首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of hypoxia sensor proteins is important in responding and protecting cells against hypoxic/ischemic injury in brain. Seven in absentia homolog 1 (Siah1) regulates primarily the downstream sensor proteins factor inhibiting alpha subunit of hypoxia-inducible factor-1 (FIH) under normoxic conditions and prolyl hydroxylases domain 3 (PHD3) under hypoxic conditions. In the present study, we investigated the temporal and spatial changes of these hypoxia sensor proteins, Siah1, FIH, and PHD3, after 60 min of transient middle cerebral artery occlusion (tMCAO) up to 72 hr after reperfusion in ICR mice. Immunohistochemistry and Western blot analyses showed that Siah1 was quickly and strongly induced in neuronal cells of the ischemic penumbra, with a peak at 2 hr, and gradually returned toward the sham control (SC) level until 72 hr. In contrast, the expressions of FIH and PHD3 were strongly visualized in the SC brains, and significantly reduced in a time-dependent manner with reperfusion until 72 hr. In the ischemic core region, Siah1, FIH, and PHD3 showed a similar change of strong and progressive decrease until 72 hr. Double-immunofluorescence analyses showed a cytoplasmic localization of Siah1 and both cytoplasmic and nuclear localizations of FIH and PHD3 and that Siah1 plus FIH or PHD3 were well colocalized in same neuron at 2 hr after tMCAO. The present study suggests that hypoxia sensor proteins (Siah1, FIH, and PHD3) showed temporally and spatially different expressions after tMCAO, which could provide an effective neuroprotective reaction through their further downstream proteins after cerebral ischemia.  相似文献   

2.
Stroke is characterized by an initial ischemia followed by a reperfusion that promotes cascade of damage referred to as primary injury. The loss of mitochondrial function after ischemia, which is characterized by oxidative stress and activation of apoptotic factors is considered to play a crucial role in the proliferation of secondary injury and subsequent brain neuronal cell death. Dopamine D2 receptor agonist, Ropinirole, has been found to promote neuroprotection in Parkinson´s disease and restless leg syndrome. The current study was designed to test its efficacy in preclinical model of stroke. Previously it has been demonstrated that Ropinirole mediates its neuroprotection via mitochondrial pathways. Assuming this, we investigated the effect of Ropinirole on mitochondrial dysfunction, we have shown the positive effect of Ropinirole administration on behavioral deficits and mitochondrial health in an ischemic stroke injury model of transient middle cerebral artery occlusion (tMCAO). Male Wistar rats underwent transient middle cerebral artery occlusion and then received the Ropinirole (10 mg and 20 mg/kg b.w.) at 6 h, 12 and 18 h post occlusion. Behavioral assessment for functional deficits included grip strength, motor coordination and gait analysis. Our findings revealed a significant improvement with Ropinirole treatment in tMCAO animals. Staining of isolated brain slices from Ropinirole-treated rats with 2, 3,5-triphenyltetrazolium chloride (TTC) showed a reduction in the infarct area in comparison to the vehicle group, indicating the presence of an increased number of viable mitochondria. Ropinirole treatment was also able to attenuate mitochondrial reactive oxygen species (ROS) production, as well as block the mitochondrial permeability transition pore (mPTP), in the tMCAO injury model. In addition, it was also able to ameliorate the altered mitochondrial membrane potential and respiration ratio in the ischemic animals, thereby suggesting that Ropinirole has a positive effect on mitochondrial bioenergetics. Ropinirole inhibited the translocation of cytochrome c from mitochondria to cytosol reduces the downstream apoptotic processes. In conclusion, these results demonstrate that Ropinirole treatment is beneficial in preserving the mitochondrial functions that are altered in cerebral ischemic injury and thus can help in defining better therapies.  相似文献   

3.
Nuclear pore complexes (NPCs) play an important role in coordinating the transport of proteins and nucleic acids between the nucleus and cytoplasm, and are therefore essential for maintaining normal cellular function and liability. In the present study, we investigated the temporal immunohistochemical distribution of five representative components of NPCs—Ran GTPase‐activating protein 1 (RanGap1), glycoprotein‐210 (Gp210), nucleoporin 205 (Nup205), nucleoporin 107 (Nup107), and nucleoporin 50 (Nup50)—after 90 min of transient middle cerebral artery occlusion (tMCAO) up to 28 days after the reperfusion in rat brains. Single immunohistochemical analyses showed ring‐like stainings along the periphery of the nucleus in sham control brains. After tMCAO, Gp210 and Nup107 immunoreactivity continuously increased from 1 day, and RanGap1, Nup205, and Nup50 increased from 2 days until 28 days, which also displayed progressive precipitations within the nucleus in the peri‐ischemic area, while the ischemic core showed scarce expression with collapsed structure. Double immunofluorescent analyses revealed nuclear retention and apparent colocalization of RanGap1 with Nup205, Gp210 with Nup205, and partial colocalization of Nup205 with Nup107; most of the ischemic changes above were similar to those observed in patients with C9orf72‐genetic amyotrophic lateral sclerosis. Taken together, these observations suggest that the mislocalization of these nucleoporins may be a common pathogenesis of both ischemic and neurodegenerative disease. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
5.
Cerebral edema contributes to morbidity and mortality in stroke. Aquaporins (AQPs)-1, -4, and -9 have been identified as the three main water channels in the brain. To clarify their role in water movement, we have compared their expression patterns with brain swelling after transient focal brain ischemia. There were two peaks of maximal hemispheric swelling at 1 hr and at 48 hr after ischemia, coinciding with two peaks of AQP4 expression. At 1 hr after occlusion, AQP4 expression was significantly increased on astrocyte endfeet in the core and in the border of the lesion. At 48 hr, AQP4 expression was increased in astrocytes in the border of the lesion over the whole cell. AQP9 showed a significant induction at 24 hr that increased gradually with time, without correlation with the swelling. The expression of AQP1 remained unchanged. These results suggest that AQP4, but not AQP1 or AQP9, may play an important role in water movement associated with the pathophysiology of edema after transient cerebral ischemia in the mouse.  相似文献   

6.
Evolution of brain infarction after transient focal cerebral ischemia in mice.   总被引:21,自引:0,他引:21  
The evolution of brain infarction after transient focal cerebral ischemia was studied in mice using multiparametric imaging techniques. One-hour focal cerebral ischemia was induced by occluding the middle cerebral artery using the intraluminal filament technique. Cerebral protein synthesis (CPS) and the regional tissue content of adenosine triphosphate (ATP) were measured after recirculation times from 0 hours to 3 days. The observed changes were correlated with the expression of the mRNAs of hsp-70, c-fos, and junB, as well as the distribution of DNA double-strand breaks, visualized by TUNEL. At the end of 1 hour of ischemia, protein synthesis was suppressed in a larger tissue volume than ATP in accordance with the biochemical differentiation between core and penumbra. Hsp70 mRNA was selectively expressed in the cortical penumbra, whereas c-fos and junB mRNAs were increased both in the lateral part of the penumbra and in the ipsilateral cingulate cortex with normal metabolism. During reperfusion after withdrawal of the intraluminal filament, suppression of CPS persisted except in the most peripheral parts of the middle cerebral artery territory, in which it recovered between 6 hours and 3 days. ATP, in contrast, returned to normal levels within 1 hour but secondarily deteriorated from 3 hours on until, between 1 and 3 days, the ATP-depleted area merged with that of suppressed protein synthesis leading to delayed brain infarction. Hsp70 mRNA, but not c-fos and junB, was strongly expressed during reperfusion, peaking at 3 hours after reperfusion. TUNEL-positive cells were detected from 3 hours on, mainly in areas with secondary ATP depletion. These results stress the importance of an early recovery of CPS for the prevention of ischemic injury and suggest that TUNEL is an unspecific response of delayed brain infarction.  相似文献   

7.
Summary Differential vulnerability of microtubule components to cerebral ischemia has been reported previously. We investigated the disintegration of microtubules using immunoelectron microscopy for -tubulin and microtubule-associated protein 1A and 2 (MAP1A and 2). Mongolian gerbils were subjected to bilateral carotid occlusion for 10 to 30 min and reperfusion for up to 72h following ischemia for 10 min. After ischemia for 10 min, some dendrites in the stratum moleculare of the subiculum-CA1 region lost immunoreaction products for -tubulin and MAPs. Loss of the reaction products spread to the medial CA1 region during progressive ischemia for 30 min. In some dendrites, electron-dense precipitates for MAPs were dispersed in the dendritic cytoplasm with little reaction product on microtubules and without alteration of the reaction for -tubulin. After recirculation, loss of electron-dense precipitates for -tubulin and MAPs, as well as disintegration of microtubules, propagated further to the medial CA1 region and to the proximal dendrites. The present study demonstrated prompt disintegration of microtubules with rapid disappearance of the reaction for MAPs which seemed to be caused by detachment of MAPs from the microtubule cores.  相似文献   

8.
9.
目的  探讨大鼠局灶性脑缺血再灌注后多聚ADP核糖多聚酶 (PARP)不同时空的表达改变及其与凋亡的关系。方法  运用免疫组织化学和分子生物学技术观察大鼠局灶性脑缺血再灌注后PARP蛋白表达与降解、凋亡的时空动态改变。结果 (1)脑缺血再灌注诱导PARP蛋白表达增强 ,与凋亡的时间变化规律相似 ,但范围大于并涵盖凋亡的范围 ,凋亡分布区外侧的缺血区表达也明显增加。 (2 )同时 ,PARP蛋白出现降解 ,随着缺血或再灌注时间的延长 ,降解逐渐增强。结论 脑缺血 /再灌注损伤可诱导神经细胞DNA修复蛋白PARP的表达。以上结果提示 :轻度缺血时 ,PARP可修复受损DNA ,神经细胞耐受缺血而存活 ;缺血损害重时 ,PARP被降解 ,DNA修复机制受损 ,细胞凋亡程序启动。  相似文献   

10.
11.
Yu F  Sugawara T  Chan PH 《Brain research》2003,978(1-2):223-227
A transient focal ischemia model with C57Bl/6 mice was used to investigate whether dihydroethidium is neuroprotective. Different doses (25, 50, 100 mg/kg body weight) were used for pretreatment and the lowest effective dose was used for delayed treatment 1 and 2 h after reperfusion. Our results demonstrate that all the doses used for treatment reduced infarct volume. We conclude that dihydroethidium is neuroprotective by reducing superoxide in mice after stroke.  相似文献   

12.
13.
X-chromosome linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis protein (IAP) family and known to inhibit death of various cells under different experimental conditions. Although present in brain tissue, little is known about the physiology of the IAPs in nerve cells. Here we report on the establishment of transgenic mice with overexpression of human XIAP in brain neurons. The mice developed normally, and were more resistant to brain injury caused by transient forebrain ischemia after occlusion of the middle cerebral artery compared to control mice. The XIAP transgenic animals exhibited significantly smaller brain damage, as shown by TUNEL labelling, less reduction in brain protein synthesis, and less active caspase-3 after ischemia compared with controls. Upregulation of RhoB, which is an early indicator of neurological damage, was markedly reduced in the XIAP-overexpressing mice, which had also a better neurological outcome than control animals. This together with the increase in XIAP in normal mouse brain in regions surviving the infarct demonstrates that XIAP is an important factor promoting neuronal survival after ischemia. The results suggest that interference with the levels and the activity of XIAP in neurons may provide targets for the development of drugs limiting neuronal death after ischemia, and possibly in other brain injuries.  相似文献   

14.
The involvement of matrix metalloproteinases (MMPs) in cerebral ischemia-induced apoptosis was investigated in a model of transient focal cerebral ischemia in rats treated intracerebroventricularly (i.c.v.) with 4-((3-(4-phenoxylphenoxy)propylsulfonyl)methyl)-tetrahydropyran-4-carboxylic acid N-hydroxy amide, a broad spectrum non-peptidic hydroxamic acid MMP inhibitor, and in MMP-9-deficient mice. Our results showed that MMP inhibition reduced DNA fragmentation by 51% (P < 0.001) and cerebral infarct by 60% (P < 0.05) after ischemia. This protection was concomitant with a 29% reduction of cytochrome c release into the cytosol (P < 0.005) and a 54% reduction of calpain-related alpha-spectrin degradation (P < 0.05), as well as with an 84% increase in the immunoreactive signal of the native form of poly(ADP) ribose polymerase (P < 0.01). By contrast, specific targeting of the mmp9 gene in mice did reduce cerebral damage by 34% (P < 0.05) but did not modify the apoptotic response after cerebral ischemia. However, i.c.v. injection of MMP-9-deficient mice with the same broad-spectrum inhibitor used in rats significantly reduced DNA degradation by 32% (P < 0.05) and contributed even further to the protection of the ischemic brain. Together, our pharmacological and genetic results indicate that MMPs other than MMP-9 are actively involved in cerebral ischemia-induced apoptosis.  相似文献   

15.
The changes in excitatory amino acid receptor ligand binding induced by transient cerebral ischemia were studied in the rat hippocampal subfields. Ten minutes of ischemia was induced by common carotid artery occlusion combined with hypotension, and the animals were allowed variable periods of recovery ranging from 1 day to 4 weeks. The binding of 3H-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to quisqualate receptors, 3H-kainic acid (KA) to kainate receptors, and 3H-glutamate to N-methyl-D-aspartate (NMDA) receptors as determined by quantitative autoradiography. One week following ischemia the CA1 region of the hippocampus displayed a severe (90%) dendrosomatic lesion with preservation of presynaptic terminals. This was associated with a 60% decrease in AMPA binding and a 25% decrease in glutamate binding to NMDA receptors. At 4 weeks postischemia, both AMPA and NMDA sites were greatly reduced. Although the dentate gyrus granule cells are resistant to an ischemic insult of this magnitude, this region showed marked changes in receptor binding. One week following ischemia, the AMPA and NMDA binding decreased by approximately 40 and 20%, respectively. Following 2 weeks of recovery, the NMDA binding was not significantly different from control level, while the AMPA binding remained depressed up to 4 weeks postischemia. The high density of KA binding sites in the inner molecular layer of the dentate gyrus was unaffected by the ischemic insult, despite an extensive degeneration of cells in the hilus of dentate gyrus which projects glutamatergic afferents to this area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The Wld(s) mouse mutant demonstrates a remarkable phenotype of delayed axonal and synaptic degeneration after nerve lesion. In this study, the authors tested the hypothesis that expression of Wld protein is neuroprotective in an in vivo mouse model of global cerebral ischemia. This model is associated with selective neuronal degeneration in specific brain regions such as the caudate nucleus and CA2 hippocampal pyramidal cell layer. The extent of neuronal damage was quantified in Wld(s) compared to wild-type mice after an identical episode of global cerebral ischemia. The results demonstrated a significant and marked reduction in the extent of neuronal damage in Wld(s) as compared to wild-type C57Bl/6 mice. In the caudate nucleus, Wld expression significantly reduced the percentage of ischemic neuronal damage after global ischemia (Wld(s), 27.7 +/- 16.8%; wild-type mice, 58.7 +/- 32.3%; P = 0.036). Similarly, in the CA2 pyramidal cell layer, there was a significant reduction of neuronal damage in the Wld(s) mice as compared to wild-type mice after ischemia (Wld(s), 17.7 +/- 23.0%; wild-type mice, 41.9 +/- 28.0%; P < 0.023). Thus, these results clearly demonstrate that the Wld gene confers substantial neuroprotection after cerebral ischemia, and suggest a new role to that previously described for Wld(s).  相似文献   

18.
Poly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and neutrophil infiltration after transient focal cerebral ischemia in mice. Ischemia was induced in male Swiss mice, anaesthetized with chloral hydrate (400 mg/kg, i.p.), by a 15-min-occlusion of the left middle cerebral artery using an intraluminal suture. Treatments with 3-AB were first administered intraperitoneally 15 min before reperfusion and endpoints measured at 24 h. Among the range of dosages studied (20-320 mg/kg), 40 mg/kg gave the maximal neuroprotection with a 30% decrease in the infarct volume and tended to improve the neurological score evaluated by a grip test. The same dosage was, however, devoid of effect when injection was delayed 2 or 6 h after reperfusion. Myeloperoxidase (MPO) activity used as an index of neutrophil infiltration showed that infiltration peaked 48 h after reperfusion in our model. At this time point, 3-AB (40 mg/kg given 15 min before reperfusion) markedly reduced the neutrophil infiltration, as evidenced by a 72%-decrease in MPO activity, and was still neuroprotective. Our results confirm that 3-AB reduces brain damage. Moreover, for the first time, a quantitative study shows that 3-AB decreases neutrophil infiltration elicited by cerebral ischemia.  相似文献   

19.
Accumulating evidences suggest that inflammation-mediated neurons dysfunction participates in the initial and development of Parkinson’s disease (PD), whereas mitochondria have been recently recognized as crucial regulators in NLRP3 inflammasome activation. Cordycepin, a major component of cordyceps militaris, has been shown to possess neuroprotective and anti-inflammatory activity. However, the effects of cordycepin in rotenone-induced PD models and the possible mechanisms are still not fully understood. Here, we observed that motor dysfunction and dopaminergic neurons loss induced by rotenone exposure were ameliorated by cordycepin. Cordycepin also reversed Drp1-mediated aberrant mitochondrial fragmentation through increasing AMPK phosphorylation and maintained normal mitochondrial morphology. Additionally, cordycepin effectively increased adenosine 5′-triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reduced mitochondrial ROS levels, as well as inhibited complex 1 activity. More importantly, cordycepin administration inhibited the expression of NLRP3 inflammasome components and the release of pro-inflammatory cytokine in rotenone-induced rats and cultured neuronal PC12 cells. Moreover, we demonstrated that the activation of NLRP3 inflammasome within neurons could be suppressed by the mitochondrial division inhibitor (Mdivi-1). Collectively, the present study provides evidence that cordycepin exerts neuroprotective effects partially through preventing neural NLRP3 inflammasome activation induced by Drp1-dependent mitochondrial fragmentation in rotenone-injected PD models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号