.  相似文献   

3.
Micronization is a commonly used enabling technology to improve the bioavailability of compounds where absorption is dissolution rate limited. However, decreasing particle size often results in increased Van der Waals' interactions and electrostatic attraction between particles. This causes agglomeration of particles, thereby compromising the increase in surface area gained by micronization. Comicronization with excipients has been reported to offer significant advantages over neat micronization. The present work describes the comicronization of a model compound CI-1040 at a high drug load that shows an increase in the dissolution rate and bioavailability in male Wistar rats. Physicochemical characterization of the comicronized and neat micronized material is presented to help explain the in-vitro and in-vivo data.  相似文献   

4.
Micronization is a commonly used enabling technology to improve the bioavailability of compounds where absorption is dissolution rate limited. However, decreasing particle size often results in increased Van der Waals' interactions and electrostatic attraction between particles. This causes agglomeration of particles, thereby compromising the increase in surface area gained by micronization. Comicronization with excipients has been reported to offer significant advantages over neat micronization. The present work describes the comicronization of a model compound CI-1040 at a high drug load that shows an increase in the dissolution rate and bioavailability in male Wistar rats. Physicochemical characterization of the comicronized and neat micronized material is presented to help explain the in-vitro and in-vivo data.  相似文献   

5.
Development of oral dosage forms containing poorly water-soluble drugs is a major challenge in the pharmaceutical industry. This paper describes the use of coaxial electrospray deposition as a promising formulation technology for oral delivery of poorly water-soluble drugs. The technology produced core-shell particles composed of griseofulvin and poly(methacrylic acid-co-methyl methacrylate) (Eudragit L-100), with a diameter of around 1 μm. The drug phase was in an amorphous state when the griseofulvin core was coated with the Eudragit L-100 shell. The in vitro dissolution and in vivo oral absorption studies revealed that the core-shell formulation significantly improved dissolution and absorption behaviors, presumably because of a reduction in particle size, improvement in dispersity, and amorphization. Results demonstrated that coaxial electrospray deposition possesses great potential as novel formulation technology for enhancing oral absorption of poorly water-soluble drugs.  相似文献   

6.
A nebulized dispersion of amorphous, high surface area, nanostructured aggregates of itraconazole (ITZ):mannitol:lecithin (1:0.5:0.2, w/w) yielded improved bioavailability in mice. The ultra-rapid freezing (URF) technique used to produce the nanoparticles was found to molecularly disperse the ITZ with the excipients as a solid solution. Upon addition to water, ITZ formed a colloidal dispersion suitable for nebulization, which demonstrated optimal aerodynamic properties for deep lung delivery and high lung and systemic levels when dosed to mice. The ITZ nanoparticles produced supersaturation levels 27 times the crystalline solubility upon dissolution in simulated lung fluid. A dissolution/permeation model indicated that the absorption of 3mum ITZ particles is limited by the dissolution rate (BCS Class II behavior), while absorption is permeation-limited for more rapidly dissolving 230nm particles. The predicted absorption half-life for 230nm amorphous ITZ particles was only 15min, as a result of the small particle size and high supersaturation, in general agreement with the in vivo results. Thus, bioavailability may be enhanced, by decreasing the particle size to accelerate dissolution and increasing permeation with (1) an amorphous morphology to raise the drug solubility, and (2) permeability enhancers.  相似文献   

7.
This review has evaluated the Biopharmaceutics Classification System (BCS) and improvements have been proposed. The BCS has a very strict solubility/dissolution limit, a generous P(e)-limit (> or = 14-times higher rate constant limit for dissolution than for permeation), and is stricter for drugs with a long half-life (t(1/2)). Available human in-vivo, in-vitro, and in-silico P(e)-methods cannot classify P(e) for moderately to highly permeable substances sufficiently well, and in-vitro data often underpredict the in-vivo dissolution potential and rate. Good in-vivo dissolution and absorption can be expected for most high P(e) drug products. It has not been possible to find a highly permeable product with a Dose number (D(o)) < 385 (< 2400 in the fed state) that is clearly incompletely absorbed, and near complete uptake has been shown for a drug product with a D(o) of 660000. The potential implication of these findings is that many true BCS Class I drug products are incorrectly classified. This could be a reason for the limited use of this system. On this basis, it has been suggested that: the limit for high for solubility/dissolution is decreased (to > 40 and > 95% dissolved within 30 min and 3 h, respectively); the limit for high P(e) is increased (to >P(e) of metoprolol); accurate P(e)-models or in-vivo fraction absorbed data are used; solubility/dissolution tests are performed using real or validated simulated gastrointestinal fluids; in-vitro/in-vivo dissolution relationships are established; the t(1/2) is considered; and the rate-limiting step for in-vivo absorption is determined. A major change could be to reduce the BCS into two classes: permeation-rate (Class I) or dissolution-rate (Class II) limited absorption. It is believed that this could give a better balance and increase the number of biowaivers.  相似文献   

8.
Daflon 500 mg, is a micronized purified flavonoid fraction, containing 90% w/w diosmin and 10% w/w of flavonoids expressed as hesperidin, used clinically in the treatment of chronic venous insufficiency and hemorrhoidal disease. This study was designed to investigate the influence of particle size on the overall absorption of diosmin after oral administration of micronized (mean particle size = 1.79 microm, with 80% of particles having a size lower than 3.45 microm) and nonmicronized diosmin (mean particle size = 36.5 microm, with 80% of particles comprised between 19.9 and 159 microm). In a double blinded, cross-over study design, 500 mg tablets containing trace amounts (approximately 25 nCi) of (14)C-diosmin were administered to 12 healthy male volunteers as a single oral dose. Accelerator mass spectrometry and liquid scintillation counting were used for the measurement of (14)C-diosmin in urine and feces. Absorption of (14)C-diosmin from the gastrointestinal tract, measured by the urinary excretion of total radioactivity, was significantly improved with the micronized (57.9 +/- 20.2%) compared with the nonmicronized material (32.7 +/- 18.8%). Statistical comparison of the urinary excretion of the two pharmaceutical formulations showed this difference to be highly significant (p = 0.0004, analysis of variance). The overall excretion of the radiolabeled dose was 100% with mean +/- SD of 109 +/- 23% and 113 +/- 20% for the micronized and nonmicronized forms, respectively. The results of this study show: 1. the impact of a reduction of particle size on the extent of absorption of diosmin, giving a pharmacokinetic explanation to the better clinical efficacy observed with the micronized formulation, and 2. the use of accelerator mass spectrometry in conjunction with liquid scintillation counting in measurement of bioavailability in a human cross-over study comparing two drug formulations containing trace amounts of radioactivity.  相似文献   

9.
The possibility of rectal use of trimethoprim was studied. The in-vitro liberation of the drug from 24 different suppository bases was examined and the results used to select bases for in-vivo examination. The in-vitro liberation from the suppositories containing 50–200 mg trimethoprim was studied by the method of dynamic diffusion, and the released drug content was measured spectrophotometrically. The in-vivo examinations were performed in anaesthetized rats. The concentration of trimethoprim in blood was determined by bioassay. The absorption of the drug in the form of oral suspension, rectal solution and suppository was also studied. The pharmacokinetic parameters obtained after blood-level curve fitting were compared by use of the MedUSA 1.6 program. The best in-vivo results were achieved with the lipohydrophilic Witepsol W 35 vehicle containing 10% polysorbate 20 and 10% polysorbate 61 (bioavailability = 63.8%) and with Witepsol W 35 containing 10% polysorbate 60 (bioavailability = 63.8%). The results for hydrophilic Macrogol 1540 vehicle containing 5% of Macrogol 400 were only slightly worse (bioavailability = 52.9%). In the case of the lipohydrophilic Witepsol W 35 vehicle with 10% polysorbate 20 and 10% polysorbate 61 content a significant negative exponential relationship was found between the administered doses and their respective bioavailability values; this tendency was also observed during in-vitro examinations. When incorporated in the appropriate vehicle trimethoprim was absorbed well. With three vehicles the extent of absorption exceeded that for oral administration on the same model (bioavailability = 38.8%). Trimethoprim rectal suppositories, which are formulated with the vehicles having the best in-vitro and in-vivo results, are suitable for clinical pharmacological investigation.  相似文献   

10.
PURPOSE: To set up a theoretical basis for identifying biowaivers among Class II drugs and apply the methodology developed to nonsteroidal anti-inflammatory drugs (NSAIDs). METHODS: The dynamics of the two consecutive drug processes dissolution and wall permeation are considered in the time domain of the physiologic transit time using a tube model of the intestinal lumen. The model considers constant permeability along the intestines, a plug flow fluid with the suspended particles moving with the fluid, and dissolution in the small particle limit. The fundamental differential equation of drug dissolution-uptake in the intestines is expressed in terms of the fraction of dose dissolved. RESULTS: The fundamental parameters, which define oral drug absorption in humans resulting from this analysis, are i) the formulation-related factors, dose, particle radius size, and ii) the drug-related properties, dimensionless solubility/dose ratio (1/q), and effective permeability. Plots of dose as a function of (1/q) for various particle sizes unveil the specific values of these meaningful parameters, which ensure complete absorption for Class II drugs [(1/q) < 1]. A set of NSAIDs were used to illustrate the application of the approach in identifying biowaivers among the NSAIDs. CONCLUSIONS: The underlying reason for a region of fully absorbed drugs in Class II originates from the dynamic character of the dissolution-uptake processes. The dynamic character of the approach developed allows identification of biowaivers among Class II drugs. Several biowaivers among the NSAIDs were identified using solubility data at pH 5.0 and in fed-state-simulated intestinal fluid at pH 5.0. The relationships of formulation parameters, dose, particle radius, and the drug properties, dimensionless solubility/dose ratio (1/q), and permeability with the fraction of dose absorbed for drugs with low 1/q values [(1/q) < 1] can be used as guidance for the formulation scientist in the development phase.  相似文献   

11.
INTRODUCTION: The therapeutic efficacy of perorally administered drugs is often obscured by their poor oral bioavailability (BA) and low metabolic stability in the gastrointestinal tract (GIT). Solid lipid nanoparticles (SLNs) have emerged as potential BA enhancer vehicles for various Class II, III and IV drug molecules. AREA COVERED: This review examines the recent advancements in SLN technology, with regards to oral drug delivery. The discussion critically examines the effect of various key constituents on SLN absorption and their applications in oral drug delivery. The relationship between the complexity of absorption (and various factors involved during absorption, including particle size), stability and the self-emulsifying ability of the lipids used has been explored. EXPERT OPINION: The protective effect of SLNs, coupled with their sustained/controlled release properties, prevents drugs/macromolecules from premature degradation and improves their stability in the GIT. An extensive literature survey reveals that direct peroral administration of SLNs improves the BA of drugs by 2- to 25-fold. Overall, the ease of large-scale production, avoidance of organic solvents and improvement of oral BA make SLNs a potential BA enhancer vehicle for various Class II, III and IV drugs.  相似文献   

12.
Amorphous nanoparticle suspensions of a poorly water-soluble drug, cyclosporine A, are produced by a new process, evaporative precipitation into aqueous solution (EPAS). The rapid evaporation of a heated organic solution of the drug, which is atomized into an aqueous solution, results in fast nucleation leading to nanoparticles suspensions. Hydrophilic stabilizers, introduced in the organic or aqueous phases, limit particle growth and inhibit crystallization for drug concentrations as high as 35 mg/ml, and drug/surfactant ratios up to 1.0. The suspensions may be used in parenteral formulations to enhance bioavailability or may be dried to produce oral dosage forms with the potential for high dissolution rates due to the low crystallinity, small particle size and hydrophilic stabilizer that enhances wetting.  相似文献   

13.
To be effective, herbal medicinal products are expected to meet comparable standards concerning the assessment of efficacy, safety and biopharmaceutical quality as chemically defined synthetic drugs as food supplements. However, these requirements are often not fulfilled, particularly regarding the characterization of biopharmaceutical properties such as in-vitro dissolution and in-vivo bioavailability. With respect to the relevance of biopharmaceutical quality of herbal medicinal products, two different Ginkgo biloba brands (test product: Ginkgo biloba capsules; reference product: Ginkgold) were analysed for dissolution rates and bioavailability of the most relevant active ingredients. Dissolution rates at pH 1 and 4.5 were determined according to the USP 23. The relative bioavailability of ginkgolide A, ginkgolide B and bilobalide was investigated after single oral administration of 120 mg Ginkgo biloba extract as tablets or capsules. Bioavailability data (area under the curve and peak concentration in plasma) were clearly different and did not show bioequivalence of test and reference products. The slow in-vitro dissolution of the test product resulted in a large decrease in bioavailability. These results indicate for the first time that the pharmaceutical properties of a herbal medicinal product have a significant impact on the rate and extent of drug absorption, and very likely on efficacy in humans.  相似文献   

14.
As low molecular weight heparins exhibit limited oral absorption they usually have to be administered parenterally. Their strong negative charge appears to be one of the biggest hurdles to overcome in order to increase oral absorption. Complex coacervation has been proposed as a microencapsulation technique for increased oral drug absorption on the basis of charge compensation. Optimized tinzaparin/acacia gum mixture were coacervated with either gelatin A or B leading to microparticles with monodispersed size distribution, good fluidity and high encapsulation rates (>90%), while mean particle size varied between 5 and 20 microm, respectively, depending on the gelatin type. Tinzaparin was homogeneously distributed throughout the particle matrix and anti-Xa activity was maintained during preparation and storage. Drug release occurred in dependency of the pH triggering the dissociation between tinzaparin/acacia and gelatin. Cell binding experiments on Caco-2 led to slightly increased adhesion of gelatin A microparticles compared to gelatin B (A: 3.5+/-0.3%; B: 2.5+/-0.3%; solution: 1.9+/-0.1%), while drug transport did not differ from free tinzaparin solution. In-vivo results demonstrated an oral bioavailability of about 4.2+/-2.9% with gelatin B particles while gelatin A led to no absorption of tinzaparin. In conclusion, tinzaparin microparticles exhibited excellent particle properties in vitro and demonstrate potential for a formulation increasing the oral bioavailability of low molecular weight heparins.  相似文献   

15.
16.
A novel solid particle system with a nanomatrix structure and without surfactant for the oral delivery of insoluble drugs was prepared. This used a combination of pH-sensitive polymethylacrylate and nano-porous silica, in order to improve the drug absorption using only pharmaceutical excipients and a relative simple process. The in vitro drug dissolution and in vivo oral bioavailability of this formulation, using fenofibrate as the model drug, were compared with other reference formulations such as a suspension, micronized formulation or self microemulsion drug delivery system (SMEDDS). The supersaturation stabilizing effect of different polymers was evaluated and the physicochemical characterization of the optimal formulation was conducted by SEM, TEM, surface area analysis, DSC, and XRD. The optimized formulation prepared with polymethylacrylate (Eudragit®L100-55) and silica (Sylysia®350) markedly improved the drug dissolution compared with other reference preparations and displayed a comparative oral bioavailability to the SMEDDS. Fenofibrate existed in a molecular or amorphous state in the nanomatrix, and this state was maintained for up to 1 year, without obvious changes in drug release and absorption. In conclusion, the nanomatrix formulation described here is a promising system to enhance the oral bioavailability of water-insoluble drugs.  相似文献   

17.
Cryogenic liquids, nanoparticles, and microencapsulation   总被引:1,自引:0,他引:1  
The biopharmaceutical classification system (BCS) is used to group pharmaceutical actives depending upon the solubility and permeability characteristics of the drug. BCS class II compounds are poorly soluble but highly permeable, exhibiting bioavailability that is limited by dissolution. The dissolution rate of BCS class II drug substances may be accelerated by enhancing the wetting of the bulk powder and by reducing the primary particle size of the drug to increase the surface area. These goals may be achieved by nucleating drug particles from solution in the presence of stabilizing excipients. In the spray freezing into liquid (SFL) process, a drug containing solution is atomized and frozen rapidly to engineer porous amorphous drug/excipient particles with high surface areas and dissolution rates. Aqueous suspensions of nanostructured particles may be produced from organic solutions by evaporative precipitation into aqueous solution (EPAS). The suspensions may be dried by lyophilization. The particle size and morphology may be controlled by the type and level of stabilizers. In vivo studies have shown increased bioavailability of a wide variety of drugs particles formed by SFL or EPAS. For both processes, increased serum levels of danazol (DAN) were observed in mice relative to bulk DAN and the commercial product, Danocrine. Orally dosed itraconazole (ITZ) compositions, formed by SFL, produce higher serum levels of the drug compared to the commercial product, Sporanox oral solution. Additionally, nebulized SFL processed ITZ particles suspended in normal saline have been dosed via the pulmonary route and led to extended survival times for mice inoculated with Aspergillis flavus. SFL and EPAS processes produce amorphous drug particles with increased wetting and dissolution rates, which will subsequently supersaturate biological fluids in vivo, resulting in increased drug bioavailability and efficacy.  相似文献   

18.
Powder dissolution kinetics have shown that for particles in the so called "large" size regime (more than about 50 microm), the dissolution rate scales as the specific surface area, i.e. rate proportional to d(-1) where d is the particle diameter. This is consistent with an effective diffusion boundary layer width h(EFF) that is constant with respect to particle size. However, for particles in the so called "small" size regime (d less than about 50 microm), the dissolution rate has a stronger dependence than proportional to d(-1) [Bisrat, M., Anderberg, E.K., Barnett, M.I., Nystroem, C., 1992. Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int. J. Pharm., 80, 191-201; Mosharraf, M., Nystroem, C., 1995. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int. J. Pharm., 122, 35-47]. In this regime, Prandtl boundary layer theory predicts an h(EFF) approximately equal to the particle radius or diameter. This paper presents the first experimental determination of h(EFF) for particles less than about 2 microm. The powder dissolution kinetics of six suspensions over the particle diameter range of 5.9 +/- 0.1 to 0.53 +/- 0.05 microm are analyzed to yield h(EFF) values of 8.5 +/- 1.9 to 0.34 +/- 0.14 microm. The theoretical expectation for mass transport, dissolution time proportional to d(2.0), is in good agreement with the experimental results of dissolution time proportional to d(2.3). An understanding of these mass transfer mechanisms allows pharmaceutical scientists to achieve targeted release rates with minimum ensemble instability.  相似文献   

19.
Cyclodextrins (CDs) are one of the most successful solutions to the problem of poor drug solubility. In this study, we examined the in-vitro effects of three CDs on the solubility of letrozole, a breast cancer drug that is practically insoluble in water. The most promising, hydroxybutenyl-beta-cyclodextrin (HBenbetaCD), was used for in-vivo studies in male and female Sprague-Dawley rats. Letrozole is a drug with dramatic gender-based differences in pharmacokinetics. For example, the terminal half-life (t(1/2)) of letrozole following intravenous administration in male rats was 11.5 +/- 1.8 h (n = 3), while in female rats it was 42.3 +/- 2.9 h (n = 3). HBenbetaCD increased the solubility and enhanced the dissolution rate of letrozole. Complexation of letrozole with HBenbetaCD improved oral absorption in male rats and maximized absorption in female rats. Regardless of gender, the presence of HBenbetaCD in the formulation increased the in-vivo rate of absorption. When administered in a capsule formulation with letrozole, HBenbetaCD resulted in a higher C(max) (61% in male rats, 42% in female), shorter T(max) values (8.4 to 6.3 h in male, 16.4 h to 5.4 h in female) and increased absolute oral bioavailability (46 +/- 2 vs 38 +/- 3 in male, 101 +/- 3 vs 95 +/- 2 in female). Thus, solubility limits both rate and extent of letrozole absorption in male rats, but limits only the rate of absorption in female rats.  相似文献   

20.
Aqueous colloidal dispersions of amorphous cyclosporin A (CsA) nanoparticles, intended for pulmonary delivery, were formed by antisolvent precipitation and stabilized with 10% polysorbate 80. Dissolution of the dispersion of CsA nanoparticles produced supersaturation values 18 times the aqueous equilibrium solubility. Nebulization of the dispersion to mice produced therapeutic lung levels and systemic concentrations below toxic limits. The sizes of the aerosolized aqueous droplets are optimal for deep lung deposition, whereas the amorphous drug nanoparticles facilitate rapid dissolution. A dissolution/permeation model was developed to characterize the effects of particle size, solubility, and drug dose on the absorption half-lives of poorly water soluble drugs in the alveolar epithelium. For crystalline 3 microm particles with a solubility of 1 microg/mL, the half-life for absorption was estimated to be 500 min. The half-life may be reduced to less than 1 min by increasing the solubility by a factor of 100 with an amorphous form as well as by decreasing the particle size 10-fold. The in vitro and in vivo data, as well as the dissolution/permeation model, indicate that nebulization of amorphous nanoparticle suspensions has the potential to enhance lung epithelial absorption markedly for poorly water soluble drugs, relative to respiratory delivery of crystalline, micron-sized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号