首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aloe‐emodin (1,8‐dihydroxy‐3‐hydroxymethyl‐anthraquinone) is one of the primary active compounds in total rhubarb anthraquinones isolated from some traditional medicinal plants such as Rheum palmatum L. and Cassia occidentalis, which induce hepatotoxicity in rats. Thus, the aim of this study was to determine the potential cytotoxic effects and the underlying mechanism of aloe‐emodin on human normal liver HL‐7702 cells. The CCK‐8 assays demonstrated that aloe‐emodin decreased the viability of HL‐7702 cells in a dose‐dependent and time‐dependent manner. Aloe‐emodin induced S and G2/M phase cell cycle arrest in HL‐7702 cells. This apoptosis was further investigated by flow cytometry and nuclear morphological changes by DAPI staining, respectively. Moreover, aloe‐emodin provoked the production of intracellular reactive oxygen species and the depolarization of mitochondrial membrane potential (MMP). Further studies by western blot indicated that aloe‐emodin dose‐dependently up‐regulated the levels of Fas, p53, p21, Bax/Bcl‐2 ratio, and cleaved caspase‐3, ‐8, ‐9, and subsequent cleavage of poly(ADP‐ribose)polymerase (PARP). Taken together, these results suggest that aloe‐emodin inhibits cell proliferation of HL‐7702 cells and induces cell cycle arrest and caspase‐dependent apoptosis via both Fas death pathway and the mitochondrial pathway by generating reactive oxygen species, indicating that aloe‐emodin should be taken into account in the risk assessment for human exposure. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Chebulinic acid, an ellagitannin found in the fruits of Terminalia chebula, has been extensively used in traditional Indian system of medicine. It has shown to have various biological activities including antitumor activity. The present study aims to investigate the cytotoxic potential of chebulinic acid in human myeloid leukemia cells. Interestingly, chebulinic acid caused apoptosis of acute promyelocytic leukemia HL‐60 and NB4 cells but not K562 cells. In vitro antitumor effects of chebulinic acid were investigated by using various acute myeloid leukemia cell lines. Chebulinic acid treatment to HL‐60 and NB4 cells induced caspase activation, cleavage of poly(ADP‐ribose) polymerase, DNA fragmentation, chromatin condensation, and changes in the mitochondrial membrane permeability. Additionally, inhibition of caspase activation drastically reduced the chebulinic acid‐induced apoptosis of acute promyelocytic leukemia cells. Our data also demonstrate that chebulinic acid‐induced apoptosis in HL‐60 and NB4 cells involves activation of extracellular signal‐regulated kinases, which, when inhibited with ERK inhibitor PD98059, mitigates the chebulinic acid‐induced apoptosis. Taken together, our findings exhibit the selective potentiation of chebulinic acid‐induced apoptosis in acute promyelocytic leukemia cells. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Decreasing numbers, and impaired function, of pancreatic β‐cells are key factors in the development of type 2 diabetes. This study was designed to investigate whether phloroglucinol protected pancreatic β‐cells against glucotoxicity‐induced apoptosis using a rat insulinoma cell line (INS‐1). High glucose treatment (30 mM) induced INS‐1 cell death; however, the level of glucose‐induced apoptosis was significantly reduced in cells treated with 100‐μM phloroglucinol. Treatment with 10–100‐μM phloroglucinol increased cell viability and decreased intracellular levels of reactive oxygen species, nitric oxide, and lipid peroxidation dose‐dependently in INS‐1 cells pretreated with high glucose. Furthermore, phloroglucinol treatment markedly reduced the protein expression of Bax, cytochrome c, and caspase 9, while increasing anti‐apoptotic Bcl‐2 protein expression. Cell death type was examined using annexin V/propidium iodide staining, revealing that phloroglucinol markedly reduced high glucose‐induced apoptosis. These results demonstrated that phloroglucinol could be useful as a potential therapeutic agent for the protection of pancreatic β‐cells against glucose‐induced apoptosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
α‐Conidendrin is a polyphenolic compound found mainly in Taxus yunnanensis, as the source of chemotherapy drug paclitaxel, which has been used in traditional medicine for treatment of cancer. This study aimed to investigate the anticancer activity and molecular mechanisms of α‐conidendrin on breast cancer cell lines. The results of the present study show that α‐conidendrin possesses potent antiproliferative effects on breast cancer cell lines MCF‐7 and MDA‐MB‐231. α‐Conidendrin significantly induced apoptosis in breast cancer cells via reactive oxygen species generation, upregulation of p53 and Bax, downregulation of Bcl‐2, depolarization of mitochondrial membrane potential (MMP), release of cytochrome c from mitochondria, and activation of caspases‐3 and ‐9. α‐Conidendrin remarkably inhibited the proliferation of breast cancer cells through induction of cell cycle arrest by upregulating p53 and p21 and downregulating cyclin D1 and CDK4. Unlike breast cancer cells, the antiproliferative effect of α‐conidendrin on human foreskin fibroblast cells (normal cells) was very small. In normal cells, reactive oxygen species levels, loss of MMP, release of cytochrome c, mRNA expression of p53, p21, cyclin D1, CDK4, Bax, and Bcl‐2 as well as mRNA expression and activity of caspases‐3 and ‐9 were significantly less affected by α‐conidendrin compared with cancer cells. These results suggest that α‐conidendrin can be a promising agent for treatment of breast cancer with little or no toxicity against normal cells.  相似文献   

5.
Hypertrophic scarring is characterized by collagen overproduction and excessive deposition of extracellular matrix. No consensus arises currently about the best therapeutics to produce complete and permanent improvement of scars with few side effects. In the present study, the mechanism of oleanolic acid (OA)‐induced apoptosis in hypertrophic scar fibroblasts (HSFs) was investigated for the first time. OA activated the protein phosphorylation of p38 MAPK and JNK but not ERK. OA did not antagonize the inhibitory effects of SB203580 on p38 MAPK pathway activity but sharply enhanced JNK phosphorylation when HSFs were pretreated with SB203580. Similarly, the inhibition of JNK signal pathway activation by pretreatment with SP600125 facilitated the protein phosphorylation of p38 MAPK caused by OA. Inhibition of p38 MAPK and/or JNK by inhibitors significantly enhanced cell viability and OA only partially depressed the increased cell viability. Moreover, OA increased Bax translocation, MMP loss, mitochondrial cytochrome c and AIF release, Bax and caspase‐3 protein expression and the ratio of Bax to Bcl‐2, decreased Bcl‐2 protein expression, and elevated the mRNA expression of Apaf‐1, caspase‐9, and capase‐3. These results suggest that OA elicits apoptosis through triggering of p38 MAPK and JNK signaling and activation of the mitochondrial death pathway. OA might be a good and useful natural drug against hypertrophic scars. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we found that the hexane fraction of Danshen, the dried root of Salvia miltiorrhiza (Lamiaceae), exerted antiproliferative effects on human leukemia cells. Phytochemical investigation of the hexane fraction achieved the isolation of the tanshinone diterpenes: dihydrotanshinone I ( 1 ), trijuganone C ( 2 ), trijuganone B ( 3 ), cryptotanshinone ( 4 ), tanshinone IIA ( 5 ), and tanshinone I ( 6 ). Compound 2 showed significant antiproliferative activities against human leukemia cells HL‐60, Jurkat, and U937. The antiproliferative activities of 2 against human cancer and normal cells indicated that 2 exhibited potent antiproliferative activities with IC50 values less than 10 μM against HL‐60 and Jurkat cells as well as on the colon cancer cells DLD‐1, COLO 205, and Caco‐2. Compound 2 induced chromatin condensation, DNA fragmentation, activation of caspase‐3, ‐8, and ‐9, and the cleavage of poly (ADP‐ribose) polymerase (PARP) in HL‐60 cells. Moreover, 2 activated Bid and Bax, leading to the loss of mitochondrial membrane potential, and 2 induced the cytochrome c release from mitochondria into cytosol. In contrast, Bcl‐2 and Bcl‐xL were unaffected by 2 . These results suggest that 2 exerts antiproliferative effects via apoptosis induction mediated by mitochondrial dysfunction and caspase activation. Compound 2 may serve as a candidate of potential chemotherapeutic agent for human leukemia.  相似文献   

7.
Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non‐small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide (MTT) assay and significantly increased sub‐G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP‐ribose) polymerase (PARP), activated Bax, and phosphorylation of c‐Jun N‐terminal kinases (JNK), and also attenuated the expression of pro‐caspase‐3 and Bcl‐2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p‐eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub‐G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC.  相似文献   

8.
9.
Evidence suggests that auranofin (AF) exhibits anticancer activity by inhibiting thioredoxin reductase (TrxR). Here, in this study, we have investigated the synergistic effects of AF and morin and their mechanism for the anticancer effects focusing on apoptosis in Hep3B human hepatocellular carcinoma cells. We assessed the anticancer activities by annexin V/PI double staining, caspase, and TrxR activity assay. Morin enhances the inhibitory effects on TrxR activity of AF as well as reducing cell viability. Annexin V/PI double staining revealed that morin/AF cotreatment induced apoptotic cell death. Morin enhances AF‐induced mitochondrial membrane potential (ΔΨm) loss and cytochrome c release. Further, morin/AF cotreatment upregulated death receptor DR4/DR5, modulated Bcl‐2 family members (upregulation of Bax and downregulation of Bcl‐2), and activated caspase‐3, ‐8, and ‐9. Morin also enhances AF‐induced reactive oxygen species (ROS) generation. The anticancer effects results from caspase‐dependent apoptosis, which was triggered via extrinsic pathway by upregulating TRAIL receptors (DR4/DR5) and enhanced via intrinsic pathway by modulating Bcl‐2 and inhibitor of apoptosis protein family members. These are related to ROS generation. In conclusion, this study provides evidence that morin can enhance the anticancer activity of AF in Hep3B human hepatocellular carcinoma cells, indicating that its combination could be an alternative treatment strategy for the hepatocellular carcinoma.  相似文献   

10.
Breast cancer, the most commonly diagnosed cancer in women worldwide, is treated in various ways. Ramalin is a chemical compound derived from the Antarctic lichen Ramalina terebrata and is known to exhibit antioxidant and antiinflammatory activities. However, its effect on breast cancer cells remains unknown. We examined the ability of ramalin to induce apoptosis and its mechanisms in MCF‐7 and MDA‐MB‐231 human breast cancer cell lines. Ramalin inhibited cell growth and induced apoptosis in both cell lines in a concentration‐dependent manner. By upregulating Bax and downregulating Bcl‐2, ramalin caused cytochrome c and apoptosis‐inducing factor to be released from the mitochondria into the cytosol, thus activating the mitochondrial apoptotic pathway. In addition, activated caspase‐8 and caspase‐9 were detected in both types of cells exposed to ramalin, whereas ramalin activated caspase‐3 only in the MDA‐MB‐231 cells. Ramalin treatment also increased the levels of LC3‐II and p62. Moreover, the inhibition of autophagy by 3‐methyladenine or Atg5 siRNA significantly enhanced ramalin‐induced apoptosis, which was accompanied by a decrease in Bcl‐2 levels and an increase in Bax levels. Therefore, autophagy appears to be activated as a protective mechanism against apoptosis in cancer cells exposed to ramalin. These findings suggest that ramalin is a potential anticancer agent for the treatment of patients with non‐invasive or invasive breast cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Caffeoyl derivatives exhibit antiinflammatory and antioxidant effects. However, the effect of 3,4,5‐tricaffeoylquinic acid on the tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL)‐induced apoptosis in keratinocytes that may be involved in skin diseases has not been studied. In this respect, we investigated the effect of 3,4,5‐tricaffeoylquinic acid on TRAIL‐induced apoptosis in human keratinocytes. 3,4,5‐Tricaffeoylquinic acid and oxidant scavengers attenuated the decrease in the cytosolic levels of Bid, Bcl‐2, and survivin proteins; the increase in the levels of cytosolic Bax, p53, and phosphorylated p53; the increase in the levels of phosphorylated p38; the increase in the mitochondrial levels of the voltage‐dependent anion channel; loss of the mitochondrial transmembrane potential; the release of cytochrome c; activation of caspases (8, 9, and 3); cleavage of poly [ADP‐ribose] polymerase‐1; production of reactive oxygen species; the depletion of glutathione (GSH); nuclear damage; and cell death in keratinocytes treated with TRAIL. These results suggest that 3,4,5‐tricaffeoylquinic acid may reduce TRAIL‐induced apoptosis in human keratinocytes by suppressing the activation of the caspase‐8 and Bid pathways and the mitochondria‐mediated cell death pathway. The effect appears to be associated with the inhibitory effect on the production of reactive oxygen species and depletion of GSH. 3,4,5‐Tricaffeoylquinic acid appears to be effective in the prevention of TRAIL‐induced apoptosis‐mediated skin diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Paris saponinVII (PSVII) is a steroidal saponin isolated from the roots and rhizomes of Trillium tschonoskii Maxim. We found that PSVII could inhibit the growth of adriamycin‐resistant human leukemia cells (K562/ADR) in a dose‐dependent manner. Furthermore, the molecular mechanism underlying the cytotoxicity and downregulation of P‐glycoprotein (P‐gp) expression by PSVII was clarified. PSVII significantly suppressed cell proliferation by cell cycle arrest in the G0/G1 phase, which was associated with an obvious decrease in cyclin B1/D1 and CDK2/4/6 protein expression. Moreover, PSVII could attenuate mitochondrial membrane potential, increase the expression of apoptosis‐related proteins, such as Bax and cytochrome c, and decrease the protein expression levels of Bcl‐2, caspase‐9, caspase‐3, PARP‐1, and p‐Akt. We also found that JNK, ERK1/2, and p38 were regulated by PSVII in K562/ADR cells. And further studies indicated that the decrease in the reactive oxygen species level inhibited intrinsic P‐gp expression. Therefore, PSVII‐induced apoptosis in K562/ADR cells was associated with Akt/MAPK and the inhibition of P‐gp. In addition, PSVII induced a robust autophagy in K562/ADR cells as demonstrated by the degradation of LC3‐I. These results provide a biochemical basis for possible clinical applications of PSVII in the treatment of leukemia.  相似文献   

13.
The response of osteosarcoma MG‐63 cells to corosolic acid treatment has been investigated. The results showed that corosolic acid significantly inhibited cell viability in both a dose and a time dependent manner. It was found that corosolic acid increased the Bax/Bcl‐2 ratio by up‐regulating Bax expression, disrupted mitochondrial membrane potential and triggered the release of cytochrome c from mitochondria into the cytoplasm. Corosolic acid treatment triggered the activation of caspase‐8, 9 and 3. The apoptosis was obviously inhibited by pretreatment with a general caspase inhibitor, z‐VAD‐FMK. Moreover, pretreatment of CsA, a cyclophilin D ligand that inhibits mitochondria potential uncoupling, prevented the activation of caspase‐9 and caspase‐3, but not caspase‐8, and the apoptosis of MG‐63 cells, triggered by corosolic acid. All these results indicated that corosolic acid‐induced apoptosis was associated with the activation of caspases via a mitochondrial pathway. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A neem leaf preparation (NLP) was investigated for its role in the induction of tumor cell apoptosis to elucidate the mechanism of NLP mediated immunoprophylaxis in tumor growth restriction. As NLP did not induce direct apoptosis of human tumor cell lines KB, MCF7 and K562, it was used instead to stimulate human peripheral blood mononuclear cells (PBMC) for 72 h. The PBMC derived culture supernatant (NLP-CS) was observed to induce the restriction of tumor cell proliferation as well as apoptosis. An enzyme linked immunosorbant assay revealed the presence of cytotoxic cytokines, IFN-gamma and TNF-alpha, in the NLP-CS. The inhibition of secretion of IFN-gamma and TNF-alpha in NLP-CS caused a significant decrease in tumor cell apoptosis. Furthermore, stimulation of these tumor cells with NLP-CS resulted in upregulation of the caspase 3 and downregulation of the Bcl 2 and cyclin D1. These observations suggested that NLP could induce tumor cellular apoptosis by releasing cytotoxic cytokines from human PBMC.  相似文献   

15.
Although beta‐sitosterol has been well known to have anti‐tumor activity in liver, lung, colon, stomach, breast and prostate cancers via cell cycle arrest and apoptosis induction, the underlying mechanism of anti‐cancer effect of beta‐sitosterol in multiple myeloma cells was never elucidated until now. Thus, in the present study, the role of reactive oxygen species (ROS) in association with AMP‐activated protein kinase (AMPK) and c‐Jun N‐terminal kinase (JNK) pathways was demonstrated in beta‐sitosterol‐treated multiple myeloma U266 cells. Beta‐sitosterol exerted cytotoxicity, increased sub‐G1 apoptotic population and activated caspase‐9 and ‐3, cleaved poly (ADP‐ribose) polymerase (PARP) followed by decrease in mitochondrial potential in U266 cells. Beta‐sitosterol promoted ROS production, activated AMPK, acetyl‐CoA carboxylase (ACC) and JNK in U266 cells. Also, beta‐sitosterol attenuated the phosphorylation of AKT, mammalian target of rapamycin and S6K, and the expression of cyclooxygenase‐2 and VEGF in U266 cells. Conversely, AMPK inhibitor compound C and JNK inhibitor SP600125 suppressed apoptosis induced by beta‐sitosterol in U266 cells. Furthermore, ROS scavenger N‐acetyl L‐cysteine attenuated beta‐sitosterol‐mediated sub‐G1 accumulation, PARP cleavage, JNK and AMPK activation in U266 cells. Overall, these findings for the first time suggest that ROS‐mediated activation of cancer metabolism‐related genes such as AMPK and JNK plays an important role in beta‐sitosterol‐induced apoptosis in U266 multiple myeloma cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to examine the antitumour effects of plant phenolic acids, gallic acid (GA) and ellagic acid (EA), on human promyelocytic leukaemia sensitive HL60 cell line and its resistant sublines exhibiting two MDR phenotypes: HL60/VINC (overexpressing P‐glycoprotein) and HL60/MX2 (characterized by the presence of mutated α isoform of topoisomerase II). Both studied compounds exerted comparable cytotoxic activities towards sensitive HL60 cells and their MDR counterparts. It was also found that GA and EA modulated the cellular level of reactive oxygen species in a dose‐dependent and time‐dependent manner. Furthermore, it was demonstrated that GA (IC90) and EA (IC50 and IC90) significantly increased the percentage of sub‐G1 subpopulation of all studied leukaemia cells causing oligonucleosomal DNA fragmentation. Both compounds used at IC90 triggered mainly the apoptotic death of these cells. However, GA had no effect on the activity of caspase‐3 as well as caspase‐8 in sensitive HL60 cells and their MDR counterparts. In contrast, EA provoked a significant activation of these caspases in all studied leukaemia cells. It was also found that lysosomes were not involved in triggering programmed death of sensitive HL60 and MDR cells by GA and EA.  相似文献   

17.
18.
Tannic acid (TA) is a polyphenolic compound, which has shown diverse pharmacological effects with antimutagenic, anticarcinogenic and antibactericidal properties. However, cardioprotective effects of TA have not been reported. To investigate the protective effects of TA, rats were administered TA for 7 days and then intoxicated with isoproterenol (ISO). Myocardial ischemia injury was indicated by changes in electrocardiographic (ECG) patterns, morphology and cardiac marker enzymes. Furthermore, protein expression levels of c‐fos, c‐jun, tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), cleaved‐caspase‐3 and ‐9 were analyzed by immunohistochemistry, and activities of apoptosis‐related proteins Bax, Bcl‐2, caspase‐3 and nuclear factor kappa B (NF‐κB) were detected by Western blot. Pretreatment with TA ameliorated changes in morphology and ECG, reduced activities of marker enzymes, suppressed overexpression of apoptosis‐related proteins, upregulated expression of antioxidants. Moreover, TA pretreatment contributed to the decrease in ratio of Bax/Bcl‐2, as well as reduced expression of TNF‐α, IL‐1β, caspase‐3, cleaved‐caspase‐3 and ‐9. TA displayed cardioprotective effects, which may be attributed to lowering of Bax/Bcl‐2 ratio, c‐fos and c‐jun expression and inhibition of NF‐κB activation, as well as oxidative stress, inflammation and apoptosis. These findings provide further insight into the ‘French paradox’ and the mechanisms underlying the beneficial effects of TA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Approaches inducing fibroblast‐like synoviocytes (FLS) apoptosis in rheumatoid arthritis (RA) patients have been considered as a promising strategy for treating RA. Here, adjuvant arthritis (AA) in rat was induced by complete Freund's adjuvant and FLS were separated and cultured using a tissue explant cultivation method. The apoptotic effect of 7,3′‐dimethoxy hesperetin (DMHP, a highly antirheumatic active derivative of hesperidin) on AA FLS was evaluated with MTT assay, Hoechst staining and flow cytometry analysis. Bcl‐2, Bax, caspase 3 gene expressions and caspase 3 activity were assayed to identify whether caspase 3 was involved in the apoptosis induced by DMHP. It was found that DMHP significantly decreased AA FLS proliferation in vitro by MTT assay. The AA FLS treated with DMHP displayed typical apoptotic characteristics including irregularity in shape, nuclear shrinkage and chromatin condensation. Flow cytometry analysis indicated that DMHP could obviously increase the AA FLS apoptosis rate. Compared with the AA‐FLS control group, DMHP markedly decreased the mRNA expression of Bcl‐2, whereas those of Bax and caspase 3 were increased. Moreover, DMHP significantly increased caspase 3 activity in a dose‐dependent manner. In aggregate, the results demonstrate that DMHP effectively induces AA FLS apoptosis through caspase 3 activation and can be considered as a possible antirheumatic agent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The cytotoxic effect of 3‐O‐acetyloleanolic acid, an oleanolic acid derivative isolated from the seeds of Vigna sinensis K., was investigated in human colon carcinoma HCT‐116 cells. 3‐O‐acetyloleanolic acid dose‐dependently inhibited the viability of HCT‐116 cells. Apoptosis was characterized by detection of cell surface annexin V and sub‐G1 apoptotic cell populations. The number of immunostained cells with annexin V‐FITC was increased after treatment with 3‐O‐acetyloleanolic acid. The sub‐G1 cell population was also increased. Expression of TRAIL‐mediated apoptosis signaling‐related death receptor DR5 was increased in 3‐O‐acetyloleanolic acid‐treated HCT‐116 cells. Activation of caspase‐8 and caspase‐3, critical mediators of extrinsic apoptosis signaling, was also increased by 3‐O‐acetyloleanolic acid. The results indicate that 3‐O‐acetyloleanolic acid induces apoptosis in HCT‐116 cells mediated by an extrinsic apoptosis signaling cascade via up‐regulation of DR5. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号