首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Fluorescence in situ hybridization (FISH) or molecular cytogenetics is currently recognized as a reliable, sensitive, and reproducible technique for identifying the copy number and structure of chromosomes. FISH combines molecular genetics with classic cytogenetics and allows simultaneous morphologic evaluation on a single slide. Centromeric DNA probes are used to detect specific chromosomes and telomeric probes to demonstrate all chromosomes. Sequence-specific probes can localize in situ a single gene copy on a specific chromosome locus. FISH allows cytogenetic investigation of metaphase spreads and interphase nuclei. Several protocols have been proposed to analyze preparations from fresh samples or archival material. Comparative genomic hybridization (CGH) is a novel cytogenetic technique, which combines FISH with automatic digital image analysis. Comparative analysis of the hybridization products of tumor DNA and reference DNA with normal metaphase chromosomes, each labeled with color different fluorochrome, can retrieve chromosomal imbalances of the entire genome in a single experiment. FISH and CGH are powerful morphologic tools in understanding physiologic mechanisms and in resolving problems of the pathogenesis of several diseases. These techniques shed light on the cytogenetic background in many endocrinological disorders, providing a better understanding of the activities and alterations of endocrine cell function.  相似文献   

2.
The tumor cell line HT-29 was derived from a primary adenocarcinoma of the rectosigmoid colon. HT-29 is hypertriploid (3n+) and has accumulated numerous chromosomal structural aberrations. To identify material involved in chromosome rearrangements, we performed a comprehensive cytogenetic analysis using G-banding, spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). The combination of molecular cytogenetic techniques enabled us to define the first comprehensive karyotype for HT-29. Seventeen marker chromosomes were found in 75-100% of metaphase cells, generally in a single copy per cell. We confirmed the composition of eight previously described markers, refined the classification of seven others, and identified two novel marker chromosomes. Notable aberrations included a reciprocal translocation between chromosomes 6 and 14 and an unusual, large derivative chromosome 8 composed entirely of 8q material. The telomere status, evaluated by FISH, revealed telomeric signals at the termini of all chromosomes. No interstitial telomeric sequences were observed in any cell. Although numerous chromosomal aberrations are present in HT-29, the cell line appears to have retained a high level of genomic stability during passage in culture since undergoing transformation. The excellent resolving power of SKY, coupled with additional information obtained from molecular cytogenetic analyses, will improve our ability to identify genetic lesions characteristic of cancer.  相似文献   

3.
Cytogenetic and molecular cytogenetic analyses, which aim to detect chromosome abnormalities, are routinely performed in cytogenetic laboratories all over the world. Traditional cytogenetic studies are performed by analyzing the banding pattern of chromosomes, and are complemented by molecular cytogenetic techniques such as fluorescent in situ hybridization (FISH). To improve FISH application in cytogenetic analysis the issues with long experimental time, high volumes of expensive reagents and requirement for trained technicians need to be addressed. The protocol has recently evolved towards on chip detection of chromosome abnormalities with the development of microsystems for FISH analysis. The challenges addressed by the developed microsystems are mainly the automation of the assay performance, reduction in probe volume, as well as reduction of assay time. The recent focus on the development of automated systems for performing FISH on chip is summarized in this review.  相似文献   

4.
In previous studies, we have demonstrated a number of cytogenetic alterations in granulosa cell tumors (GCTs), especially on chromosomes X, 12, 14, and 22. However, little is known about specific loci on 14q, which could play an important role in tumor pathology. Therefore, we assessed four important genes in 30 GCTs using fluorescence-in situ-hybridization (FISH). Comparative genomic hybridization (CGH) was performed on paraffin-embedded material. Then, we applied FISH with gene-specific DNA probes for AKT1 (14q32.32), FOS (14q24.3), BCL2L2 (14q11.2-q12), and TGFbeta3 (14q24), and tried to find a correlation between CGH, FISH, tumor stage, and survival. In CGH, 7 of 30 cases (23.3%) showed complete gains on chromosome 14. FISH of the four loci revealed gains of hybridization signals in 8 of 30 cases (26.6%), indicating trisomy of the whole chromosome arm. The same aberration was detected by FISH in 2 of 30 cases (6.6%), which were negative using CGH. One case (1 of 30; 3.3%) was found to have a gain on chromosome 14 by CGH, which could not be confirmed by FISH. A correlation with tumor stage or survival could not be established. Our results suggest that GCTs may be characterized by trisomy of chromosome 14. A specific oncogene that could play a particular role in the tumorigenesis of GCTs was not identified on chromosome 14.  相似文献   

5.
The introduction of molecular techniques in conjunction with classical cytogenetic methods has in recent years greatly improved the diagnostic potential for chromosomal abnormalities. In particular, microarray-comparative genomic hybridization (CGH) based on the use of BAC clones promises a sensitive strategy for the detection of DNA copy-number changes on a genomewide scale, offering a resolution as high as >30,000 "bands" (as defined by the number of BACs within the currently highest-density BAC array) [Ishkanian et al., 2004]. We have tested the possibility of further increasing this resolution using PCR fragments generated from individual BAC clones. Using this approach, we have efficiently defined the proximal and distal breakpoints in two cytogenetic cases, one duplication and one deletion, to within 5-20 kb. The results support the potential use of BAC-based PCR fragments to further improve the resolution of the microarray-CGH strategy by an order of magnitude.  相似文献   

6.
The pathophysiological similarities shared by many forms of human and canine disease, combined with the sophisticated genomic resources now available for the dog, have placed ‘man’s best friend’ in a position of high visibility as a model system for a variety of biomedical concerns, including cancer. The importance of nonrandom cytogenetic abnormalities in human leukemia and lymphoma was recognized over 40 years ago, but the mechanisms of genome reorganization remain incompletely understood. The development of molecular cytogenetics, using fluorescence in situ hybridization (FISH) technology, has played a significant role in our understanding of cancer biology by providing a means for ‘interrogating’ tumor cells for a variety of gross genetic changes in the form of either numerical or structural chromosome aberrations. Here, we have identified cytogenetic abnormalities in naturally occurring canine hematopoietic tumors that are evolutionarily conserved compared with those that are considered characteristic of the corresponding human condition. These data suggest that humans and dogs share an ancestrally retained pathogenetic basis for cancer and that cytogenetic evaluation of canine tumors may provide greater insight into the biology of tumorigenesis.  相似文献   

7.
In situ detection of genomic alterations in cancer provides information at the single cell level, making it possible to investigate genomic changes in cells in a tissue context. Such topological information is important when studying intratumor heterogeneity as well as alterations related to different steps in tumor progression. We developed a quantitative multigene fluorescence in situ hybridization (QM FISH) method to detect multiple genomic regions in single cells in complex tissues. As a “proof of principle” we applied the method to breast cancer samples to identify partners in whole arm (WA) translocations. WA gain of chromosome arm 1q and loss of chromosome arm 16q are among the most frequent genomic events in breast cancer. By designing five specific FISH probes based on breakpoint information from comparative genomic hybridization array (aCGH) profiles, we visualized chromosomal translocations in clinical samples at the single cell level. By analyzing aCGH data from 295 patients with breast carcinoma with known molecular subtype, we found concurrent WA gain of 1q and loss of 16q to be more frequent in luminal A tumors compared to other molecular subtypes. QM FISH applied to a subset of samples (n = 26) identified a derivative chromosome der(1;16)(q10;p10), a result of a centromere‐close translocation between chromosome arms 1q and 16p. In addition, we observed that the distribution of cells with the translocation varied from sample to sample, some had a homogenous cell population while others displayed intratumor heterogeneity with cell‐to‐cell variation. Finally, for one tumor with both preinvasive and invasive components, the fraction of cells with translocation was lower and more heterogeneous in the preinvasive tumor cells compared to the cells in the invasive component. © 2014 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.  相似文献   

8.
Approximately 8% of breast cancers show increased copy numbers of chromosome 17 centromere (CEP17) by fluorescence in situ hybridization (FISH) (ie average CEP17 >3.0 per nucleus). Currently, this pattern is believed to represent polysomy of chromosome 17. HER2‐amplified cancers have been shown to harbour complex patterns of genetic aberrations of chromosome 17, in particular involving its long arm. We hypothesized that aberrant copy numbers of CEP17 in FISH assays may not necessarily represent true chromosome 17 polysomy. Eighteen randomly selected CEP17 polysomic cases and a control group of ten CEP17 disomic cases, as defined by dual‐colour FISH, were studied by microarray‐based comparative genomic hybridization (aCGH), which was performed on microdissected samples using a 32K tiling‐path bacterial artificial chromosome microarray platform. Additional FISH probes were employed for SMS (17p11.2) and RARA (17q21.2) genes, as references for chromosome 17 copy number. Microarray‐based comparative genomic hybridization revealed that 11 out of the 18 polysomic cases harboured gains of 17q with involvement of the centromere, one displayed 17q gain sparing the centromeric region, and only one could be defined as polysomic. The remaining five cases displayed amplification of the centromeric region. Among these, one case, showing score 2+ by immunohistochemistry and 8.5 HER2 mean copy number, was classified as not amplified by HER2/CEP17 ratio and as amplified by HER2/SMS ratio. Our results suggest that true chromosome 17 polysomy is likely to be a rare event in breast cancer and that CEP17 copy number greater than 3.0 in FISH analysis is frequently related to gain or amplification of the centromeric region. Larger studies investigating the genetic profiles of CEP17 polysomic cases are warranted. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
The quality of cytogenetic analysis of solid tumours has greatly improved in the past decade, but a number of technical difficulties remain which limit the characterization of solid tumour chromosomes by conventional cytogenetics alone. The identification of regions of chromosomal abnormality has been aided by the introduction of molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Of these, a recently developed approach, comparative genomic hybridization (CGH), has had a particular impact on the cytogenetic analysis of solid tumours. It incorporates the sensitivity of in situ techniques and overcomes many of the drawbacks of conventional cytogenetic analysis. This review first outlines the CGH method, giving details for the preparation of DNA probes and target human metaphase chromosomes together with information on the in situ technique and data handling criteria used in our laboratory. It then presents an overview of some of the current applications of CGH, together with a discussion of future directions in the field. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Cell lines derived from different thyroid tumor histotypes are useful for the in vitro study of both the phenotypic and genetic features of these cancers. Although karyotypic changes are known to be associated with thyroid lesions, the chromosome patterns of only a few cell lines have been published. Herein, we report an extensive conventional and molecular cytogenetic investigation of the human papillary thyroid carcinoma derived cell line B-CPAP. Morphological studies and expression of tumor markers in this cell line have been reported previously, but no detailed characterization on the origin of the chromosome markers is available. B-CPAP cells have a rather stable hypertriploid karyotype, with chromosome polysomies and structural chromosome abnormalities featuring whole chromosome arm imbalances. Chromosome banding revealed a main clone with nine chromosome markers, and fluorescence in situ hybridization (FISH) with whole chromosome paint (wcp), partial chromosome paint (pcp), and centromeric probes clarified their origin. The use of centromeric probes provided accurate refinement of the rearrangements classified as whole-arm translocations by banding and FISH with wcp probes. Both chromosomal and array-based comparative genomic hybridization experiments confirmed the cytogenetic characterization of this cell line. Moreover, the use of fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION) technique, which simultaneously shows nuclear ploidy and cytoplasmic immunofluorescence, detailed the oncocytic feature of the cells. Intriguingly, despite their origin, they lack most of the features expressed in papillary thyroid tumor cells and have a chromosomal pattern reminiscent of that of a subgroup of oncocytic malignant thyroid tumors.  相似文献   

11.
Various types of cytogenetic and molecular cytogenetic approaches, including conventional banding, fluorescence in situ hybridization (FISH), fiber-FISH, comparative genomic hybridization (CGH), matrix array CGH, chromosome microdissection, and microcell-mediated chromosome transfer are summarized. The rationale, advantage, and limitations of each approach are discussed with respect to research and clinical applications in human neoplasia.  相似文献   

12.
Several nonrandom recurrent chromosomal changes are observed in uveal melanoma. Some of these abnormalities, e.g., loss of chromosome 3, gain of the q arm of chromosome 8, and chromosome 6 abnormalities, are of prognostic value. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) are used to detect these changes. In some cases, however, detailed cytogenetic analysis is not possible due to the presence of complex abnormalities. To define more accurately these cytogenetic changes, we have applied comparative genomic hybridization (CGH) and/or spectral karyotyping (SKY) to two uveal melanoma cell lines and five primary uveal melanomas, with partially defined and/or complex abnormalities. SKY provided additional information on 34/39 partially defined aberrant chromosomes and revealed a new abnormality, a der(17)t(7;17)(?;q?), that had not been recognized by conventional cytogenetics. Additionally, using SKY, abnormalities involving chromosome 6 or 8 were found to be twice as common as observed with cytogenetic analysis. CGH was especially useful in assigning the abnormalities identified by SKY to specific chromosomal regions and, in addition, resulted in the detection of a small deletion of chromosome region 3q13 approximately 21. We conclude that SKY and CGH, as methods complementary to cytogenetic and FISH analysis, provide more complete information on the chromosomal abnormalities occurring in uveal melanoma.  相似文献   

13.
Previous reports on the analysis of the human monoblastic cell line U937 had described several sublines containing unidentified rearrangements and marker chromosomes. In order to determine the true nature of the rearrangements, conventional banding analysis was carried out with various combinations of molecular cytogenetic techniques: comparative genomic hybridization, fluorescence in situ hybridization (FISH) with whole chromosome painting probes, and microdissection and reverse painting FISH. The origins of the marker chromosomes were identified and the composite karyotype is described.  相似文献   

14.
Flat urothelial hyperplasia, defined as markedly thickened urothelium without cytological atypia, is regarded in the new WHO classification as a urothelial lesion without malignant potential. Frequent deletions of chromosome 9 detected by fluorescence in situ hybridization (FISH) have been previously reported in flat urothelial hyperplasias found in patients with papillary bladder cancer. Using comparative genomic hybridization (CGH) and microsatellite analysis, these hyperplasias and concomitant papillary tumours of the same patients were screened for other genetic alterations to validate and extend the previous findings. Eleven flat hyperplasias detected by 5-ALA-induced fluorescence endoscopy and ten papillary urothelial carcinomas (pTaG1-G2) from ten patients were investigated. After microdissection, the DNA of the lesions was pre-amplified using whole genome amplification (I-PEP-PCR). Loss of heterozygosity (LOH) analyses were performed with five microsatellite markers at chromosomes 9p, 9q, and 17p. CGH was performed using standard protocols. In 6 of 11 hyperplasias and 7 of 10 papillary tumours, deletions at chromosome 9 were simultaneously shown by FISH, LOH, and CGH analyses. There was a good correlation between FISH, LOH, and CGH analyses, with identical results in 6 of 10 patients. In addition to deletions at chromosome 9, further genetic alterations were detected by CGH in 9 of 10 investigated hyperplasias, including changes frequently found in invasive papillary bladder cancer (loss of chromosomes 2q, 4, 8p, and 11p; gain of chromosome 17; and amplification at 11q12q13). There was considerable genetic heterogeneity between hyperplasias and papillary tumours, but a clonal relationship was suggested by LOH and/or CGH analyses in 5 of 10 cases. These data support the hypothesis that flat urothelial hyperplasias can display many genetic alterations commonly found in bladder cancer and could therefore be an early neoplastic lesion in the multistep development of invasive urothelial carcinoma.  相似文献   

15.
Conventional cytogenetic analysis of two prostate tumor xenografts, LuCaP 23.1 and RP22090, was unsatisfactory for comprehensive genetic evaluation of the cell lines. Fluorescence in situ hybridization (FISH) for chromosome enumeration and comparative genomic hybridization (CGH) for numerical imbalance detection were performed and resulted in a more complete molecular cytogenetic characterization of these lines. Both xenografts were hypertriploid and had significant numerical imbalances. For example, LuCaP 23.1 had gain of all or part of chromosomes 3, 5, 6, 7, 8, 11, and 12 and the X chromosome and loss of all or part of chromosomes 2, 3 6, 8, 9, 10, 17, and 18. In RP22090, gain of all or part of chromosomes 5, 7, 8, 9, 10, 12, 14, and 15 was seen, whereas loss was seen for all or part of chromosomes 4, 6, 8, 15, 16, 17, 19, 20, and 22. Both xenografts reflect the high frequency of chromosomal changes seen in some late-stage prostate cancers, including many novel changes and some changes such as the loss of 8p and gain of 8q, which have been reported previously in primary and metastatic prostate cancers. Consistent changes in both lines, such as loss of chromosomes 6 and chromosome arm 8p and gain of chromosome 7 and chromosome arm 8q, may represent genetic events specific for prostate cancer development, but imbalances on other chromosomes such as 3, 9, 19, and 20, not frequently reported in prostate cancers, may reflect potentially important changes that should also be examined. Genes Chromosom. Cancer 18:299–304, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Comparative genomic hybridization (CGH) was applied to 35 neuroblastomas to obtain a global view of genetic imbalances. Results were validated by means of Southern blot hybridization (detection of N-myc amplification), loss of heterozygosity (LOH) studies (detection of deletion 1p), and interphase cytogenetics [dual labelling fluorescence in situ hybridization (FISH) of centromeric 17 and erbB-2]. CGH allowed sensitive detection of N-myc amplification and chromosome 1p deletion, representing the most established prognostic markers of neuroblastoma. In addition, a high rate of chromosome 17 aberrations (63 per cent) with possible prognostic relevance was observed. Previously unreported high level copy number increases indicating oncogene amplification were mapped to chromosome subbands 2p13–14 and 3q24–26. Other recurrent regional chromosomal aberrations were localized on 11q, 12q, 13q, 14q, and 15q. CGH results were fully consistent with data of Southern blot analysis and LOH study, as well as interphase cytogenetics. These results show that CGH is a sensitive method for the detection of all prognostically relevant genetic alterations in neuroblastomas; that CGH considerably simplifies the detection of these alterations, resulting in a single methodological approach; and that CGH is a powerful tool to elucidate previously unknown genetic changes in neuroblastomas. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Cytogenetic and molecular cytogenetic analyses in diffuse astrocytomas   总被引:4,自引:0,他引:4  
Diffuse astrocytomas are highly variable tumors and show complex biologic behavior that is based on multi-step oncogenesis. We report cytogenetic and molecular cytogenetic investigations in 23 cases of diffuse astrocytomas. The results of conventional karyotyping, interphase fluorescence in situ hybridization (FISH), comparative genomic hybridization, multicolor FISH, and spectral karyotyping are reported. Various numerical and structural chromosomal aberrations were identified. Clustering of structural alterations in the short arm of chromosome 2 (2p) and the long arm of chromosome 7 (7q) were detected. Using spectral karyotyping, additional chromosome rearrangements not detectable by conventional methods were found. Some of these anomalies have not been previously described in diffuse astrocytomas. An independent validation of these discrepant findings is required.  相似文献   

18.
Somatic chromosomal mosaicism arising from post-zygotic errors is known to cause several well-defined genetic syndromes as well as contribute to phenotypic variation in diseases. However, somatic mosaicism is often under-diagnosed due to challenges in detection. We evaluated 10 362 patients with a custom-designed, exon-targeted whole-genome oligonucleotide array and detected somatic mosaicism in a total of 57 cases (0.55%). The mosaicism was characterized and confirmed by fluorescence in situ hybridization (FISH) and/or chromosome analysis. Different categories of abnormal cell lines were detected: (1) aneuploidy, including sex chromosome abnormalities and isochromosomes (22 cases), (2) ring or marker chromosomes (12 cases), (3) single deletion/duplication copy number variations (CNVs) (11 cases), (4) multiple deletion/duplication CNVs (5 cases), (5) exonic CNVs (4 cases), and (6) unbalanced translocations (3 cases). Levels of mosaicism calculated based on the array data were in good concordance with those observed by FISH (10–93%). Of the 14 cases evaluated concurrently by chromosome analysis, mosaicism was detected solely by the array in 4 cases (29%). In summary, our exon-targeted array further expands the diagnostic capability of high-resolution array comparative genomic hybridization in detecting mosaicism for cytogenetic abnormalities as well as small CNVs in disease-causing genes.  相似文献   

19.
Supernumerary marker chromosomes (SMCs) without detectable alphoid DNA are predicted to have a neocentromere and have been referred to as mitotically stable neocentromere marker chromosomes (NMCs). Here we report the molecular cytogenetic characterization of a new case of Pallister-Killian syndrome (PKS) in a boy with an analphoid, inverted duplicated NMC derived from 12pter-->12p11.22 in his fibroblasts by using high-resolution comparative genetic hybridization (HR-CGH), multiplex fluorescent in situ hybridization (FISH) and bacterial artificial chromosome (BAC)-FISH mapping analyses with various alpha-satellite DNA probes, subtelomere probes and BAC-DNA probes. Precise identification of SMCs and NMCs is of essential importance in genetic counseling. HR-CGH is a more informative and often a faster way of precisely identifying the origin of SMCs. This case is the third report of PKS with an NMC containing an inverted duplication of partial 12p with available clinical data. These observations may help to determine the critical region for PKS and the mechanisms leading to the origin of the NMC derived from 12pter-->12p11.22 - a region that appears to be susceptible to the formation of neocentromeres. The use of subtelomeric probe PCP12p in buccal cells appears superior to the use of the centromere probe D12Z3 for the diagnosis of the PKS.  相似文献   

20.
Although a number of malignant fibrous histiocytoma (MFH) cell lines have been reported, their characterization at a molecular cytogenetic level has not been fully established. In this study, we established a new human cell line, designated as FU-MFH-1, from a storiform-pleomorphic MFH arising in the retroperitoneum of a 61-year-old woman, and applied comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) with chromosome painting probes for the characterization of chromosome alterations. FU-MFH-1 cells were spindle, round, or polygonal in shape with oval nuclei, and were maintained continuously in vitro for over 50 passages for more than 12 months. G-banding analysis was performed and FU-MFH-1 revealed a complex karyotype with an abnormal chromosome 19 containing a homogeneously staining region (hsr). CGH analysis showed a high-level amplification of 12q13-->q21. The high-level amplification detected by CGH was refined by FISH. These results showed that the hsr was composed of amplified DNA sequences from 12q. Our study emphasizes the usefulness of CGH as a powerful tool for chromosomal localization of amplified sequences. The FU-MFH-1 cell line should be useful for biologic and molecular pathogenetic investigations of human MFH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号