首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular heme derived from hemoglobin following hemorrhage or released from dying cells induces the expression of heme oxygenase-1 (HO-1, HSP-32) which metabolizes heme to the gaseous mediator carbon monoxide (CO), iron (Fe) and biliverdin. Biliverdin and its product bilirubin are powerful antioxidants. Thus, expression of HO-1 is considered to be a protective mechanism against oxidative stress and has been described in microglia, astrocytes and neurons following distinct experimental models of pathological alterations to the brain such as subarachnoidal hemorrhage, ischemia and traumatic brain injury (TBI) and in human neurodegenerative diseases. We have now analyzed the expression of HO-1 in human brains following TBI (n = 28; survival times: few minutes up to 6 months) and focal cerebral infarctions (FCI; n = 17; survival time: < 1 day up to months) by immunohistochemistry. Follwing TBI, accumulation of HO-1+ microglia/macrophages at the hemorrhagic lesion was detected as early as 6 h post trauma and was still pronounced after 6 months. In contrast, after FCI HO-1+ microglia/macrophages accumulated within focal hemorrhages only and were absent in non-hemorrhagic regions. Further, HO-1 was weakly expressed in astrocytes in the perifocal penumbra. In contrast to experimental data derived from rat focal ischemia, these results indicate a prolonged HO-1 expression in humans after brain injury.  相似文献   

2.
Cyclooxygenases (COX; prostaglandin endoperoxide H synthases) are key enzymes in the conversion of arachidonic acid into prostanoids which mediate inflammation, immunomodulation, mitogenesis, ovulation, fewer, apoptosis and blood flow. Here, we report COX-1 expression following focal cerebral infarctions (FCI). In healthy control brains, COX-1 was localized by immunohistochemistry to a few endothelial cells, single neurons and rare, evenly distributed brain microglia/macrophages. In infarctioned brains, COX-1+ cells accumulated highly significantly (P < 0.0001) in peri-infarctional areas and in the developing necrotic core early after infarction. Here, cell numbers remained persistently elevated up to several months post infarction. Further, clusters of COX-1+ cells were located in perivascular regions related to the Virchow-Robin space. Double-labeling experiments confirmed co-expression of COX-1 by CD68+ microglia/macrophages. Co-expression of the activation antigens HLA-DR, -DP, -DQ (MHC class II) or the macrophage inhibitor factor-related protein MRP-8 (S100A8) by most COX-1+ microglia/macrophages was only seen early after infarction. Thus, COX-1 appeared to be expressed in microglial cells regardless of their activation state. However, the prolonged accumulation of COX-1+ microglia/macrophages restricted to peri-infarctional areas enduring the acute post-ischemic inflammatory response points to a role of COX-1 in tissue remodeling or in the pathophysiology of secondary injury. We have identified localized, accumulated COX-1 expression as a potential pharmacological target following FCI. Therefore we suggest that therapeutic approaches based on selective COX-2 blocking might not be sufficient for suppressing the local synthesis of prostanoids.  相似文献   

3.
Blood-brain barrier (BBB) compromise is a significant pathologic event that manifests early following traumatic brain injury (TBI). Because many signaling cascades are initiated immediately after the traumatic event, we were interested in examining acute differential protein expression that may be involved in BBB function. At acute time points postinjury, altered protein expression may result from altered translation efficiency or turnover rate rather than from a genomic response. The application of tandem 2-D gel electrophoresis and mass spectrometry analysis is a powerful approach for directly screening differential protein expression following TBI. Using comparative 2-D gel analysis, we selected candidate protein spots with apparent altered expression and identified them by mass spectrometry. Cyclophilin A was selected for further analysis because it has been implicated in endothelial cell activation and inflammation, and studies have suggested cyclosporine A, an inhibitor of all cyclophilin isoforms, might be beneficial after TBI. We examined if altered expression of cyclophilin A in the brain vasculature might play a role in BBB function. We found significantly increased cyclophilin A levels in isolated brain microvessels 30 min following injury. Postinjury administration of cyclosporine A significantly attenuated BBB permeability measured 24 hr postinjury, suggesting cyclophilin activity after TBI may be detrimental. However, direct injection of purified recombinant cyclophilin A attenuated both BBB permeability and tissue damage in a stab wound model of injury. These findings suggest that increased expression of cyclophilin A may play a protective role after TBI, whereas other cyclophilin isoforms may be detrimental.  相似文献   

4.
Blood-brain barrier disintegration and inflammatory cell recruitment are key processes in the pathogenesis of cerebral malaria (CM). Recent data provide convincing evidence that the serine protease urokinase-type plasminogen activator receptor (uPAR) is a key molecule in promoting cell adhesion and spreading. We have now analyzed expression of urokinase-type plasminogen activator receptor (uPAR, CD87), which is part of a cell surface associated proteolytic system, in brains of eight CM patients and seven neuropathologically unaltered and diseased controls by immunohistochemistry. Double labeling experiments with antibodies directed against CD68 (macrophages/microglial cells), myeloid-related protein (MRP8), and glial fibrillary acid protein (GFAP) confirmed the nature of uPAR expressing cells. We observed focal accumulation of uPAR expressing macrophages/microglial cells in Dürck's granulomas and adjacent to petechial hemorrhages, in astrocytes, and in endothelial cells. In contrast, focal uPAR expression in macrophages/microglial cells but not in astrocytes was found in microglial nodules of toxoplasmic encephalitis and in the cellular infiltrate of bacterial meningitis. Normal brains showed only faint uPAR expression in endothelial cells. We conclude from these data that lesion-associated uPAR expression at least in part contributes to blood-brain barrier alteration and immunologic dysfunction in CM patients.  相似文献   

5.
Platelet‐derived growth factor receptor β (PDGFRβ) is upregulated after brain injury and its depletion results in the blood–brain barrier (BBB) damage. We investigated the time‐window and localization of PDGFRβ expression in mice with intrahippocampal kainic acid‐induced status epilepticus (SE) and in rats with lateral fluid‐percussion‐induced traumatic brain injury (TBI). Tissue immunohistochemistry was evaluated at several time‐points after SE and TBI. The distribution of PDGFRβ was analyzed, and its cell type‐specific expression was verified with double/triple‐labeling of astrocytes (GFAP), NG2 cells, and endothelial cells (RECA‐1). In normal mouse hippocampus, we found evenly distributed PDGFRβ+ parenchymal cells. In double‐labeling, all NG2+ and 40%–60% GFAP+ cells were PDGFRβ+. After SE, PDGFRβ+ cells clustered in the ipsilateral hilus (178% of that in controls at fourth day, 225% at seventh day, P < 0.05) and in CA3 (201% at seventh day, P < 0.05), but the total number of PDGFRβ+ cells was not altered. As in controls, PDGFRβ‐immunoreactivity was detected in parenchymal NG2+ and GFAP+ cells. We also observed PDGFRβ+ structural pericytes, detached reactive pericytes, and endothelial cells. After TBI, PDGFRβ+ cells clustered in the perilesional cortex and thalamus, particularly during the first post‐injury week. PDGFRβ immunopositivity was observed in NG2+ and GFAP+ cells, structural pericytes, detached reactive pericytes, and endothelial cells. In some animals, PDGFRβ vascular staining was observed around the cortical glial scar for up to 3 months. Our data revealed an acute accumulation of PDGFRβ+ BBB‐related cells in degenerating brain areas, which can be long lasting, suggesting an active role for PDGFRβ‐signaling in blood vessel and post‐injury tissue recovery. GLIA 2017;65:322–341  相似文献   

6.
目的 研究尿激酶型纤溶酶原激活剂(uPA)及受体(uPAR)在髓母细胞瘤中的表达及临床意义。方法 应用免疫组化LSAB法检测50例髓母细胞瘤中uPA及uPAR的表达,结合临床随访,使用Cox回归统计分析。结果 uPA及uPAR染色定位于肿瘤细胞和血管内皮细胞,Cox回归分析显示uPA及uPAR是影响生存时间的预后因子,它们与预后存在一定的负相关关系。结论 uPA及uPAR可作为预测髓母细胞瘤患预后的客观指标。  相似文献   

7.
The urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) play an important role in cell migration and extracellular proteolysis. We previously described uPAR/uPA overexpression in the cerebrospinal fluid (CSF) and brain tissues of patients with human immunodeficiency virus (HIV)-related cerebral diseases. In this study, we examined uPAR/uPA expression by immunohistochemistry (IHC) in brains of HIV patients with opportunistic cerebral lesions and in HIV-positive/negative controls. uPAR was found in macrophages/microglia with the highest levels in cytomegalo-virus (CMV) encephalitis, toxoplasmosis, and lymphomas; in cryptococcosis and progressive multifocal leukoencephalopathy (PML) cases, only a few positive cells were found and no positivity was observed in controls. uPA expression was demonstrated only in a few macrophages/microglia and lymphocytes in all the cases and HIV-positive controls without different pattern of distribution; no uPA immunostaining was found in cryptococcosis and HIV-negative controls. The higher expression of uPAR/uPA in most of the opportunistic cerebral lesions supports their role in these diseases, suggesting their contribution to tissue injury.  相似文献   

8.
Inflammatory cell infiltration is a major part of secondary tissue damage in traumatic brain injury (TBI). RhoA is an important member of Rho GTPases and is involved in leukocyte migration. Inhibition of RhoA and its downstream target, Rho-associated coiled kinase (ROCK), has been proven to promote axon regeneration and function recovery following injury in the central nervous system (CNS). Previously, we showed that dexamethasone, an immunosuppressive corticosteroid, attenuated early expression of three molecules associated with microglia/macrophages activation following TBI in rats. Here, the effects of dexamethasone on the early expression of RhoA have been investigated in brains of TBI rats by immunohistochemistry. In brains of rats treated with TBI alone, significant RhoA+ cell accumulation was observed at 18 h post-injury and continuously increased during our observed time period. The accumulated RhoA+ cells were distributed to the areas of pannecrosis and selective neuronal loss. Most accumulated RhoA+ cells were identified as active microglia/macrophages by double-labelling. Dexamethasone (1 mg/kg body weight) was intraperitoneally injected on day 0 and 2 immediately following brain injury. Numbers of RhoA+ cells were significantly reduced on day 1 and 2 following administration of dexamethasone but returned to vehicle control level on day 4. However, dexamethasone treatment did not change the proportion of RhoA+ cells. These observations suggest that dexamethasone has only a transient effect on early leukocyte recruitment.  相似文献   

9.
The blood–brain barrier (BBB) is an anatomical microstructural unit, with several different components playing key roles in normal brain physiological regulation. Formed by tightly connected cerebrovascular endothelial cells, its normal function depends on paracrine interactions between endothelium and closely related glia, with several recent reports stressing the need to consider the entire gliovascular unit in order to explain the underlying cellular and molecular mechanisms. Despite that, with regard to traumatic brain injury (TBI) and significant events in incidence and potential clinical consequences in pediatric and adult ages, little is known about the actual role of BBB disruption in its diverse pathological pathways. This Mini‐Review addresses the current literature on possible factors affecting gliovascular units and contributing to posttraumatic BBB dysfunction, including neuroinflammation and disturbed transport mechanisms along with altered permeability and consequent posttraumatic edema. Key mechanisms and its components are described, and promising lines of basic and clinical research are identified, because further knowledge on BBB pathological interference should play a key role in understanding TBI and provide a basis for possible therapeutic targets in the near future, whether through restoration of normal BBB function after injury or delivering drugs in an increased permeability context, preventing secondary damage and improving functional outcome. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Our previous study demonstrated that vascular endothelial growth factor (VEGF), now referred to as VEGF-A, plays a significant role in blood-brain barrier (BBB) breakdown and angiogenesis after brain injury. In this study, VEGF-A expression was compared with that of VEGF-B in the rat cortical cold injury model over a period of 6 hours to 6 days post-injury. VEGF-A and VEGF-B mRNA were detected by in situ hybridization and their protein was detected by immunohistochemistry. The presence of VEGF-A and VEGF-B proteins in endothelium of lesion vessels was related to BBB breakdown by double labeling for either of these growth factors and fibronectin, which was used as a marker of BBB breakdown. Significant induction of both VEGF-A and VEGF-B mRNA occurred at the lesion site during the period of maximal endothelial proliferation. VEGF-A mRNA levels peaked at 3 and 4 days post-injury and returned to basal expression by day 6, while VEGF-B mRNA levels remained elevated up to day 6. VEGF-B protein was constitutively expressed in endothelium of all cerebral vessels. After brain injury, there was increased immunoreactivity for VEGF-B at the lesion site, this protein being present in the endothelium and vascular smooth muscle cells of pial vessels, in inflammatory cells, and later in proliferating endothelial cells, endothelium of neovessels, and astrocytes. Lesion vessels showing BBB breakdown to fibronectin showed endothelial VEGF-A protein but not VEGF-B protein. Constitutive expression of VEGF-B in normal endothelium suggests that it may have a role in maintenance of the BBB in steady states, while its induction at both the gene and protein level post-injury indicates that it has an essential role in angiogenesis and the repair processes after brain injury.  相似文献   

11.
The neurotoxicity of tissue plasminogen activator?   总被引:8,自引:0,他引:8  
Tissue plasminogen activator (tPA), a fibrin specific activator for the conversion of plasminogen to plasmin, stimulates thrombolysis and rescues ischemic brain by restoring blood flow. However, emerging data suggests that under some conditions, both tPA and plasmin, which are broad spectrum protease enzymes, are potentially neurotoxic if they reach the extracellular space. Animal models suggest that in severe ischemia with injury to the blood brain barrier (BBB) there is injury attributed to the protease effects of this exogenous tPA. Besides clot lysis per se, tPA may have pleiotropic actions in the brain, including direct vasoactivity, cleaveage of the N-methyl-D-aspartate (NMDA) NR1 subunit, amplification of intracellular Ca++ conductance, and activation of other extracellular proteases from the matrix metalloproteinase (MMP) family, e.g. MMP-9. These effects may increase excitotoxicity, further damage the BBB, and worsen edema and cerebral hemorrhage. If tPA is effective and reverses ischemia promptly, the BBB remains intact and exogenous tPA remains within the vascular space. If tPA is ineffective and ischemia is prolonged, there is the risk that exogenous tPA will injure both the neurovascular unit and the brain. Methods of neuroprotection, which prevent tPA toxicity or additional mechanical means to open cerebral vessels, are now needed.  相似文献   

12.
Summary. VEGF is a major regulator of angiogenesis and vascular permeability in development and injury. The involvement of one of its receptors, Flk-1 in angiogenesis has been widely demonstrated, but few studies elucidate its role as a mediator of the BBB permeability and none displays its distribution following a cortical micronecrosis. A microvascular marker (LEA lectin), two BBB markers (EBA, GluT-1) and the VEGFR2 receptor were studied in adult rats after a minimal brain injury. Immunohistochemistry shows an increase of positive vessels, somata and processes around the micronecrosis from 6 to 72 hours after injury. Flk-1 was overexpressed mainly in endothelial cells, but also in astrocytes, neuronal somata and processes adjacent to the damage. This increase correlates to the lose of positivity for EBA. After injury, VEGFR-2 expression increases and its distribution corresponds to VEGF one. The whole system seems to play a role in the disruption of the BBB.  相似文献   

13.
Release of soluble urokinase receptor from vascular cells   总被引:3,自引:0,他引:3  
Urokinase-type plasminogen activator (uPA) and its cell surface-receptor (uPAR) regulate cellular functions linked to adhesion and migration and contribute to pericellular proteolysis in tissue remodelling processes. Soluble uPAR (suPAR) is present in the circulation, peritoneal and ascitic fluid and in the cystic fluid from ovarian cancer. We have investigated the origin and the vascular distribution of the soluble receptor, which accounts for 10-20% of the total receptor in vascular endothelial and smooth muscle cells. Phase separation analysis of the cell conditioned media with Triton X-114 indicated that suPAR associates with the aqueous phase, indicative of the absence of the glycolipid anchor. There was a polarized release of suPAR from cultured endothelial cells towards the basolateral direction, whereas the membrane-bound receptor was found preferentially on the apical surface. Both, uPAR and suPAR became upregulated 2-4 fold after activation of protein kinase C with phorbol ester, which required de-novo protein biosynthesis. Interleukin-1beta (IL-1beta), basic fibroblast growth factor (bFGF) or vascular endothelial growth factor increased suPAR release from endothelial cells, whereas platelet derived growth factor-BB, bFGF or IL-1beta stimulated suPAR release from vascular smooth muscle cells. Immune electron microscopy indicated that in atherosclerotic vessels (s)uPAR was observed on cell membranes as well as in the extracellular matrix. These findings indicate that (s)uPAR from vascular cells is upregulated by proangiogenic as well as proatherogenic growth factors and cytokines, is preferentially released towards the basolateral side of endothelial cells and accumulates in the vessel wall.  相似文献   

14.
15.
16.
尿激酶型纤溶酶原激活剂及其受体在胶质瘤中的表达   总被引:3,自引:0,他引:3  
目的 研究人脑胶质瘤组织中尿激酶型纤溶酶原激活剂(uPA)及其受体(uPAR)的表达,探讨uPA、uPAR的表达与人脑胶质瘤恶性程度的关系。方法 采用半定量逆转录-聚合酶链反应(RT-PCR)方法,对49例人脑胶质瘤手术切除标本、U251等3株胶质瘤细胞,12例内减压术中切除的正常脑组织标本的uPA mRNA和uPAR mRNA表达水平进行检测。结果 随着胶质瘤恶性度的升高,其uPA及uPAR mRNA表达率和表达水平逐渐增高。U251等3株胶质瘤细胞也表达了较高水平的uPA及uPAR mRNA,而正常组织表达率及表达水平极低。结论 人脑胶质瘤中纤溶酶原激活系统活性较高,uPA、uPAR基因的高表达反映了胶质瘤的恶性生物学行为。  相似文献   

17.
Aims: Increased endothelial caveolae leading to transcytosis of plasma proteins is associated with blood–brain barrier (BBB) breakdown and cerebral oedema in brain injury. Increased expression of caveolin-1α (Cav-1), an integral caveolar membrane protein, was reported in endothelium of arterioles and veins with BBB breakdown to fibronectin post injury. In this study the phosphorylation state of Cav-1 and its association with BBB breakdown was determined in the rat cortical cold injury model over a period of days 0.5–6 post lesion. Methods: Expression of phosphorylated Cav-1 was determined by immunoblotting and dual labelling immunofluorescence for phosphorylated caveolin-1 and fibronectin, a marker of BBB breakdown. A phospho-specific monoclonal antibody that selectively recognizes only tyrosine 14-phosphorylated Cav-1 (PY14Cav-1) was used. Results: Immunoblots showed constitutive expression of PY14Cav-1 in cortex of control rats and a significant increase in PY14Cav-1 expression at the lesion site up to day 4 post lesion. PY14Cav-1 immunostaining was observed in the endothelium of lesion vessels at days 0.5–4 post lesion, in neutrophils at days 0.5 and 2 and in macrophages at day 6 post lesion. Dual labelling showed that 100% of vessels with BBB breakdown to fibronectin showed endothelial PY14Cav-1 on day 0.5, the percentage decreasing to 62% on day 4. On day 6, none of the vessels showed endothelial phosphorylated Cav-1. Conclusions: The presence of phosphorylated Cav-1 in endothelium of vessels showing BBB breakdown suggests that phosphorylated Cav-1 signalling may be one of the factors associated with early BBB breakdown and brain oedema in brain injury.  相似文献   

18.
《Neurological research》2013,35(7):599-606
Abstract

Objective:

Damage to the blood–brain barrier (BBB) is an important secondary mechanism that occurs following traumatic brain injury (TBI) and may provide a potential therapeutic target to improve patient outcome. For such a progress to be realised, an accurate assessment of BBB compromise needs to be established.

Methods:

Fourteen patients with TBI were prospectively recruited. Post-traumatic BBB dysfunction was assessed using dynamic contrast-enhanced MRI (DCE-MRI), single-photon emission computerised tomography (SPECT) and serum S100B levels.

Results:

A statistically significant correlation between standardised uptake value ratio (SUVR) calculated from 99mTc-DTPA SPECT and Ktrans (a volume transfer constant) from DCE-MRI was found for those eight patients who had concurrent scans. The positive correlation persisted when the data were corrected for patient age, number of days following trauma and both parameters combined. We found no statistically significant correlation between either of the imaging modalities and concurrent serum S100B levels.

Discussion:

The correlation of SPECT with DCE-MRI suggests that either scan may be used to assess post-traumatic BBB damage. We could not support serum S100B to be an accurate measure of BBB damage when sampled a number of days following injury but the small number of patients, the heterogeneity in TBI patients and the delay following injury makes any firm conclusions regarding S100B and BBB difficult.  相似文献   

19.
The last two decades have witnessed a rapid decrease in mortality due to acute cerebral ischemia that paradoxically has led to a rapid increase in the number of patients that survive an acute ischemic stroke with various degrees of disability.Unfortunately,the lack of an effective therapeutic strategy to promote neurological recovery among stroke survivors has led to a rapidly growing population of disabled patients.Thus,understanding the mechanisms of neurorepair in the ischemic brain is a priority with wide scientific,social and economic implications.Cerebral ischemia has a harmful effect on synaptic structure associated with the development of functional impairment.In agreement with these observations,experimental evidence indicates that synaptic repair underlies the recovery of neurological function following an ischemic stroke.Furthermore,it has become evident that synaptic plasticity is crucial not only during development and learning,but also for synaptic repair after an ischemic insult.The plasminogen activating system is assembled by a cascade of enzymes and their inhibitors initially thought to be solely involved in the generation of plasmin.However,recent work has shown that in the brain this system has an important function regulating the development of synaptic plasticity via mechanisms that not always require plasmin generation.Urokinase-type plasminogen activator(uPA)is a serine proteinase and one of the plasminogen activators,that upon binding to its receptor(uPAR)not only catalyzes the conversion of plasminogen into plasmin on the cell surface,but also activates cell signaling pathways that promote cell migration,proliferation and survival.The role of uPA is the brain is not fully understood.However,it has been reported while uPA and uPAR are abundantly found in the developing central nervous system,in the mature brain their expression is restricted to a limited group of cells.Remarkably,following an ischemic injury to the mature brain the expression of uPA and uPAR increases to levels comparable to those observed during development.More specifically,neurons release uPA during the recovery phase from an ischemic injury,and astrocytes,axonal boutons and dendritic spines recruit uPAR to their plasma membrane.Here we will review recent evidence indicating that binding of uPA to uPAR promotes the repair of synapses damaged by an ischemic injury,with the resultant recovery of neurological function.Furthermore,we will discuss data indicating that treatment with recombinant uPA is a potential therapeutic strategy to promote neurological recovery among ischemic stroke survivors.  相似文献   

20.
目的观察I型纤溶酶原激活物抑制物(PAI-1)在人脑胶质瘤中的表达特征,研究其与胶质瘤病理分级的关系及其对胶质瘤恶性生长的调控作用,方法用抗PAI-1单克隆抗体对57例不同恶性程度的星形细胞瘤、13例良性脑膜瘤和10例正常脑组织进行免疫组织化学染色和半定量分析。结果胶质瘤恶性程度越高,PAI-1的表达程度越高。良性脑膜瘤与低度恶性胶质瘤表达程度均较低,正常脑组织未见表达、PAI-1的阳性染色主要集中于血管,坏死灶周围的PAI-1阳性血管更为集中,结论PAI-1在对抗肿瘤尿激酶所引起的肿瘤血管组织和肿瘤基质的自身降解及胶质瘤新生血管形成起重要作用。在肿瘤坏死灶周围PAI-1表达增强可能是机体防止肿瘤无限制迅速生长的防御机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号