首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
The timing of the final mitotic division of basal forebrain cholinergic neurons was studied by injecting [3H]thymidine into timed pregnant rats and processing the brains of their progeny as young adults for immunohistochemistry with a monoclonal antibody to choline acetyltransferase (ChAT) followed by autoradiography. ChAT-positive neurons located caudally in the basal forebrain were found to become postmitotic mostly on embryonic (E) days 12 and 13, whereas the peak final mitosis of more rostrally located ChAT-positive neurons occurred increasingly later, with the most rostral ChAT-immunoreactive neurons leaving their final mitotic cycles on E15 and E16. In all basal forebrain regions, cholinergic neurogenesis was complete by E17. These results indicate that the cholinergic neurons in the basal forebrain become postmitotic in a caudal-to-rostral gradient over about 5 days. The continuity of the gradient suggests that these cholinergic neurons may derive from the same germinal source.  相似文献   

2.
This study deals with the site of origin, migration, and settling of the principal cell constituents of the rat hippocampus during the embryonic period. The results indicate that the hippocampal neuroepithelium consists of three morphogenetically discrete components--the Ammonic neuroepithelium, the primary dentate neuroepithelium, and the fimbrial glioepithelium--and that these are discrete sources of the large neurons of Ammon's horn, the smaller granular neurons of the dentate gyrus, and the glial cells of the fimbria. The putative Ammonic neuroepithelium is marked in short-survival thymidine radiograms by a high level of proliferative activity and evidence of interkinetic nuclear migration from day E16 until day E19. On days E16 and E17 a diffuse band of unlabeled cells forms outside the Ammonic neuroepithelium. These postmitotic cells are considered to be stratum radiatum and stratum oriens neurons, which are produced in large numbers as early as day E15. A cell-dense layer, the incipient stratum pyramidale, begins to form on day E18 and spindle-shaped cells can be traced to it from the Ammonic neuroepithelium. This migratory band increases in size for several days, then declines, and finally disappears by day E22. It is inferred that this migration contains the pyramidal cells of Ammon's horn that are produced mostly on days E17 through E20. The putative primary dentate neuroepithelium is distinguished from the Ammonic neuroepithelium during the early phases of embryonic development by its location, shape, and cellular dynamics. It is located around a ventricular indentation, the dentate notch, contains fewer mitotic cells near the lumen of the ventricle than the Ammonic neuroepithelium, and shows a different labeling pattern both in short-survival and sequential-survival thymidine radiograms. By day E18, the reduced primary dentate neuroepithelium is surrounded by an aggregate of proliferative cells; this is the secondary dentate matrix. On the subsequent days spindle-shaped cells that have retained their proliferative capacity migrate from the progressively receding secondary dentate matrix to the dentate gyrus itself. The latter, representing a tertiary germinal matrix, becomes highly active during the perinatal period. The putative fimbrial glioepithelium is situated between the primary dentate neuroepithelium and the tip of the hippocampal rudiment. Observations in methacrylate sections and thymidine radiograms suggest that the cells of this germinal matrix, unlike typical neuroepithelial cells, do not undergo interkinetic nuclear migration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The pattern of neurogenesis of the cat hypothalamus was studied by the use of the [3H]thymidine autoradiographic method. The neurons of the cat hypothalamus are nearly all generated in a period from embryonic days E21 to E35, and in most cases the neurons in a single nucleus are generated over a much shorter period. The dominant gradient along which the cells are organized is lateral-medial (outside-in). This gradient was apparent in all nuclei except the periventricular and arcuate nuclei. Two other gradients were observed in some, but not all, nuclei. These were along the dorsoventral and the posteroanterior axis. The dorsoventral gradient was uniformly less pronounced than the lateromedial gradient. The posteroanterior gradient was most obvious in the mammillary complex. An analysis of the data suggests that the neurons of individual nuclei do not necessarily have a unique production history. This suggests that insofar as nuclear formation is concerned, factors such as the parental population generating the neurons that populate a nucleus, as well as the early neuronal interconnections, may play a more important role than the birthdates themselves.  相似文献   

4.
The neurogenetic gradients of neurons showing glutamic acid decarboxylase (GAD) immunoreactivity were determined in the regio superior and in the regio inferior of the mouse hippocampus. Pregnant C57Bl mice received pulse injections of (3H)thymidine from E11 through E17 (E0 being the day of mating). Distributions of (3H)thymidine-labeled, GAD-positive neurons in the different strata of the hippocampus proper were recorded in adult animals. GAD-positive neurons in this region are generated prenatally. Radial gradients of neurogenesis of GAD-positive cells are characterized by two main features: 1) with the exception of the stratum lacunosum-moleculare and its interface with the stratum radiatum, GAD-positive neurons of the plexiform strata are generated before those destined for the pyramidal layer; 2) within the pyramidal layer, GAD-positive cells are positioned according to an inside-out sequence. In the transverse axis, neurogenesis of GAD-positive cells follows a regio inferior to regio superior gradient. This gradient is due to prolonged neurogenesis of GAD-positive cells for the pyramidal layer in the regio superior. Given the selective laminar disposition of the GABAergic interneurons in the hippocampus, the present authors explored whether or not the diverse types of these interneurons could have specific birth dates and concluded that no relationship exists between birth dates and adult phenotypes of GAD-immunoreactive cells in the mouse hippocampus proper.  相似文献   

5.
Neurogenesis of basal forebrain cholinergic neurons in rat   总被引:1,自引:0,他引:1  
The basal forebrain cholinergic system embodies a heterogeneous group of neurons distributed in the basal telencephalon that project topographically to the cortical mantle. We sought to examine the generation of these neurons to determine whether basal forebrain neurons have unique patterns of neurogenesis or, if, in contrast, they are born along general neurogenic gradients. The techniques of tritiated thymidine autoradiography and choline acetyltransferase (ChAT) immunocytochemistry were combined to determine the birthdays and neurogenic gradients of cholinergic cells in this region of rat brain. Cholinergic neurogenesis throughout the basal forebrain ranged from embryonic days 12 to 17 (E12-17). Neurogenesis in the nucleus basalis magnocellularis occurred over E12-16, with a peak day of generation on E13. The horizontal limb nucleus of the diagonal band which is located rostral to the nucleus basalis was generated over E12-17, with the majority of cells arising on E14-15. The rostral-most nuclei of the basal forebrain cholinergic system, the vertical limb of the diagonal band and the medial septum, were generated between E13-17, with peak days of neurogenesis on E15 and E15-16, respectively. These results were evaluated quantitatively and demonstrated that the basal forebrain cholinergic neurons were generated along the general caudal-to-rostral gradient previously described for all neurons in this brain region. The results of this study, in combination with those of similar investigations, emphasize that position-dependent epigenetic factors appear to be more potent determinants of the time of neuronal origin than factors which influence a cell's transmitter phenotype.  相似文献   

6.
The time course of neurogenesis for neurons which comprise the amygdaloid complex in Rhesus monkeys was determined using tritiated thymidine autoradiography. Fourteen pregnant monkeys received injections of tritiated thymidine between embryonic days 27 (E27) and 56 of their 165 day gestation and offspring were sacrificed during the early postnatal period. The first neurons destined for the amygdaloid complex were generated at E33 making them among the earliest postmitotic neurons in the telencephalon. Neurogenesis peaked within all nuclei of the amygdaloid complex between E38 and E48 and had ceased between E50 and E56. While amygdaloid neurogenesis in postnatally sacrificed monkeys displayed a dorsal-to-ventral gradient of radiolabeled neurons, the considerable rotation of the temporal lobe during the latter stages of primate development indicates that neurogenesis in the embryo, during the first third of gestation, actually occurs across a medial-to-lateral gradient. This medial-to-lateral gradient occurs as a smooth wave across the amygdaloid nuclei and does not respect neuroanatomical subdivisions or patterns of connectivity of the amygdaloid nuclei in the Rhesus monkey.  相似文献   

7.
The time of origin of neurons in the hippocampal region was determined in a series of rhesus monkeys, each of which had been exposed to a pulse of tritiated thymidine (3H-TdR) at a different time during ontogeny and sacrificed between the second and fifth month after birth. No heavily labeled cells were found in the hippocampal region of animals exposed to 3H-TdR before embryonic day 33 (E33). Exposure to 3H-TdR given at E36 labels a few neurons in the deepest layers of the entorhinal area, and 3H-TdR given at E38 labels a small number of neurons in all hippocampal subdivisions. Although the first neurons are generated almost simultaneously throughout the hippocampal region, the proliferation ceases at a different time in each subdivision. The last neurons destined for the entorhinal area and presubiculum are generated between E70 and E75, whereas the last parasubicular neurons are generated between E75 and E80. The production of neurons that form the subiculum ends about two weeks earlier, between E56 and E65. Within the hippocampus, genesis of pyramidal cells ends between E70 and E80 in area CA1, between E56 and E65 in area CA2, between E65 and E70 in area CA3, and between E75 and E80 in area CA4. In contrast, the genesis of granule cells of the fascia dentata is considerably prolonged. It continues throughout the second half of gestation, declines steadily in the course of the first postnatal month, and tapers off during the next 2 months. There is a distinct inside-to-outside spatiotemporal gradient in the parahippocampal formation and in the stratum pyramidale of both the subiculum and hippocampus. In contrast, the spatiotemporal pattern of granule cell origin in the dentate gyrus is outside-to-inside. Furthermore, granule cells generated between E36 and E80 are distributed in a distinct suprapyramidal-to-infrapyramidal gradient, whereas those generated at later ages are distributed evenly throughout the fascia dentata. Correlation of the present findings with histological data on hippocampal neurogenesis in the human brain demonstrates that the timing and sequence of developmental events as well as spatiotemporal gradients are similar in both primate species.  相似文献   

8.
Chronic stress or chronically high glucocorticoids attenuate adult hippocampal neurogenesis by reducing cell proliferation, survival, and differentiation in male rodents. Neurons are still produced in the dentate gyrus during chronically high glucocorticoids, but it is not known whether these new neurons are appropriately activated in response to spatial memory. Thus, the goal of this study was to determine whether immature granule neurons generated during chronically high glucocorticoids (resulting in a depressive‐like phenotype) are differentially activated by spatial memory retrieval. Male Sprague Dawley rats received either 40 mg/kg corticosterone (CORT) or vehicle for 18 days prior to behavioral testing. Rats were tested in the forced swim test (FST) and then tested in a spatial (hippocampus‐dependent) or cued (hippocampus‐independent) Morris Water Maze. Tissue was then processed for doublecortin (DCX) to identify immature neurons and zif268, an immediate early gene product. As expected, CORT increased depressive‐like behavior (greater immobility in the FST) however, prior CORT modestly enhanced spatial learning and memory compared with oil. Prior CORT reduced the number of DCX‐expressing cells and proportion of DCX‐expressing cells colabeled for zif268, but only in the ventral hippocampus. Prior CORT shifted the proportion of cells in the ventral hippocampus away from postmitotic cells and toward immature, proliferative cells, likely due to the fact that postmitotic cells were produced and matured during CORT exposure but proliferative cells were produced after high CORT exposure ceased. Compared with cue training, spatial training slightly increased DCX‐expressing cells and shifted cells toward the postmitotic stage in the ventral hippocampus. These data suggest that the effects of CORT and spatial training on immature neurons are more pronounced in the ventral hippocampus. Further, high CORT reduced activation of immature neurons, suggesting that exposure to high CORT may have long‐term effects on cell integration or function. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
We determined the neurogenesis characteristics of a distinct subclass of rat striatum gamma-aminobutyric acidergic (GABAergic) interneurons expressing the calcium-binding protein calretinin (CR). Timed-pregnant rats were given an intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU), a marker of cell proliferation, on designated days between embryonic day 12 (E12) and E21. CR-immunoreactive (-IR) neurons and BrdU-positive nuclei were labeled in the adult neostriatum by double immunohistochemistry, and the proportion of double-labeled cells was quantified. CR-IR interneurons of the neostriatum show maximum birth rates (>10% double labeling) between E14 and E17, with a peak at E15. CR-IR interneurons occupying the lateral half of the neostriatum become postmitotic prior to medial neurons. In the precomissural neostriatum, the earliest-born neurons occupy the lateral quadrants and the latest-born neurons occupy the dorsomedial sector. No significant rostrocaudal neurogenesis gradient is observed. CR-IR neurons make up 0.5% of the striatal population and are localized in both the patch and the matrix compartments. CR-IR neurons of the patch compartment are born early (E13-15), with later-born neurons (E16-18) populating mainly the matrix compartment. CR-IR cells of the neostriatum are a distinct subclass of interneurons that are born at an intermediate time during striatal development and share common neurogenesis characteristics with other interneurons and projection neurons produced in the ventral telencephalon.  相似文献   

10.
Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with [3H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [3H]thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to [3H]thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial "core" area just ventral to the fornix. For morphogenesis, pregnant females were given a single injection of [3H]thymidine during gestation, and their embryos were removed either 2 hours later (short survival) or in successive 24-hour periods (sequential survival). The embryonic brains were examined to locate areas of intensely labeled cells in the putative neuroepithelium of the strial bed nucleus, to trace migratory waves of young neurons, and to establish their final settling locations. Two different neuroepithelial sources produce neurons for the strial bed nucleus. The anterior strial bed nucleus is generated by a neuroepithelial zone at the base of the inferior horn of the lateral ventricle from the anterior commissural decussation area forward to the primordium of the nucleus accumbens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
By combining [3H]thymidine autoradiography with choline acetyltransferase (ChAT) immunocytochemistry, we have determined the generation pattern of the large cholinergic neurons in the neostriatum. All of these neurons are produced between embryonic days 12 and 17 (E12-E17), with 75% of them being born between E13 and 15. Cholinergic neurons appeared to be among the earliest cells produced in the neostriatum when compared with previous generation studies of all neurons in the rat caudate-putamen. The caudal-to-rostral neurogenic gradient reported in previous investigations of all neurons was the only spatiotemporal gradient observed for cholinergic neurons. The generation peak for these cells was E13 caudally, and E15 rostrally. Additional immunocytochemical studies detected ChAT immunoreactivity within somata and primary dendrites of 1 day postnatal (1 dpn) rat neostriatum, and subsequently demonstrated a dramatic increase in the intensity of reaction product and the complexity of dendritic arborizations by 14 dpn. Large ChAT-positive neurons of the basal forebrain contained within the same specimens appeared to differentiate their cholinergic phenotype earlier than those in the neostriatum. However, recent generation studies of basal forebrain neurons combined with the present results have demonstrated that both cholinergic populations are produced simultaneously along the same neurogenic gradients. This then represents an example of cholinergic projection (basal forebrain system) and local circuit (neostriatum) neurons that share similar generation patterns but differ with respect to sequences of transmitter phenotype expression. Thus, for cholinergic forebrain neurons, a cell's position along the neurogenic gradient and its transmitter phenotype appear to be more closely associated with its birth date than its ultimate projection or rate of differentiation.  相似文献   

12.
Short-survival, sequential, and long-survival thymidine radiograms of rat embryos, fetuses, and young pups were analyzed in order to examine the time of origin, settling pattern, migratory route, and site of origin of neurons of the ventral nuclear complex of the thalamus. Quantitative examination of long-survival radiograms established that the bulk of the neurons of the ventral nuclear complex are generated between days E14 and E16 but with statistically significant differences between its three nuclei. The ventrobasal nucleus is the oldest component (97% of the cells are generated on days E14 and E15); the ventrolateral nucleus is next (82% of the cells are generated on days E14 and E15); and the ventromedial nucleus is last (51% of the cells are generated on days E14 and E15). In addition to this caudal-to-rostral (from the ventrobasal nucleus to the ventrolateral nucleus) and lateral-to-medial (from the ventrobasal nucleus to the ventromedial nucleus) internuclear gradients, there are lateral-to-medial and ventral-to-dorsal intranuclear neurogenetic gradients within the ventrobasal and ventrolateral nuclei. Qualitative examination of short and sequential survival thymidine radiograms indicate that the neurons of the ventral nuclear complex originate in the unique intermediate thalamic neuroepithelial lobule, which is distinguished from the rest of the thalamic neuroepithelium by the presence of a mitotically active secondary neuroepithelial matrix. Two sublobules can be distinguished in the intermediate lobule during the early stages of thalamic development. On the basis of their location and chronological pattern of cell production and differentiation, it is inferred that the neurons of the ventrobasal nucleus originate in the earlier differentiating, posteroventrally situated inverted sublobule, and the neurons of the ventrolateral nucleus are produced in the later differentiating, anterodorsally situated everted sublobule. The neurons of the ventromedial nucleus appear to originate from the intermediate neuroepithelial lobule after its two sublobules are no longer distinguishable. The heavily labeled neurons generated soon after injection on day E15 form a wave front that translocates in a lateral direction at a steady rate of 215 microns/day. Examination of methacrylate-embedded materials showed that, in day E15 rats the actively migrating cells are spindle-shaped, with their long axis oriented horizontally. The far-laterally situated differentiating cells (the oldest neurons) become vertically oriented by day E16. Associated with this change in polarity, vertically oriented fibers appear among the cells. These fibers can be traced to the inte  相似文献   

13.
陈彬  刘宽  王伟 《卒中与神经疾病》2007,14(5):267-270,314
目的比较研究成年大鼠细胞周期蛋白依赖性激酶抑制因子在神经元和星形胶质细胞的表达差异。方法应用免疫荧光和激光扫描共聚焦显微镜观察成年大鼠生理状态下大脑皮层或海马CA1、CA3、DG区神经元和星形胶质细胞细胞周期蛋白依赖性激酶抑制因子(CDKI)p15Ink4b、p21cipl的表达。结果成年大鼠海马区和大脑皮层的神经元有p15Ink4b和p21cipl的表达,细胞核和细胞浆均有表达,且以胞核为主;星形胶质细胞也有上述细胞周期调控蛋白的表达,便细胞数目较少,并且表达这些指标的星形胶质细胞多聚集在海马区。结论成年大鼠大脑皮层和海马区的神经元和星形胶质细胞均表达p15Ink4b和p21cipl,而其在神经元的表达较星形胶质细胞更为普遍。  相似文献   

14.
Neurofilament proteins are critical to the development and maintenance of neuronal shape in the nervous system. These proteins are developmentally regulated and several transition forms are expressed, prior to full neuronal stabilization. We have studied the spatial distribution and time course of expression of non-phosphorylated neurofilament protein (NPNFP) immunoreactivity in several preparations of rat hippocampus, using a mixture (SMI 311) of several monoclonal antibodies directed against NPNFP epitopes. Differential staining was observed in young and adult hippocampus. Large pyramidal neurons in CA3 and CA4 subfields were strongly immunoreactive in adult hippocampus whereas the smaller CA1 pyramidal neurons, most interneurons and dentate granule cells were immunonegative. SMI 311 staining initially appeared at postnatal day (P) 5 with positive staining in apical dendrites and soma in a few pyramidal neurons in CA3, but almost reached the adult pattern by P10. Compared to adult hippocampus, the number of immunoreactive interneurons in all subfields appeared increased at P10 and P15. In cultures of embryonic hippocampus, all neurons, regardless of their morphology, were SMI 311 positive, suggesting loss of differential expression in tissue culture conditions. However, SMI 311 expression in fetal hippocampal neurons grafted to adult hippocampus was similar to hippocampal neurons which had developed in situ. These results suggest that SMI 311 antibody identifies a distinct group of primarily CA3 and CA4 pyramidal cells in adult hippocampus. The application of SMI 311 immunostaining appears suitable for identification of large CA3 and CA4 pyramidal neurons within hippocampal transplants grafted to adult CNS but not in tissue culture.  相似文献   

15.
Neurogenesis in the rat neostriatum was examined with [3H]thymidine autoradiography. For the animals in the prenatal groups, the initial [3H]thymidine exposures were separated by 24 h; they were the offspring of pregnant females given two injections on consecutive embryonic (E) days (E13–E14, E14–E15, … E21–E22). For the animals in the postnatal (P) groups, the initial [3H]thymidine exposures were separated by 48 h, each group receiving four consecutive injections (P0–P3, P2–P5, P4–P7). On P60, the percentage of labeled cells and the proportion of cells originating during either 24 or 48 h periods were quantified at several anatomical levels for both the large and medium-sized neurons. Neurogenesis of the large neurons occurs mainly between E13 and E16 in a strong caudal-to-rostral gradient. The medium-sized neurons throughout the neostriatum are generated in a prominent ventrolateral-to-dorsomedial gradient so that ventrolateral cells originate mainly between E14 and E18, dorsomedial cells between E18 and E21–22 (fewer than 10% originate between P0 and P4). Medium-sized neurons also show two other gradients. First, there is a superficial-to-deep gradient in the anterior part of the caudoputamen, while more posterior levels have a deep-to-superficial gradient. Second, anterior parts have a caudal-to-rostral gradient while posterior parts have a gradient in the opposite direction. This shift in neurogenetic gradients along both superficial-deep and rostrocaudal directions is developmental evidence that an anterior ‘caudate’ can be separated from a posterior ‘putamen’ in the rat. Finally, neurogenetic gradients in the medium-sized caudoputamen neurons can be linked to the patterns of their anatomical interconnections with the substantia nigra.  相似文献   

16.
The present [3H]thymidine autoradiographic analysis of neurogenesis demonstrates that the neurons which populate the adult cat hippocampus are born between embryonic day (E)22 and E42. In contrast, although neuronal production in the fascia dentata begins on the same day, granule cells in this area continue to be produced throughout prenatal life and into early postnatal life, and probably continues at an extremely low rate well into adulthood. Three major sets of spatiotemporal gradients characterize the production of neurons in Ammon's horn and the fascia dentata. The first set involves the radial axis. Within the hippocampus there exists an inside-out gradient. The reverse gradient is present in the fascia dentata, i.e. outside-in. The second set of gradients involves the transverse or rhinodentate axis. In general the CA3 neurons are born earlier than the CA1 neurons. Within both neuronal layers of the fascia dentata, the hidden blade cells tend to be born earlier than those of the exposed blade. Again, the pattern in the fascia is the reverse of that in the hippocampus proper. A temporal to septal gradient is also present, but this is the weakest of the gradients.  相似文献   

17.
Qualitative and quantitative image analysis of hippocampal vascular bed, after transcardial perfusion of India ink, reveals significant differences among hippocampal subfields and along the septotemporal axis of the rat hippocampus. Ventral hippocampus exhibits significantly higher levels of vascularization compared to dorsal hippocampus, which, however, is characterized by significantly higher capillary density. These results may explain the selective ischemia vulnerability of hippocampus along its septotemporal axis.  相似文献   

18.
Sequential thymidine radiograms from rats injected on days E16, E17, E18, and E19 and killed 2 hours after injection and at daily intervals up to day E22 were used to establish the site of origin, migratory route, and settling patterns of neurons of the nucleus reticularis tegmenti pontis and basal pontine gray. The nucleus reticularis tegmenti pontis neurons, which are produced predominantly on days E15 and E16, derive from the primary precerebellar neuroepithelium. These cells, unlike those of the lateral reticular and external cuneate nuclei, take an anteroventral subpial route, forming the anterior precerebellar extramural migratory stream. This migratory stream reaches the anterior pole of the pons by day E18. In rats injected on day E16 and killed on day E18 some of the cells that reach the pons are unlabeled, indicating that they represent the early component of neurons generated on day E15. The cells labeled on day E16 begin to settle in the pons on day E19, 3 days after their production. These cells, migrating in an orderly temporal sequence, form a posterodorsal-to-anteroventral gradient in the nucleus reticularis tegmenti pontis. Unlike the neurons of all the other precerebellar nuclei, the basal pontine gray neurons derive from the secondary precerebellar neuroepithelium. The secondary precerebellar neuroepithelium forms on day E16 as an outgrowth of the primary precerebellar neuroepithelium, and it remains mitotically active through day E19, spanning the entire period of basal pontine gray neurogenesis. The secondary precerebellar neuroepithelium is surrounded by a horizontal layer of postmitotic cells, representing the head-waters of the anterior precerebellar extramural migratory stream. In rats injected on day E18 and killed on day E19 the cells are labeled in the proximal half of the stream around the medulla but those closer to the pons are unlabeled, indicating an orderly sequence of migration. In rats injected on day E18 and killed on day E20 the labeled cells reach the pole of the pons. In the basal pontine gray the sequentially generated neurons settle in a precise order. The neurons generated on day E16 form a small core posteriorly and the neurons generated on days E17, E18, and E19 form regular concentric rings around the core in an inside-out sequence.  相似文献   

19.
Two populations of aspiny interneurons have been identified in the mammalian striatum, one cholinergic and the other using the neuropeptide somatostatin as a neurotransmitter. The times at which these 2 cell populations undergo their final mitosis were studied by injecting tritiated thymidine into timed pregnant rats and then processing the brains of the progeny as young adults for immunohistochemistry with monoclonal antibodies to choline acetyltransferase and somatostatin followed by autoradiography. Choline acetyltransferase-immunoreactive neurons became postmitotic in a caudal-to-rostral gradient; the occurrence of final mitosis was maximal on embryonic day (E) 12 at the most caudal level and on E15 at the most rostral. A more subtle lateral-to-medial gradient was also observed in the precommissural striatum. In contrast, no obvious gradients were seen with somatostatin-immunoreactive neurons; regardless of their location within the striatum, these neurons underwent their final mitosis on days E15-16, towards the end of cholinergic neurogenesis. These results indicate that although both cholinergic and somatostatin-containing cells represent interneuronal populations in the striatum, they display distinctly different spatiotemporal patterns of neurogenesis.  相似文献   

20.
Short-survival, sequential, and long-survival thymidine radiograms of rat embryos, fetuses, and young pups were analyzed in order to examine the time of origin, settling pattern, migratory route, and site of origin of neurons of the reticular nuclear complex of the thalamus. On the basis of its chrono-architectonics, the reticular nucleus was divided into a central, medial, and lateral subnucleus. The central subnucleus is the earliest produced component of the entire thalamus with over 50% of its neurons being generated on day E13 and another 40% on day E14. Peak production of neurons of the lateral and medial subnuclei is on day E14. There is a lateral (earlier) to medial (later) neurogenetic gradient between these two components of the reticular complex: only about 12% of the lateral subnucleus neurons, but close to 30% of the medial subnucleus neurons, are generated on day E15. Because the lateral and medial subnuclei display the typical outside-in gradient found in the thalamus, they are considered to constitute a single cytogenetic sector; the early generated central subnucleus, which violates this order, is considered to constitute a separate cytogenetic sector. Observations are presented that neurons of the central reticular subnucleus originate in a unique neuroepithelial region, the reticular protuberance. The migration of heavily labeled cells was traced from this region in rats labeled with 3H-thymidine on day E13 and killed on the subsequent days. The neurons of the lateral and medial reticular subnuclei originate in the reticular lobule of the thalamic neuroepithelium. The migration of heavily labeled, spindle-shaped cells was traced from this region in rats labeled with 3H-thymidine on days E14 and E15 and killed at daily intervals thereafter. The neurogenetic gradient of the reticular thalamic complex seen in postnatal rats is established before birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号