首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dosimetric properties of Virtual Wedge (VW) and physical wedge (PW) in 6 and 23 MV photon beams from a Siemens Primus linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses and surface doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs) and PW factors (PWFs) have a similar trend as a function of field size. PWFs have a stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45 degrees and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.  相似文献   

2.
We have investigated the influence of the linear accelerator (LINAC) monitor chamber calibration on the dosimetry of Siemens Virtual Wedge (VW.) The doses delivered in the three phases of wedge delivery (initial gap, sweep portion, and open field) utilize the ionization current generated in two dose monitoring ion chambers (MONITOR 1 and MONITOR 2) in the LINAC to control the wedge delivery. We intentionally offset the calibration of each of these chambers by +/- 3% and observed up to a 13% change in the dose along the wedge profile for a 6 MV beam at a field size of 20 x 20 cm2. If the calibration of one of the two dose monitoring chambers changed independently then the relative dose at points along the wedge profile were affected. Furthermore, the percentage change in dose varied across the wedge profile thereby affecting the wedge angle as well as the central axis wedge factor. We also present equations for calculating the change in dose at a position along the wedge profile as a function of monitor chamber calibration. A comparison with measurement showed that our theoretical predictions were accurate to within +/- 1.7%. The equations have proven useful tools in evaluating periodic drifts in VW dosimetry.  相似文献   

3.
Virtual Wedge (VW) is a Siemens treatment modality which generates wedge-shaped dose distributions by moving a collimator jaw from closed to open at a constant speed while varying the dose rate in every 2 mm jaw position. In this work, the implementation and verification of VW in a radiotherapy treatment planning (RTP) system is presented. The VW implementation models the dose delivered by VW using the Siemens monitor units (MU) analytic formalism which determines the number of MU required to generate a wedge-fluence profile at points across the VW beam. For any set of treatment parameters, the VW algorithm generates an "intensity map" that is used to model the modification of fluence emanating from the collimator. The intensity map is calculated as the ratio of MU delivered on an axis point, divided by the monitor units delivered on the central-axis MU(0). The dose calculation is then performed using either the Clarkson or Convolution/ Superposition algorithms. The VW implementation also models the operational constraints for the delivery of VW due to dose rate and jaw speed limits. Dose verifications with measured profiles were performed using both the Clarkson and Convolution/Superposition algorithms for three photon beams; Siemens Primus 6 and 23 MV, and Mevatron MD 15 MV. Agreement within 2% or 2 mm was found between calculated and measured doses, over a large set of test cases, for 15, 30, 45, and 60 degree symmetric and asymmetric VW fields, using the manufacturer's supplied mu and c values for each beam.  相似文献   

4.
In the year 1997 Siemens introduced the virtual wedge in its accelerators. The idea was that a dose profile similar to that of a physical wedge can be obtained by moving one of the accelerator jaws at a constant speed while the dose rate is changing. This work explores the observed behaviour of virtual wedge factors. A model is suggested which takes into account that at any point in time, when the jaw moves, the dose at a point of interest in the phantom is not only due to the direct beam. It also depends on the scattered radiation in the phantom, the head scatter and the behaviour of the monitoring system of the accelerator. Measurements are performed in a Siemens Primus accelerator and compared to the model predictions. It is shown that the model agrees reasonably well with measurements spanning a wide range of conditions. A strong dependence of virtual wedge factors on the dosimetric board has been confirmed and an explanation has been given on how the balance between different contributions is responsible for virtual wedge factors values.  相似文献   

5.
Faddegon BA  Garde E 《Medical physics》2006,33(8):3063-3065
Wedge-shaped dose distributions are delivered on some modern linear accelerators with a virtual wedge, combining variable dose rate and a moving jaw. Drift in the wedge factor and wedge angle of a 20 X 20 cm field for the 60 degree virtual wedge was found commonplace in several models of linear accelerator from one manufacturer. It was found that errors in dose delivery both on and off axis could exceed 5% if quality assurance checks are limited to 10 X 10 cm or smaller fields or wedge angles of 45 degrees or less. A procedure to easily identify and remedy the problem is presented. In each case the change was due to variation in dose per monitor unit (D/MU) with the electron beam pulse rate. The variation was traced to a pair of circuit boards in the dosimetry system, one for each output measurement channel. Wedge factors and dose profiles measured before and after board replacement on 4 accelerators, and for a set of defective boards placed on one of the accelerators, were compared. The effect was largest for the wedge with the steepest profile (60 degree wedge angle) and the largest field measured: 20 X 20 cm. In this case, a 1% variation in D/MU with a factor of 5 reduction in pulse rate corresponded to an average 0.8% change in wedge factor and 0.8% change in the off axis ratio at 8.5 cm off axis on the high dose side of the wedge field, 0.3% on the low dose side. After board replacement, wedge factors and profiles measured on the 4 machines generally agreed to 2% for the full range of wedge angles and field sizes. Quality assurance of virtual wedges is discussed in light of the new findings.  相似文献   

6.
The dose linearity and uniformity of a linear accelerator designed for multileaf collimation system-(MLC) based IMRT was studied as a part of commissioning and also in response to recently published data. The linear accelerator is equipped with a PRIMEVIEW, a graphical interface and a SIMTEC IM-MAXX, which is an enhanced autofield sequencer. The SIMTEC IM-MAXX sequencer permits the radiation beam to be " ON" continuously while delivering intensity modulated radiation therapy subfields at a defined gantry angle. The dose delivery is inhibited when the electron beam in the linear accelerator is forced out of phase with the microwave power while the MLC configures the field shape of a subfield. This beam switching mechanism reduces the overhead time and hence shortens the patient treatment time. The dose linearity, reproducibility, and uniformity were assessed for this type of dose delivery mechanism. The subfields with monitor units ranged from 1 MU to 100 MU were delivered using 6 MV and 23 MV photon beams. The doses were computed and converted to dose per monitor unit. The dose linearity was found to vary within 2% for both 6 MV and 23 MV photon beam using high dose rate setting (300 MU/min) except below 2 MU. The dose uniformity was assessed by delivering 4 subfields to a Kodak X-OMAT TL film using identical low monitor units. The optical density was converted to dose and found to show small variation within 3%. Our results indicate that this linear accelerator with SIMTEC IM-MAXX sequencer has better dose linearity, reproducibility, and uniformity than had been reported.  相似文献   

7.
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.  相似文献   

8.
目的:动态楔形技术即在加速器治疗时用计算机控制铅门的运动以使X线在所设定的照射野和深度处得到治疗所需要的楔形等剂量线分布,以代替传统的物理楔形板。在1978年,P.K.Kijewski等人[1]提出动态楔形技术(DW)之后,上个世纪90年代,John.P.Gibbons[2]提出了将动态楔形技术应用于临床,并对Varian加速器作了大量的研究。但对于Siemens医用直线加速器报道尚少。方法:本文以Siemens Primus医用直线加速器为研究对象,在水箱中放入0.6 cc电离室并与NE2620型剂量仪相连,分别对6 MV和15 MV光子线在dmax深度处进行测量。通过实验,找出适合Siemens Primus医用直线加速器的动态楔形临床剂量计算公式。结果:在实验过程中,我们发现,按照经验公式所拟合出来的公式与通过与Siemens Primus医用直线加速器的动态楔形因子的计算公式及公式中出现的参量[3]的理论值比较,即文中的公式理论值与实验值的比较,在用于临床时,我们发现,实验拟合出来的公式满足临床要求,误差结果在1%~2%内。结论:对于Siemens Primus加速器,在应用动态楔形技术时,对于对称野在临床剂量计算过程中,可以不考虑EDWF值,即与常规剂量计算一样。  相似文献   

9.
Cheng CW  Das IJ 《Medical physics》2002,29(2):226-230
In the step-and-shoot delivery of an IMRT plan with a Siemens Primus accelerator, radiation is turned off by desynchronizing the injector while the field parameters are being changed. When the machine is ready again a trigger pulse is sent to the injector to start the beam instantaneously. The objective of this study is to investigate the beam characteristics of the machine operating in the IMRT mode and to study the effect of the Initial Pulse Forming Network (IPEN) on the dark current. The central axis (CAX) output for a 10 x 10 cm2 field over the range 1-100 MU was measured with an ion chamber in a polystyrene phantom for both 6 and 15 MV x rays. Beam profiles were also measured over the range of 2-40 MU with the machine operating in the IMRT mode and compared with those in the normal mode. By adjusting the IPFN value, dark current radiation (DCR) was measured using ion chamber measurements. For both the normal and IMRT modes, dose versus MU is nonlinear in the range 1-5 MUs. Above 5 MU, dose varies linearly with MU for both 6 and 15 MV x rays. For stability of dose profiles, the 2 MU-IM group exhibit 20% variation from one subfield to another. The variation is about 5% for the 8 MU-IM group and <5% for 10 MU and higher. The results are similar in the normal treatment mode. With the IPFN at >80% of the PFN value, a spurious radiation associated with dark current at approximately 0.7% of the dose at isocenter for a 10 x 10 cm2 field is detected during the "PAUSE" state of the accelerator for 15 MV x rays. When the IPFN is lowered to <80% of the PFN value, no DCR is detected. For 6 MV x rays, no measurable DCR was detected regardless of the IPFN setting.  相似文献   

10.
Saini AS  Zhu TC 《Medical physics》2004,31(4):914-924
The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10 x 10 cm2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38,900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39,060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38,900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38,990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21,870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21,870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17,870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21,870 cGy/s) for the p-type preirradiated Scanditronix EDP20(3G), and 0.998 (1490 cGy/s)-1.015 (38,880 cGy/s) for Scanditronix EDP10(3G) diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is provided to eliminate electron contamination. An energy independent empirical formula was proposed to fit the dose-rate dependence of diode sensitivity.  相似文献   

11.
The field-size dependence of the photon output of linear accelerators in air has been attributed in part to changes in the amount of radiation backscattered from the collimator jaws into the dose monitor chamber. This possible effect was investigated for a variety of accelerators with energies from 4 to 15 MV by measuring the monitor unit rate (MU/min) for different collimator openings. This measurement was made without dose rate feedback control, i.e., with constant electron beam current in the accelerator. The monitor unit rate was independent of collimator setting for all machines tested. Hence, it is concluded that backscattered radiation from the collimator jaws into the dose monitor chamber does not contribute to the variation of output with field size.  相似文献   

12.
Superficial doses were measured for static TomoTherapy Hi-Art beams for normal and oblique incidence. Dose was measured at depths < or = 2 cm along the central axis of 40 x 5 cm2 and 40 x 2.5 cm2 beams at normal incidence for source to detector distances (SDDs) of 55, 70, and 85 cm. Measurements were also made at depths normal to the phantom surface for the same beams at oblique angles of 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 83 degrees from the normal. Data were collected with a Gammex/RMI model 449 parallel-plate chamber embedded in a solid water phantom and with LiF thermoluminescent dosimeters (TLDs) in the form of powder. For comparison, measurements were made on a conventional 6 MV beam (Varian Clinac 2100C) at normal incidence and at an oblique angle of 60 degrees from the normal. TomoTherapy surface dose varied with the distance from the source and the angle of incidence. For normal incidence, surface dose increased from 0.16 to 0.43 cGy/MU as the distance from the source decreased from 85 to 55 cm for the 40 x 5 cm2 field and increased from 0.12 to 0.32 cGy/MU for the 40 x 2.5 cm2 field. As the angle of incidence increased from 0 degrees to 83 degrees, surface dose increased from 0.24 to 0.63 cGy/MU for the 40 x 5 cm2 field and from 0.18 to 0.58 cGy/MU for the 40 x 2.5 cm2 field. For normal incidence at 55 cm SDD, the surface dose relative to the dose at d(max) for the 40 x 5 cm2 TomoTherapy Hi-Art beam was 31% less than that from a conventional, flattening filter based linear accelerator. These data should prove useful in accessing the accuracy of the TomoTherapy treatment planning system to predict the dose at superficial depths for a static beam delivery.  相似文献   

13.
We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as a function of the number of projections and the error in the projection angles. The detector dose response is linear (R2 value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.  相似文献   

14.
The CadPlan treatment planning system models the dose distribution in the non-wedge direction under a wedged field by converting the wedge thickness to an equivalent water thickness. The algorithm estimates the off-axis ratio (OAR) in the non-wedged direction using the open field OAR at a depth deeper by this equivalent water thickness. This model has been shown to work well for a Siemens Mevatron KD-2 Linac. However, the motorized wedge of the Elekta (formerly Philips) accelerators is tapered off-axis to give a flat dose profile in the non-wedged direction. The CadPlan model assumes that the wedge has a uniform thickness in the non-wedged direction and so cannot model the off-axis dose for the motorized wedge. For a 4 MV beam of a SL75/5 accelerator this leads to a 7% overestimate and a 9% underestimate of the OAR under the thin and thick edge of the wedge respectively. For 6 and 18 MV beams of a SL20 accelerator and a 6 MV beam of a SL75/5 accelerator, the model underestimates the OAR in the order of 10% under the thick end of the wedge. We have shown that by appropriate modification of the effective water thickness values at off-axis distances, the algorithm models the OAR in the non-wedged direction to within 2.5% of the measured values for the 4, 6 and 18 MV beams, for the Elekta motorized wedge.  相似文献   

15.
The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.  相似文献   

16.
A technique for rotational total skin electron irradiation is presented in which the patient stands on a slowly rotating platform (SSD = 285 cm) in a large uniform linear accelerator electron field (Eo = 3.5 MeV). The beam is scattered by the transmission ionization chamber and by a special lead/aluminum scattering filter, and then degraded by a sheet of Lucite. A Farmer chamber is used as a patient dose monitor and a method for absolute dose calibration is presented. The field is uniform to within +/- 5% for dimensions of 180 X 40 cm2. The surface dose for rotational therapy is equal to 45% of the maximum dose in a stationary beam. The rotating beam exhibits a dose maximum on the surface, falls to 80% at 0.5 cm and has an x-ray contamination of approximately 4%. The surface dose rate is about 25 cGy/min for the rotating beam. The rotational beam percentage depth dose distributions, calculated using stationary beam information, agree well with measured data. The stationary beam exhibits a dose maximum at 4 mm in tissue, a surface dose of 93%, 80% dose at a depth of 1 cm, a practical range of 1.75 cm, and an x-ray contamination of 2.5%. The rotational total skin electron irradiation significantly reduces the patient treatment and setup time and solves the problem of beam matching, when compared to standard multiple-beam techniques.  相似文献   

17.
Compared with a set of physical photon wedges, a non physical wedge (virtual or dynamic wedge), realized by a moving collimator jaw, offers an alternative that allows creation of a wedged field with any arbitrary wedge angle instead of the traditional four physical wedges (15 degrees, 30 degrees, 45 degrees and 60 degrees). It is commonly assumed that non-physical wedges do not alter the photon spectrum compared with physical wedges that introduce beam hardening and loss of dose uniformity in the unwedged direction. In this study, we investigated the influence of a virtual wedge on the photon spectra of a 6-10 MV Siemens MD2 accelerator with the Monte Carlo code EGS4/BEAM. Good agreement was obtained between calculated and measured lateral dose profiles at the depth of maximum dose and at 10 cm depth for 20 x 20 cm2 fields for 6 and 10 MV photon beams. By comparing Monte Carlo models of a physical wedge and the virtual wedge that was studied in this work, it is confirmed that the latter has an insignificant effect on the beam quality, whereas the former can introduce significant beam hardening.  相似文献   

18.
The commercially available microMOSFET dosimeter was characterized for its dosimetric properties in radiotherapy treatments. The MOSFET exhibited excellent correlation with the dose and was linear in the range of 5-500 cGy. No measurable effect in response was observed in the temperature range of 20-40 degrees C. No significant change in response was observed by changing the dose rate between 100 and 600 monitor units (MU) min(-1) or change in the dose per pulse. A 3% post-irradiation fading was observed within the first 5 h of exposure and thereafter it remained stable up to 60 h. A uniform energy response was observed in the therapy range between 4 MV and 18 MV. However, below 0.6 MeV (Cs-132), the MOSFET response increased with the decrease in energy. The MOSFET also had a uniform dose response in 6-20 MeV electron beams. The directional dependence of MOSFET was within +/-2% for all the energies studied. The inherent build-up of the MOSFET was evaluated dosimetrically and found to have varying water equivalent thickness, depending on the energy and the side of the beam entry. At depth, a single calibration factor obtained by averaging the MOSFET response over different field sizes, energies, orientation and depths reproduced the ion chamber measured dose to within 5%. The stereotactic and the penumbral measurements demonstrated that the MOSFET could be used in a high gradient field such as IMRT. The study showed that the microMOSFET dosimeter could be used as an in vivo dosimeter to verify the dose delivery to the patient to within +/-5%.  相似文献   

19.
The impact of the oblique electron beam on the lateral buildup ratio (LBR), used in the electron pencil beam model to predict the per cent depth dose (PDD) and dose per monitor unit (MU) for an irregular electron field, was examined using Monte Carlo simulation. The EGSnrc-based Monte Carlo code was used to model electron beams produced by a Varian 21 EX linear accelerator for different beam energies, angles of obliquity and field sizes. The Monte Carlo phase space model was verified by measurements using electron diode and radiographic film. For PDDs of oblique electron beams, it is found that the depth of maximum dose (d(m)) shifts towards the surface as the beam obliquity increases. Moreover, for increasing the beam angle of obliquity, the depth doses just beyond d(m) decrease with depth. The depth doses then increase eventually in a deeper depth close to the practical range. The LBRs and pencil beam radial spread function, calculated using PDDs with different field sizes, are found varying with electron beam energies, angles of obliquity and cutout diameters. It is found that LBR increases along the normalized depth when the beam angle of obliquity increases. This results in a decrease of the radial spread function with an increase of beam obliquity. When the size of the electron field increases, the variation of LBR with beam angle of obliquity decreases. It should be noted that when calculating dose per MU for an oblique electron beam with an irregular field misunderstanding and neglecting the effect of beam obliquity would lead to a significant deviation. A database of LBRs for oblique electron beams can be created using Monte Carlo simulation conveniently and is recommended when an oblique beam is used in electron radiotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号