首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the skin, multipotent keratinocyte stem cells (KSC) are localised in the hair follicle bulge region. Although, KSC can be cultivated and grown in two-dimensional (2D) culture they rapidly lose stem cell markers when isolated from their niche. Currently, there is no KSC culture method available which recapitulates an environment similar to the KSC niche in the hair follicle. Here we describe the successful establishment of an in vitro 3D stem cell culture model developed from clonally growing keratinocyte lines derived from neonatal mice using culture conditions previously established for human keratinocytes. After 20 passages, keratinocyte lines showed a stable ratio of holoclones (stem cells), meroclones (stem and precursor cells) and paraclones (differentiating cells), with approximately 29% holoclones, 54% meroclones and 17% paraclones, and were thus termed keratinocyte stem and precursor cell (KSPC) cultures. In high calcium medium, KSPC cultures grown at the air-liquid interphase differentiated and formed epidermal equivalents. Notably, and in contrast to primary keratinocytes, keratinocytes from KSPC cultures were able to aggregate and form spherical clusters in hanging drops, a characteristic hallmark shared with other stem cell types. Similar to the in vivo situation in the hair follicle bulge, KSPC aggregates also showed low proliferation, down-regulation of keratin 6, absence of keratin 1, and expression of the KSC markers keratin 15, Sox9, NFATc1 and Zfp145. KSPC aggregates therefore provide an optimal in vitro 3D environment for the further characterisation and study of normal and genetically modified KSPC.  相似文献   

2.
3.
Calprotectin expression by gingival epithelial cells   总被引:5,自引:0,他引:5       下载免费PDF全文
Calprotectin, a heterodimer of MRP8 and MRP14 with antimicrobial properties, is found in the cytosol of neutrophils, monocytes, and human gingival keratinocytes. During inflammation of the oral mucosa, the expression of immunoreactive calprotectin appears upregulated. Given the possible cell sources, we sought to learn if epithelial cells upregulate calprotectin in response to proinflammmatory agents. First, human gingival keratinocytes were maintained in primary culture until senescence. At each passage, cells were harvested and analyzed for quantitative expression of MRP8 and MRP14 subunit mRNA by RNase protection assays and calprotectin complex by enzyme-linked immunosorbent assay. Calprotectin expression was constitutive in the primary gingival keratinocytes, but calprotectin-specific mRNA and protein tended to increase as the cells neared senescence. To test whether calprotectin expression was inducible, immortalized gingival keratinocyte cultures were treated for 2 to 4 h with lipopolysaccharide (LPS) or interleukin-1 beta (IL-1 beta). As a positive control for inducible expression, immortalized keratinocytes were incubated with phorbol myristate acetate (PMA) (50 ng/ml) for 24 h. Incubation with PMA stimulated increased expression of MRP8 and MRP14 mRNA within 2 h, peaking within 5 h. MRP8- and MRP14-specific mRNA expression by immortalized keratinocytes appeared to be unaffected by LPS or IL-1 beta. In contrast, LPS, IL-1 beta, and PMA each upregulated IL-8. These data show that calprotectin mRNA is expressed constitutively in cultured keratinocytes, while expression by immortalized cells appears to be independent of the exogenous proinflammatory agents LPS and IL-1 beta.  相似文献   

4.
The morphologic and antigenic phenotype of normal human melanocytes and keratinocytes was investigated in monolayer and 3-dimensional cultures in an effort to develop an epidermal model that resembles the normal human epidermis. When cultured for several passages in optimal growth medium, pure cultures of either cell type could be established as demonstrated by light and electron microscopy and with monoclonal antibodies defining melanocyte- and keratinocyte-associated antigens. Three-dimensional growth of keratinocytes on polycarbonate filters was induced by increasing calcium concentrations in the culture medium and exposing cultures to air. After 30 to 35 days incubation, the 3-dimensional keratinocyte cultures reached a total of 12 to 25 layers and keratinocytes of various stages of differentiation formed three morphologically and antigenically different strata. The basal layer of these constructs consisted of ovoid cells with desmosomes and hemidesmosome-like structures. These cells expressed low molecular weight cytokeratins similar to basal cells in situ. The intermediate layer, representing the stratum spinosum in situ, contained flat cells with keratohyaline granules and many desmosomes. These cells expressed gp 80 kilodaltons, gp 40 to 50 kilodaltons, involucrin, and filaggrin. The upper layer, the stratum corneum equivalent, contained large, flattened cells with keratohyaline granules. The majority of these cells were anucleate. When melanocytes were cocultured with keratinocytes in monolayer or in epidermal reconstructs, they assumed a multidendritic morphology and donated pigment to surrounding keratinocytes. The majority of pigmented cells localized singly within the basal layer of the reconstructs and their dendrites were intimately associated with keratinocyte plasma membranes. Pigment donation to keratinocytes appeared to occur through the uptake of melanosome-containing dendrite fragments and phagocytosis of individual melanosomes by keratinocytes. It is hypothesized that keratinocytes produce unique microenvironmental factors that regulate the melanocytic phenotype.  相似文献   

5.
We developed a procedure for growing normal epidermal keratinocyte stem cells isolated from a single punch biopsy of adult human skin in long-term culture. Primary skin epithelial cells were maintained in collagen-coated plates with irradiated human neonatal foreskin fibroblasts (line HPI.1) as a feeder for more than 120 days, approximately 115 population doublings, without signs of replicative senescence. Clonal analysis revealed the presence of holoclones, meroclones, and paraclones. Only emerging colonies with high proliferative potentials and extensive capacities for division (holoclones and meroclones) were subcultured, favoring the expansion of stem cells and progenitors capable of prolonged self-maintenance when subcloned, thus accounting for the prevailing long-term proliferation of the original culture. We found that meroclones included bipotent progenitors capable of generating both keratinocytes and mucin-producing cells. The numbers of these cells were greater after confluence, suggesting that commitment for their differentiation occurred late in the life of a single clone. On a three-dimensional gelatin matrix and on a collagen layer containing the fibroblast feeder, cells isolated from the expansion of holoclones and meroclones formed stratified cohesive layers of keratinocytes that were able to further differentiate, as in normal skin. These results indicate that our procedure will serve as a valuable tool to study expansion of epidermal stem cells as well as the growth mechanisms and cell products associated with their growth and differentiation.  相似文献   

6.
Human adult mesenchymal stem cells (MSCs) are rare elements living in various organs (e.g. bone marrow, skeletal muscle), with capability to differentiate in various cell types (e.g. chondrocytes, adipocytes and osteoblasts). In the year 2000, Gronthos and co-workers isolated stem cells from the human dental pulp (DPSCs). Later on, stem cells from exfoliated tooth were also obtained. The aims of our study were to establish protocol of DPSCs isolation and to cultivate DPSCs either from adult or exfoliated tooth, and to compare these cells with mesenchymal progenitor cell (MPCs) cultures. MPCs were isolated from the human bone marrow of proximal femur. DPSCs were isolated from deciduous and permanent teeth. Both cell types were cultivated under the same conditions in the media with 2% of FCS supplemented with PDGF and EGF growth factors. We have cultivated undifferentiated DPSCs for long time, over 60 population doublings in cultivation media designed for bone marrow MPCs. After reaching Hayflick's limit, they still have normal karyotype. Initial doubling time of our cultures was from 12 to 50 hours for first 40 population doublings, after reaching 50 population doublings, doubling time had increased to 60-90 hours. Regression analysis of uncumulated population doublings proved tight dependence of population doublings on passage number and slow decrease of proliferation potential. In comparison with bone marrow MPCs, DPSCs share similar biological characteristics and stem cell properties. The results of our experiments proved that the DPSCs and MPCs are highly proliferative, clonogenic cells that can be expanded beyond Hayflick's limit and remain cytogenetically stable. Moreover we have probably isolated two different populations of DPSCs. These DPSCs lines differed one from another in morphology. Because of their high proliferative and differentiation potential, DPSCs can become more attractive, easily accessible source of adult stem cells for therapeutic purposes.  相似文献   

7.
Human ESCs provide access to the earliest stages of human development and may serve as an unlimited source of functional cells for future cell therapies. The optimization of methods directing the differentiation of human embryonic stem cells (hESCs) into tissue-specific precursors becomes crucial. We report an efficient enrichment of mesenchymal stem cells (MSCs) from hESCs through specific inhibition of SMAD-2/3 signaling. Human ESC-derived MSCs (hESC-MSCs) emerged as a population of fibroblastoid cells expressing a MSC phenotype: CD73+ CD90+ CD105+ CD44+ CD166+ CD45- CD34- CD14- CD19- human leucocyte antigen-DR (HLA-DR)-. After 28 days of SMAD-2/3 inhibition, hESC cultures were enriched (>42%) in multipotent MSCs. CD73+CD90+ hESC-MSCs were fluorescence activated cell sorting (FACS)-isolated and long-term cultures were established and maintained for many passages displaying a faster growth than somatic tissue-derived MSCs while maintaining MSC morphology and phenotype. They displayed osteogenic, adipogenic, and chondrocytic differentiation potential and exhibited potent immunosuppressive and anti-inflammatory properties in vitro and in vivo, where hESC-MSCs were capable of protecting against an experimental model of inflammatory bowel disease. Interestingly, the efficient enrichment of hESCs into MSCs through inhibition of SMAD-2/3 signaling was not reproducible with distinct induced pluripotent stem cell lines. Our findings provide mechanistic insights into the differentiation of hESCs into immunosuppressive and anti-inflammatory multipotent MSCs with potential future clinical applications.  相似文献   

8.
Human embryonic stem cells (hESC) hold tremendous potential in the future of tissue engineering, offering promise as a source of virtually unlimited quantities of desired cell and tissue types. We have identified soluble chemical and extracellular matrix factors that permit isolation of keratinocyte precursors from hESCs. Culturing embryoid bodies (EB) formed from hESCs in a defined serum-free keratinocyte growth medium on a gelatin matrix generated keratin 14 (K14) expressing cells with an epithelial morphology. These K14 expressing cells could be subcultured in medium supplemented with hydrocortisone and induced to stratify and terminally differentiate by addition of calcium. Optimum times for obtaining K14 expressing cells were found for EB formation and for differentiation and growth of cultures after EB plating. EB formation was not necessary to generate keratinocyte precursors; direct transfer of hESC colonies to keratinocyte growth medium permitted differentiation into the keratinocyte lineage. With further studies to optimize generation and purification of hESC-derived keratinocyte precursors, these cells could provide a source of epidermal cells for skin tissue engineering applications in vitro or in vivo.  相似文献   

9.
Expression of the betapapillomavirus (betaPV) E6/E7 genes has been shown to impair both keratinocyte differentiation and apoptosis. Especially late-terminal keratinocyte differentiation shares certain aspects with apoptosis, such as fragmentation of DNA and activation of caspases. Here we investigated the disruption of keratinocyte differentiation in organotypic skin (raft) cultures of primary (PHK) and immortalized (N/TERT) human keratinocytes, in particular by human papillomavirus (HPV)8.Immunohistochemical analysis of HPV5 and HPV8 E6/E7-expressing PHK revealed thickening of the rafts and complete absence of stratum corneum formation, even after 18 days of culture. This phenotype was confirmed in N/TERT raft cultures. When expressed separately, the aberrant morphology was observed only in rafts expressing E6, not E7. Immunofluorescence analysis of HPV8 E6 PHK rafts showed an increase in number and size of Filaggrin- and Caspase-14-positive cells in the granular layer. In raft lysates analyzed by western-blot, the presence of pro-Caspase-14 in the differentiated keratinocytes was confirmed, but in the HPV8 E6 rafts none of the Caspase-14 subunits were detected.In conclusion, in the raft system, HPV8 E6 prevented late-terminal keratinocyte differentiation resulting in an accumulation of Filaggrin and pro-Caspase-14-positive cells in the absence of stratification. This differentiation arrest was accompanied by the failure to express Caspase-14 subunits, suggesting absence of Caspase-14 activation and probable abrogation of Filaggrin maturation in HPV8 E6-expressing keratinocytes.  相似文献   

10.
We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

11.
BACKGROUND:It is unclear whether serial cell passage in vitro influences the differentiation of bone marrow mesenchymal stem cells into neural stem cells. OBJECTIVE:To investigate the effect of cell passage on the differentiation of bone marrow mesenchymal stem cells into neural stem cells. METHODS:Rat bone marrow mesenchymal stem cells were isolated and cultured by the whole bone marrow adherence method. Bone marrow mesenchymal stem cells at passages 3, 6, 9, 12 were incubated in serum-free medium. After culture for 7 and 14 days, cell biological characterization was observed and differenitaiton ability into neural stem cells was observed by detecting Nestin expression in cells using flow cytometry. Then, the cells were further induced to differentiate and cell multipotential differentiation capacity was detected by measurement of nerve enolase and glial acidic protein expression. RESULTS AND CONCLUSION:Under induction, bone marrow mesenchymal stem cells at different passages were all differentiated into Nestin-positive neural stem cells. However, there was a significant difference in differentiation proportion of cells at different passages (P < 0.05). Strongest differentiation ability was found in the passage 6 cells, with the Nestin expression up to (93.7±2.3)% at 7 days of induction and (96.2±1.8)% at 14 days of induction. The proportion of differentiated cells at passages 6 and 9 was signfiicantly higher than that at passages 3 and 12. Moreover, adherent cells were positive for nerve enolase and glial acidic protein. All these findings indicate that the differentiation of bone marrow mesenchymal stem cells into neural stem cells is correlated with cell passage. Cells at lower or higher passages are both detrimental to cell differentiation.  相似文献   

12.
The 14-3-3sigma gene has been implicated in G2/M cell cycle arrest by p53, and the loss of 14-3-3sigma protein expression has been reported in diverse human cancers. However, the role of 14-3-3sigma in the signaling pathway of the cell cycle in the progression of intrahepatic cholangiocarcinoma has not been well understood. To clarify the role of 14-3-3sigma, we examined the protein expressions of 14-3-3sigma, cyclin B1, and p53 in 93 cases of intrahepatic cholangiocarcinoma by immunohistochemical staining. We also examined the correlation between these expressions and survival rate and clinicopathologic factors such as sex, age, tumor grade (ie, pathologic differentiation, tumor size, lymphatic permeation, vascular invasion, perineural invasion, lymph node metastasis), and tumor stage. Positive 14-3-3sigma protein expression (>30% of tumor cells) was observed in 67.7% (63/93) of cases of intrahepatic cholangiocarcinoma and was inversely correlated with cyclin B1 expression. No correlation was found between 14-3-3sigma expression and p53 expression or clinicopathologic factors; however, decreased 14-3-3sigma expression was an independent prognostic factor by multivariate survival analysis (P = .0282). Extensive methylation of 14-3-3sigma was found by methylation-specific polymerase chain reaction and sequence; however, no significant correlation was detected between methylation states and protein expression. These results indicate that depressed 14-3-3sigma protein is involved in the uncontrolled cell cycle in intrahepatic cholangiocarcinoma and that the decreased expression of 14-3-3sigma protein is a significant indicator of poor prognosis for patients with intrahepatic cholangiocarcinoma.  相似文献   

13.
Caspase-14 is a nonapoptotic caspase family member whose expression in the epidermis is confined to the suprabasal layers, which consist of differentiating keratinocytes. Proteolytic activation of this caspase is observed in the later stages of epidermal differentiation. In psoriatic skin, a dramatic decrease in caspase-14 expression in the parakeratotic plugs was observed. Topical treatment of psoriatic lesions with a vitamin D3 analogue resulted in a decrease of the psoriatic phenotype and an increase in caspase-14 expression in the parakeratotic plugs. To investigate whether vitamin D3 directly affects caspase-14 expression levels, we used keratinocyte cell cultures. 1alpha,25-Dihydroxycholecalciferol, the biologically active form of vitamin D3, increased caspase-14 expression, whereas retinoic acid inhibited it. Moreover, retinoic acid repressed the vitamin D3-induced caspase-14 expression level. In addition, the use of organotypic skin cultures demonstrated that 1alpha,25-dihydroxycholecalciferol enhanced epidermal differentiation and caspase-14 activation, whereas retinoic acid completely blocked caspase-14 processing. Our data indicate that caspase-14 plays an important role in terminal epidermal differentiation, and its absence may contribute to the psoriatic phenotype.  相似文献   

14.
Retinoic acid (RA) plays an important role in the regulation of keratinocyte growth, differentiation, and senescence; however, the detailed mechanisms of RA regulation are still unclear. To investigate whether all-trans RA extends the in vitro lifespan of normal human epidermal keratinocytes (NHEKs) by affecting mitotic capacity and/or senescence, we studied the effects of all-trans RA on cell growth, senescence, the expression of betaig-h3 and Rb cell cycle regulators, and the telomerase activity of NHEKs after RA exposure. When primary NHEKs were cultured in medium containing 1 nM of all-trans RA, the proliferation and replicative senescence of the cells was significantly stimulated and inhibited, respectively, and the in vitro lifespan of the cells increased 1.4- to 1.5-fold compared to the vehicle control. The levels of betaig-h3 and p16 in 1 nM of RA-treated cells remained significantly lower than that of the vehicle control at all population doublings. All-trans RA also triggered induction of telomerase activity in NHEKs with increasing a population doublings induced by RA treatment. These results support that the ability of all-trans RA to postpone, but not prevent, senescence may be related to both partial inhibition of p16 and betaig-h3 expression and induction of telomerase activity.  相似文献   

15.
Engineered skin substitutes (ESS) composed of autologous fibroblasts and keratinocytes attached to collagen-glycosaminoglycan (GAG) scaffolds are effective adjuncts in the treatment of massive burns. The Kerator, an automated bioreactor for keratinocyte culture, could hypothetically reduce labor and material requirements, and increase availability of ESS. Human keratinocytes were cultured in the Kerator and also in tissue-culture flasks. It was found that keratinocyte confluence increased exponentially with time in both the Kerator (r2=0.99) and the flasks (r2=0.96). Confluence (mean+/-SEM) of keratinocytes in the flasks (28+/-2.3%) was significantly higher than in the Kerator (18+/-0.93%) at day 4. However, there was no difference in confluence at harvest. The colony forming efficiency (CFE) and population doublings (PD) per day of keratinocytes harvested from the Kerator were 67+/-4.7% and 0.80+/-0.06, respectively, and were not different from the corresponding values for keratinocytes from flasks. ESS fabricated with keratinocytes from the Kerator or from the flasks were comparable in vitro in terms of histological anatomy, cellular viability, and surface hydration. These findings show that there are no differences between keratinocytes from the Kerator and those from the flasks regarding (a) growth to confluence, (b) CFE and growth rate (PD/day), or (c) quality of ESS in vitro, suggesting that the Kerator can automate fabrication of ESS and increase its availability for treatment of skin wounds.  相似文献   

16.
Stem cell-like keratinocytes are responsible for the high regenerative potential of the skin. For clinical applications using keratinocytes in artificial skin constructs, it is suitable to work with serum-free medium under defined conditions. This is also true for the preceding expansion of the stem cell-like keratinocyte population. Therefore, we analyzed the effect of a serum-free medium on the population distribution in comparison to an established serum-containing standard medium for keratinocyte culture. We quantified the freshly isolated as well as cultured primary human keratinocytes by their expression of the beta(1) integrin (CD29) in combination with the expression of the alpha(6) integrin (CD49f) and the transferrin receptor (CD71) by flow cytometric methods. We were able to show that cultivation with serum-free medium induces a switch of the cell population to higher expression of the beta(1) integrin. In addition, the proportion of the alpha(6)(bri)/ CD71(dim)-expressing keratinocyte cell population was enhanced about 35.4 +/- 6.56% after cultivation with serum-free medium. Culture in serum-containing medium increased this proportion of the keratinocyte cell population only about 17.3 +/- 8.06%, when compared to the alpha(6)(bri)/ CD71(dim)-expressing keratinocyte cell population measured directly after isolation. Our data show that the applied culture conditions already have an enormous impact on the development of a stem cell-like phenotype of keratinocytes. This work demonstrates that the serum-free medium significantly increases the proportion of beta(1)(bri)/alpha(6)(bri)/CD71(dim)-expressing keratinocytes. In conclusion, these findings implicate new applications in keratinocyte stem cell research and regenerative medicine.  相似文献   

17.
Three HPV-16--and four HPV-18--immortalized human foreskin keratinocyte cell lines were analyzed on organotypic epidermal raft cultures at various passage levels. This culture system allowed normal cultured keratinocytes to stratify and differentiate in a manner similar to normal epidermis. All seven HPV-immortalized cell lines displayed epidermal morphologies on organotypic cultures, which were clearly abnormal and resembled premalignant lesions in vivo. Features of premalignant lesions that were shared by all of the HPV-immortalized cell lines included disorganized tissue architecture, mitotic cells present throughout the living layers of the epidermal sheet, abnormal mitoses, enlarged nuclei, and variable cell size and shape. Most HPV-immortalized cell lines were stable in terms of epidermal morphology with long-term passage in culture. Two of the HPV-18--immortalized cell lines, however, lost all morphologically apparent terminal squamous differentiation potential after long-term passage in monolayer culture. These results strongly support the idea that immortalization of squamous epithelial cells in culture by HPV-transforming genes generates a morphologically premalignant cell.  相似文献   

18.
Reproducible isolation and long term culture of epidermal keratinocytes from transgenic mouse lines is critically needed but most techniques have been unsuccessful. In this report we describe in detail a simplified method to isolate putative keratinocyte stem cells from newborn mouse skin and to maintain them for long term in culture. The cell cultures were established by enzymatically separating keratinocytes from newborn mouse skin. For selecting the putative keratinocyte stem cells for culture, the cells are allowed to attach for 10 minutes on a composite matrix made of type I collagen and fibronectin. Unattached cells were discarded and the attached cells were cultured in a defined culture medium containing low Ca2+ concentration, 9% FBS, conditioned medium from newborn mouse skin fibroblasts, and EGF. For subculturing, the cells were seeded on tissue culture plastic. The isolated cells showed the typical basal keratinocyte morphology and expressed the epithelial cell specific integrin v6. The expression level of v6 integrin was comparable to human skin keratinocytes. The keratinocytes were also able to differentiate to form an epidermis in an organotypic culture model. By using the described protocol, the keratinocytes from frozen stocks have been subcultured up to 26 times without change in cell viability, proliferation rate or morphology.  相似文献   

19.
Previous work has shown that keratinocytes can be cultured serum-free on an acid-functionalized, plasma-polymerized surface (for subsequent delivery to patients' wound beds) by inclusion of a fibroblast feeder layer. This study seeks to extend this work by substituting human for murine feeder cells in serum-free culture and examining the performance of keratinocytes expanded in this way to transfer to an in vitro human dermal wound bed model. We compared murine and human fibroblasts (both short-term dermal fibroblasts and a fetal lung fibroblast cell line MRC-5, which has a long history in human vaccine production), alternative methods for growth-arresting fibroblasts, establishing culture of cells serum-free, and the impact of culture with fibroblasts on the differentiation of the keratinocytes. Irradiated human and murine fibroblasts were equally effective in supporting initial keratinocyte expansion, both in the presence and absence of serum. Keratinocytes were significantly less differentiated, as assessed by measuring involucrin expression relative to DNA when grown serum-free with fibroblasts than when grown with serum. Initial cultures of fibroblasts and keratinocytes could be initiated serum-free but were much slower to establish than if serum were used. Transfer of keratinocytes from keratinocyte/fibroblast co-cultures cultured on a plasma polymer surface to a human dermal wound bed model was as successful as from monocultures in both serum and serum-free cultures. In summary, we have revisited a well-accepted methodology for expanding human keratinocytes for clinical use and avoided the use of bovine serum and a mouse fibroblast feeder layer by introducing an irradiated human fibroblast feeder layer.  相似文献   

20.
The Notch signaling pathway is a promising target for controlling cell fate choices at the biomaterial-tissue interface. Building on our previous work in developing Notch-signaling biomaterials, we evaluated various immobilization schemes for Notch ligands, and their effect on human foreskin keratinocytes. A peptide sequence derived from the Jagged-1 DSL-region and immobilized to poly(2-hydroxyethyl methacrylate) (polyHEMA) showed no bioactivity in relation to the Notch-CSL pathway. The full-length Jagged-1 protein immobilized directly to the polyHEMA surface showed activity in signaling the Notch-CSL pathway. However, an indirect affinity immobilization approach yielded a stronger signal. Human keratinocytes plated on bound Jagged-1 showed upregulated involucrin, keratin 10, and loricrin protein expression, with this expression being cell density-dependent. Utilizing a human foreskin rafted organ culture model as a bridge between in vitro and in vivo studies, Jagged-1-modified or control polyHEMA rods were implanted in human foreskin and cultured at the air-medium interface. Keratinocyte proliferation was suppressed and intermediate-stage differentiation promoted in Jagged-1-modified rods compared with control rods. Thus, Notch-signaling biomaterials provide a robust approach to control keratinocyte differentiation and may find application to other progenitor and stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号