首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The engineered Fc‐nonbinding (crystallizable fragment‐nonbinding) CD3 antibody has lower mitogenicity and a precise therapeutic window for disease remission in patients with type 1 diabetes. Before anti‐CD3 can be considered for use in transplantation, the most effective timing of treatment relative to transplantation needs to be elucidated. In this study anti‐CD3F(ab′)2 fragments or saline were administered intravenously for 5 consecutive days (early: d1–3 or delayed: d3–7) to mice transplanted with a cardiac allograft (H2b‐to‐H2k; d0). Survival of allografts was prolonged in mice treated with the early protocol (MST = 48 days), but most were rejected by d100. In contrast, in mice treated with the delayed protocol allografts continued to survive long term. The delayed protocol significantly inhibited donor alloreactivity at d30 as compared to the early protocol. A marked increase in Foxp3+ T cells (50.3 ± 1.6%) infiltrating the allografts in mice treated with the delayed protocol was observed (p < 0.0001 vs. early (24.9 ± 2.1%)) at d10; a finding that was maintained in the accepted cardiac allografts at d100. We conclude that the timing of treatment with anti‐CD3 therapy is critical for inducing long‐term graft survival. Delaying administration effectively inhibits the alloreactivity and promotes the dominance of intragraft Foxp3+ T cells allowing long‐term graft acceptance.  相似文献   

2.
CD4+ regulatory T cells play a critical role in tolerance induction in transplantation. CD8+ suppressor T cells have also been shown to control alloimmune responses in preclinical and clinical models. However, the exact nature of the CD8+ suppressor T cells, their induction and mechanism of function in allogeneic transplantation remain elusive. In this study, we show that functionally suppressive, alloantigen‐specific CD8+Foxp3+ T cells can be induced and significantly expanded by stimulating naïve CD8+ T cells with donor dendritic cells in the presence of IL‐2, TGF‐β1 and retinoic acid. These CD8+Foxp3+ T cells express enhanced levels of CTLA‐4, CCR4 and CD103, inhibit the up‐regulation of costimulatory molecules on dendritic cells, and suppress CD4 and CD8 T cell proliferation and cytokine production in a donor‐specific and contact‐dependent manner. Importantly, upon adoptive transfer, the induced CD8+Foxp3+ T cells protect full MHC‐mismatched skin allografts. In vivo, the CD8+Foxp3+ T cells preferentially traffic to the graft draining lymph node where they induce conventional CD4+Foxp3+ T cells and concurrently suppress effector T cell expansion. We conclude that donor‐specific CD8+Foxp3+ suppressor T cells can be induced and exploited as an effective form of cell therapy for graft protection in transplantation.  相似文献   

3.
Alloantibodies mediate acute antibody‐mediated rejection as well as chronic allograft rejection in clinical transplantation. To better understand the cellular dynamics driving antibody production, we focused on the activation and differentiation of alloreactive B cells in the draining lymph nodes and spleen following sensitization to allogeneic cells or hearts. We used a modified staining approach with a single MHC Class I tetramer (Kd) bound to two different fluorochromes to discriminate between the Class I‐binding and fluorochrome‐streptavidin‐binding B cells with a high degree of specificity and binding efficiency. By Day 7–8 postsensitization, there was a 1.5‐ to 3.2‐fold increase in the total numbers of Kd‐binding B cells. Within this Kd‐binding B cell population, approximately half were IgDlow, MHC Class IIhigh and CD86+, 30–45% expressed a germinal center (Fas+GL7+) phenotype and 3–12% were IRF4hi plasma cells. Remarkably, blockade with anti‐CD40 or CTLA‐4Ig, starting on Day 7 postimmunization for 1 or 4 weeks, completely dissolved established GCs and halted further development of the alloantibody response. Thus MHC Class I tetramers can specifically track the in vivo fate of endogenous, Class I‐specific B cells and was used to demonstrate the ability of delayed treatment with anti‐CD154 or CTLA‐4Ig to halt established allo‐B cell responses.  相似文献   

4.
Sun L, Yi S, O’Connell PJ. Foxp3 regulates human natural CD4+CD25+ regulatory T‐cell‐mediated suppression of xenogeneic response. Xenotransplantation 2010; 17: 121–130. © 2010 John Wiley & Sons A/S. Abstract: Backgrounds: Cellular rejection of xenografts is predominantly mediated by CD4+ T cells. Foxp3 expressing human naturally occurring CD4+CD25+ regulatory T cells (nTregs) have been shown to suppress pathological and physiological immune responses, including the CD4+ T‐cell‐mediated anti‐pig xenogeneic response in vitro. Although Foxp3 is required for nTreg development and their function, the precise role of Foxp3 in regulating Treg suppressive function in xenoimmune response remains to be identified. Methods: In vitro expanded human nTregs were transfected with fluorescein isothiocyanate ‐conjugated Foxp3 small interfering RNA (siRNA) by Lipofectamine 2000. Transfected nTregs were sorted by fluorescence‐activated cell sorting, and then analyzed for Foxp3 gene and protein expression as well as their phenotypic characteristics. Human CD4+CD25? T cells were stimulated with xenogeneic pig peripheral blood mononuclear cell in the presence or absence of nTregs in a coculture or transwell system for evaluation of nTreg suppressive activity. The production of effector cytokines by xenoreactive CD4+CD25? T cells as well as suppressive cytokine by nTregs in their cocultures was examined by ELISA. Results: The siRNA‐mediated Foxp3 knockdown resulted in impaired nTreg anergic state, downregulated expression of nTreg function associated molecules, and reduced production of suppressive cytokines by nTregs, which together leading to impaired nTreg‐mediated suppression of CD4+CD25? T‐cell proliferation and their effector cytokine production in response to xenogeneic stimulation. Conclusions: This study demonstrates that Foxp3 expression is required for human nTregs to maintain their suppressive function in the xenoimmune response.  相似文献   

5.
Inductive therapy with anti‐CD4 or anti‐CD40L monoclonal antibodies (mAb) leads to long‐term allograft acceptance but the immune parameters responsible for graft maintenance are not well understood. This study employed an adoptive transfer system in which cells from mice bearing long‐term cardiac allografts following inductive anti‐CD4 or anti‐CD40L therapy were transferred into severe combined immunodeficiency (SCID) allograft recipients. SCID recipients of cells from anti‐CD4‐treated mice (anti‐CD4 cells) did not reject allografts while those receiving cells from anti‐CD40L‐treated mice (anti‐CD40L cells) did reject allografts. Carboxyfluorescein succinimidyl ester (CFSE) labeling of transferred cells revealed that this difference was not associated with differential proliferative capacities of these cells in SCID recipients. Like cells from naïve mice, anti‐CD40L cells mounted a Th1 response following transfer while anti‐CD4 cells mounted a dominant Th2 response. Early (day 10) T‐cell priming was detectable in both groups of primary allograft recipients but persisted to day 30 only in recipients treated with anti‐CD4 mAb. Thus, anti‐CD40L therapy appears to result in graft‐reactive T cells with a naïve phenotype while anti‐CD4 therapy allows progression to an altered state of differentiation. Additional data herein support the notion that anti‐CD40L mAb targets activated, but not memory, cells for removal or functional silencing.  相似文献   

6.
The advent of costimulation blockade provides the prospect for targeted therapy with improved graft survival in transplant patients. Perhaps the most effective costimulation blockade in experimental models is the use of reagents to block the CD40/CD154 pathway. Unfortunately, successful clinical translation of anti‐CD154 therapy has not been achieved. In an attempt to develop an agent that is as effective as previous CD154 blocking antibodies but lacks the risk of thromboembolism, we evaluated the efficacy and safety of a novel anti‐human CD154 domain antibody (dAb, BMS‐986004). The anti‐CD154 dAb effectively blocked CD40‐CD154 interactions but lacked crystallizable fragment (Fc) binding activity and resultant platelet activation. In a nonhuman primate kidney transplant model, anti‐CD154 dAb was safe and efficacious, significantly prolonging allograft survival without evidence of thromboembolism (Median survival time 103 days). The combination of anti‐CD154 dAb and conventional immunosuppression synergized to effectively control allograft rejection (Median survival time 397 days). Furthermore, anti‐CD154 dAb treatment increased the frequency of CD4+CD25+Foxp3+ regulatory T cells. This study demonstrates that the use of a novel anti‐CD154 dAb that lacks Fc binding activity is safe without evidence of thromboembolism and is equally as potent as previous anti‐CD154 agents at prolonging renal allograft survival in a nonhuman primate preclinical model.  相似文献   

7.
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60–90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allo specific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.  相似文献   

8.
CD40/CD154 interactions are essential for productive antibody responses to T‐dependent antigens. Memory CD4 T cells express accelerated helper functions and are less dependent on costimulation when compared with naïve T cells. Here, we report that donor‐reactive memory CD4 T cells can deliver help to CD40‐deficient B cells and induce high titers of IgG alloantibodies that contribute to heart allograft rejection in CD40?/? heart recipients. While cognate interactions between memory helper T and B cells are crucial for CD40‐independent help, this process is not accompanied by germinal center formation and occurs despite inducible costimulatory blockade. Consistent with the extrafollicular nature of T/B cell interactions, CD40‐independent help fails to maintain stable levels of serum alloantibody and induce differentiation of long‐lived plasma cells and memory B cells. In summary, our data suggest that while CD40‐independent help by memory CD4 T cells is sufficient to induce high levels of pathogenic alloantibody, it does not sustain long‐lasting anti‐donor humoral immunity and B cell memory responses. This information may guide the future use of CD40/CD154 targeting therapies in transplant recipients containing donor‐reactive memory T cells.
  相似文献   

9.
目的 观察肾移植患者外周血中CD4+CD25+调节性T细胞水平及其表面特异性标志物Foxp3和可溶性白细胞介素2受体(sIL-2R)的变化,探讨其在诊断移植肾急性排斥反应中的作用和价值。 方法 选取42例维持性血液透析接受同种异体肾移植治疗的患者及30例健康体检对照者。在患者移植前、移植后1、2、4、8周或发生排斥反应时,以流式细胞仪检测外周血中CD4+CD25+调节性T细胞水平;荧光定量PCR检测Foxp3 mRNA表达;双抗体夹心酶联免疫吸附法(ELISB)检测血浆中sIL-2R水平。 结果 (1)移植后第1、2、4、8周急性排斥反应组CD4+CD25+调节性T细胞、Foxp3 mRNA水平明显低于同期未发生排斥的肾功能稳定组,而sIL-2R水平却显著高于肾功能稳定组。(2)血液透析患者外周血CD4+CD25+调节性T细胞[(9.22±3.53)%]、Foxp3 mRNA[(0.82±0.36)×10-3]及sIL-2R[(856.30±108.24) U/ml]水平与健康对照组[分别为(6.09±1.99)%、(0.50±0.28)×10-3、(247.35±11.24) U/ml]比较,差异均有统计学意义(P < 0.01)。(3)肾移植后随着肾功能的恢复,外周血CD4+CD25+调节性T细胞[(16.53±4.14)%]、Foxp3 mRNA[(4.97±1.94)×10-3]显著升高(P < 0.01),而sIL-2R[(463.72±31.23)U/ml]水平明显降低(P < 0.01)。(4)当发生急性排斥反应时,CD4+CD25+调节性T细胞[(12.18±2.86)%]、Foxp3 mRNA[(3.15±1.22)×10-3]显著降低(P < 0.01),而sIL-2R[(748.36±115.41) U/ml]水平明显升高(P < 0.01),并且这些变化早于Scr的变化。(5)患者移植前后外周血CD4+CD25+调节性T细胞百分率与Foxp3 mRNA水平均呈正相关(分别为r = 0.904、0.932,P < 0.01),但与sIL-2R水平无相关。 结论 外周血CD4+CD25+调节性T细胞、Foxp3 mRNA及sIL-2R水平的测定均可以作为肾移植患者移植后发生急性排斥反应的早期预测指标,并可判断预后。  相似文献   

10.
目的 观察CD4+ CD25+调节T细胞(Treg)/辅助性T细胞17(Th17)细胞在脓毒症大鼠炎性免疫反应中的作用.方法 110只雄性SD大鼠随机分为正常对照组、假手术组、脓毒症(CLP)组,采用改良的盲肠结扎穿孔术(CLP)制作大鼠脓毒症模型.采用流式细胞术检测CD14+单核细胞表面人类白细胞抗原-DR基因(HLA-DR)表达率、Treg细胞及TH17细胞比例;酶联免疫吸附试验(ELISA)检测白细胞介素(IL)-6、IL-10、肿瘤坏死因子(TNF)-α、转化生长因子(TGF)-β、白细胞介素(IL)-17炎性因子蛋白表达.结果 与假手术组比较:(1)伴随着脓毒症病情的发展,大鼠出现明显的免疫抑制,CD14+单核细胞HLA-DR表达率<30%,IL-10/TNF-α比值(27.41 ±7.04比6.63 ±2.60)明显增高(P<0.01).(2)术后96 h脓毒症大鼠Treg细胞[(11.91±3.88)%比(6.57±2.60)%,P<0.01]和Th17细胞[(5.14±0.29)%比(2.85±0.07)%,P<0.01]表达明显增高.(3)术后96 h脓毒症组前炎性细胞因子IL-6[(42.31±15.89) ng/L比(6.32 ±3.18) ng/L,P<0.01]、IL-10[(69.89 ±20.78) ng/L比(13.58±5.37) ng/L,P<0.01]、TNF-α[(5.03±3.10) ng/L比(2.77±1.10) ng/L,P<0.01]、TGF-β[(4.99±2.01) ng/L比(1.88±1.07) ng/L,P<0.01]、IL-17[(92.77±11.64) ng/L比(7.58±2.30) ng/L,P<0.01]表达明显增高.结论 伴随着脓毒症病情的发展,大鼠出现明显的免疫抑制;在大鼠脓毒症的发生发展中,Treg细胞介导的免疫抑制及Th17细胞介导免疫激活反应同时存在;脓毒症细胞因子微环境变化可能是导致Treg细胞/Th17细胞失衡的原因之一.  相似文献   

11.
The goal of the study was to determine how the changed balance of host naïve and regulatory T cells observed after conditioning with total lymphoid irradiation (TLI) and antithymocyte serum (ATS) promotes tolerance to combined organ and bone marrow transplants. Although previous studies showed that tolerance was dependent on host natural killer T (NKT) cells, this study shows that there is an additional dependence on host CD4+CD25+ Treg cells. Depletion of the latter cells before conditioning resulted in rapid rejection of bone marrow and organ allografts. The balance of T‐cell subsets changed after TLI and ATS with TLI favoring mainly NKT cells and ATS favoring mainly Treg cells. Combined modalities reduced the conventional naïve CD4+ T cells 2800‐fold. The host type Treg cells that persisted in the stable chimeras had the capacity to suppress alloreactivity to both donor and third party cells in the mixed leukocyte reaction. In conclusion, tolerance induction after conditioning in this model depends upon the ability of naturally occurring regulatory NKT and Treg cells to suppress the residual alloreactive T cells that are capable of rejecting grafts.  相似文献   

12.
CD8+ memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T‐cell costimulatory pathway in alloreactive CD8+/CD4+ T‐cell activation. CD27‐deficient (CD27?/?) and wild‐type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4+ or CD8+ T cells, suggesting that CD27 is not essential during primary T‐cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27?/? or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor‐type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40‐ but not day 10‐sensitized CD27?/? recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8+ T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27?/? recipients of class I‐ but not class II‐mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8+ memory T cells in acute and chronic allograft rejection.  相似文献   

13.
14.
Acute cellular rejection (ACR) is a common and important clinical complication following lung transplantation. While there is a clinical need for the development of novel therapies to prevent ACR, the regulation of allospecific effector T‐cells in this process remains incompletely understood. Using the MHC‐mismatched mouse orthotopic lung transplant model, we investigated the short‐term role of anti‐CD154 mAb therapy alone on allograft pathology and alloimmune T‐cell effector responses. Untreated C57BL/6 recipients of BALB/c left lung allografts had high‐grade rejection and diminished CD4+: CD8+ graft ratios, marked by predominantly CD8+>CD4+ IFN‐γ+ allospecific effector responses at day 10, compared to isograft controls. Anti‐CD154 mAb therapy strikingly abrogated both CD8+ and CD4+ alloeffector responses and significantly increased lung allograft CD4+: CD8+ ratios. Examination of graft CD4+ T‐cells revealed significantly increased frequencies of CD4+CD25+Foxp3+ regulatory T‐cells in the lung allografts of anti‐CD154‐treated mice and was associated with significant attenuation of ACR compared to untreated controls. Together, these data show that CD154/CD40 costimulation blockade alone is sufficient to abrogate allospecific effector T‐cell responses and significantly shifts the lung allograft toward an environment predominated by CD4+ T regulatory cells in association with an attenuation of ACR.  相似文献   

15.
CD40–CD154 pathway blockade prolongs renal allograft survival in nonhuman primates (NHPs). However, antibodies targeting CD154 were associated with an increased incidence of thromboembolic complications. Antibodies targeting CD40 prolong renal allograft survival in NHPs without thromboembolic events but with accompanying B cell depletion, raising the question of the relative contribution of B cell depletion to the efficacy of anti‐CD40 blockade. Here, we investigated whether fully silencing Fc effector functions of an anti‐CD40 antibody can still promote graft survival. The parent anti‐CD40 monoclonal antibody HCD122 prolonged allograft survival in MHC‐mismatched cynomolgus monkey renal allograft transplantation (52, 22, and 24 days) with accompanying B cell depletion. Fc‐silencing yielded CFZ533, an antibody incapable of B cell depletion but still able to potently inhibit CD40 pathway activation. CFZ533 prolonged allograft survival and function up to a defined protocol endpoint of 98–100 days (100, 100, 100, 98, and 76 days) in the absence of B cell depletion and preservation of good histological graft morphology. CFZ533 was well‐tolerated, with no evidence of thromboembolic events or CD40 pathway activation and suppressed a gene signature associated with acute rejection. Thus, use of the Fc‐silent anti‐CD40 antibody CFZ533 appears to be an attractive approach for preventing solid organ transplant rejection.  相似文献   

16.
17.
目的 研究CD4+CD25+调节性T细胞在诱导自发性肝脏免疫耐受中的作用.方法 向受体和供体注射抗CD25抗体(PC61)后进行小鼠原位肝脏移植,观测其生存时间.术后20~30 d切取移植肝脏行HE染色,同时观察CD4+CD25+T细胞对CD4+T细胞和CD8+T细胞功能的影响.结果 去除受体而不是供体小鼠的CD4+CD25+T细胞可以导致肝移植排斥反应.而且,去除CD4+CD25+T细胞使移植物的白细胞浸润明显增多,组织损伤加重.同时,去除CD4+CD25+T细胞导致CD4+T细胞的增殖活性和CD8+T细胞的细胞毒活性明显增强.结论 受体来源的CD4+CD25+调节性T细胞在小鼠肝脏移植免疫耐受诱导中起重要作用.
Abstract:
Objective To examine the contribution of CD4+ CD25+ regulatory T cells to liver transplant tolerance. Methods After injection of anti-CD25 monoclonal antibody (mAb, PC61), mouse orthotopic liver transplantation was performed and survivals were determined. The paraffin-embedded sections of hepatic allografts were cut and stained with hematoxylin and eosin (HE). Furthermore, the effect of CD4+ CD25+ regulatory T cells on proliferative response of CD4+ T cells and cytotoxicity of CD8+ T cells was examined by depleting these regulatory T cells. Results Depletion of these cells in the recipients but not in the donors before liver transplantation caused rejection. Histological analyses of hepatic allografts with PC61 treatment showed extensive leukocyte infiltration and tissue destruction, whereas those in the control group showed minimal changes. Moreover, elimination of CD4+CD25+ T cells resulted in the enhancement of both proliferative response of CD4+ T cells and cytotoxicity of CD8+ T cells against donor-type alloantigen. Conclusions These results suggest that CD4+CD25+ regulatory T cells were important for tolerance induction to hepatic allografts.  相似文献   

18.
19.
The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG‐treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well‐preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long‐surviving recipients showed donor‐specific tolerance, accepting secondary (donor‐matched) Wistar cardiac allografts, but acutely rejecting third‐party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA‐treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor‐specific tolerance. In conclusion, CD28 SA treatment successfully induces donor‐specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号