首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Electrophysiological properties of gap junction channels and mechanisms involved in the propagation of intercellular calcium waves were studied in cultured spinal cord astrocytes from sibling wild-type (WT) and connexin43 (Cx43) knock-out (KO) mice. Comparison of the strength of coupling between pairs of WT and Cx43 KO spinal cord astrocytes indicates that two-thirds of total coupling is attributable to channels formed by Cx43, with other connexins contributing the remaining one-third of junctional conductance. Although such a difference in junctional conductance was expected to result in the reduced diffusion of signaling molecules through the Cx43 KO spinal cord syncytium, intercellular calcium waves were found to propagate with the same velocity and amplitude and to the same number of cells as between WT astrocytes. Measurements of calcium wave propagation in the presence of purinoceptor blockers indicate that calcium waves in Cx43 KO spinal cord astrocytes are mediated primarily by extracellular diffusion of ATP; measurements of responses to purinoceptor agonists revealed that the functional P2Y receptor subtype is shifted in the Cx43 KO astrocytes, with a markedly potentiated response to ATP and UTP. Thus, the reduction in gap junctional communication in Cx43 KO astrocytes leads to an increase in autocrine communication, which is a consequence of a functional switch in the P2Y nucleotide receptor subtype. Intercellular communication via calcium waves therefore is sustained in Cx43 null mice by a finely tuned interaction between gap junction-dependent and independent mechanisms.  相似文献   

2.
Astrocytes are typically interconnected by gap junction channels that allow, in vitro as well as in vivo, a high degree of intercellular communication between these glial cells. Using cocultures of astrocytes and neurons, we have demonstrated that gap junctional communication (GJC) and connexin 43 (Cx43) expression, the major junctional protein in astrocytes, are controlled by neuronal activity. Moreover, neuronal death downregulates these two parameters. Because in several brain pathologies neuronal loss is associated with an increase in brain macrophage (BM) density, we have now investigated whether coculture with BM affects astrocyte gap junctions. We report here that addition of BM for 24 h decreases the expression of GJC and Cx43 in astrocytes in a density-dependent manner. In contrast, Cx43 is not detected in BM and no heterotypic coupling is observed between the two cell types. A soluble factor does not seem to be involved in these inhibitions because they are not observed either in the presence of BM conditioned media or in the absence of direct contact between the two cell types by using inserts. These observations could have pathophysiological relevance as neuronal death, microglial proliferation and astrocytic reactions occur in brain injuries and pathologies. Because astrocyte interactions with BM and dying neurons both result in the downregulation of Cx43 expression and in the inhibition of GJC, a critical consequence on astrocytic phenotype in those situations could be the inhibition of gap junctions.  相似文献   

3.
Gap junctions are specialized cell-to-cell contacts that provide direct intercellular communication. In the central nervous system (CNS), gap junction coupling occurs between both neurons and glial cells. One of the most abundant gap junction proteins in the CNS is connexin43 (Cx43). The functional syncytium formed by astrocytes via Cx43 gap junction intercellular communication has, for example, been implicated in maintaining the homeostasis of the extracellular milieu of neurons. In particular, astrocytes are involved in the spatial buffering of many ions, signalling molecules and energy sources. In this review, the role of Cx43 following CNS injury is examined by combining evidence surrounding the response of Cx43 to CNS injury and the effects of Cx43 gap junction blockade on neuronal survival in various models of injury. Combined evidence suggests that transient blockade targeting the window of initial Cx43 upregulation observed following injury is potentially therapeutic.  相似文献   

4.
5.
Astrocytes express gap junction proteins and multiple types of P2Y receptors (P2YRs) that contribute to the propagation of intercellular Ca(2+) waves (ICW). To gain access to the role played by gap junctional communication in ICW propagation generated by P2YR activation, we selectively expressed P2Y(1,2,4)R subtypes and Cx43 in the human 1321N1 astrocytoma cell line, which lacks endogenous P2 receptors. Fluorescence recovery after photobleaching revealed that 1321N1 cells are poorly dye-coupled and do not propagate ICW. Forced expression of Cx43 in 1321N1 cells (which did not show functional hemichannels) increased dye coupling and allowed short-range ICW transmission that was mainly mediated by intercellular diffusion of Ca(2+) generated in the stimulated cells. Astrocytoma clones expressing each of the P2YR subtypes were also able to propagate ICWs that were likely dependent on IP(3) generation. These waves exhibited properties particular to each P2YR subtype. Co-expression of eGFP-hCx43 and P2Y(1)R modified the properties of P2Y(1)R-generated ICW to those characteristics of P2Y(2)R. Increased coupling in P2Y(4)R clones induced by expression of eGFP-hCx43 abolished the ICWs observed in uncoupled P2Y(4)R clones. No changes in the behavior of ICWs generated in P2Y(2)R clones were observed after forced expression of Cx43. These data indicate that in 1321N1 cells gap junctional communication provides intercellular integration of Ca(2+) signals generated by P2YR activation, thus coordinating the propagation of intercellular calcium waves.  相似文献   

6.
Koulakoff A  Ezan P  Giaume C 《Glia》2008,56(12):1299-1311
A characteristic feature of astrocytes is their high level of intercellular communication mediated by gap junctions. The two main connexins, Cx30 and Cx43, that form these junctions in astrocytes of adult brain display different developmental and regional expression, with a delayed onset of appearance for Cx30. In primary cultures of astrocytes from newborn cerebral cortex, while Cx43 is abundantly expressed, Cx30 is not detectable. In the present report, Western blot and confocal immunofluorescence analysis performed in astrocyte/neuron cocultures demonstrate that neurons upregulate the expression of Cx43 and induce that of Cx30 in subsets of astrocytes preferentially located in close proximity to neuronal soma. In Cx43 lacking astrocytes cocultured with neurons, the induction of Cx30 allows the restoration of dye coupling within islets of Cx30-positive astrocytes, indicating that intercellular channels formed by Cx30 are functional. The upregulating effect of neurons on the expression of connexins in cortical astrocytes is independent of their electrical activity and requires tight interactions between both cell types. This effect is reversed after neuronal death induced by neurotoxic treatments. Furthermore, excitotoxic treatments triggering neuronal death in vivo lead to a downregulation of both connexins in reactive astrocytes located within the area depleted in neurons. Altogether these observations indicate that the expression of the two main astrocyte connexins is tightly regulated by neurons.  相似文献   

7.
Gap junctions mediate communication between many cell types in the brain. Gap junction channels are composed of membrane-spanning connexin (Cx) proteins, allowing the cell-to-cell passage of small ions and metabolites. Cx43 is the main constituent of the brain-spanning astrocytic gap junctional network, controlling activity-related changes in ion and glutamate concentrations as well as metabolic processes. In astrocytes, deletion of Cx43-coding DNA led to attenuated gap junctional coupling and impaired propagation of calcium waves, known to influence neuronal activity. Investigation of the role of Cx43 in behaviour has been impossible so far, due to postnatal lethality of its general deletion. Recently, we have shown that deletion of Cx30, which is also expressed by astrocytes, affects exploration, emotionality, and neurochemistry in the mouse. In the present study, we investigated the effects of the astrocyte-directed inactivation of Cx43 on mouse behaviour and brain neurochemistry. Deletion of Cx43 in astrocytes increased exploratory activity without influencing habituation. In the open field, but not in the elevated plus-maze, an anxiolytic-like effect was observed. Rotarod performance was initially impaired, but reached control level after further training. In the water maze, Cx43 deficient mice showed a steeper learning course, although final performance was similar between groups. Cx43 inactivation in astrocytes increased acetylcholine content in the frontal cortex of water maze-trained animals. Results are discussed in terms of altered communication between astrocytes and neurons, possible compensation processes, and differential effects of Cx30- and astrocyte-specific Cx43 deletion.  相似文献   

8.
Scemes E 《Glia》2008,56(2):145-153
Gap junction proteins, connexins, provide intercellular channels that allow ions and small signaling molecules to be transmitted to adjacent coupled cells. Besides this function, it is becoming apparent that connexins also exert channel-independent effects, which are likely mediated by processes involving protein-protein interactions. Although a number of connexin interacting proteins have been identified, only little is known about the functional consequences of such interactions. We have previously shown that deletion of the astrocytic gap junction protein, connexin43 (Cx43) causes a right-ward shift in the dose-response curve to P2Y1R agonists and decreased P2Y1R expression levels. To evaluate whether these changes were due to reduced gap junctional communication or to protein-protein interactions, Cx43-null astrocytes were transfected with full-length Cx43 and Cx43 domains, and P2Y1R function and expression levels evaluated. Results indicate that restoration of P2Y1R function is independent of gap junctional communication and that the Cx43 carboxyl terminus spanning the SH3 binding domain (260-280) participates in the rescue of P2Y1R pharmacological behavior (shifting to the left the P2Y1R dose-response curve) without affecting its expression levels. These results suggest that the Cx43 carboxyl-terminus domain provides a binding site for an intracellular molecule, most likely a member of the c-Src tyrosine kinase family, which affects P2Y1R-induced calcium mobilization. It is here proposed that a nonchannel function of Cx43 is to serve as a decoy for such kinases. Such modulation of P2Y1R is expected to influence several neural cell functions, especially under inflammation and neurodegenerative disorders where expression levels of Cx43 are decreased.  相似文献   

9.
Previous studies have shown that two subpopulations of cells with astrocytic properties coexist in the mouse hippocampus, which display distinct morphological and functional characteristics, specifically a nonoverlapping expression of either AMPA-type glutamate receptors (GluR cells) or glutamate transporters (GluT cells). Use of transgenic mice with hGFAP promoter-controlled EGFP expression and patch-clamp recordings allow reliable identification of the two cell types in hippocampal slices. Extending functional characterization, we report here the complete lack of gap junctional tracer coupling in GluR cells, while GluT cells are shown to be extensively coupled. This distinction is valid in immature as well as adult animals. Analysis of transgenic mice expressing beta-Gal under regulatory elements of the Cx43 promoter revealed the absence of Cx43 in GluR cells. Experiments using gap junction blockers demonstrated that passive currents, displayed primarily by GluT cells, do not reflect intercellular coupling but are attributable to intrinsic membrane properties of individual cells. This study supports the notion that the two subpopulations of hGFAP-EGFP-positive cells represent distinct cell types with contrasting physiological properties. Since GluR cells do not participate in the astrocytic gap junctional network, their functional role must be different from spatial buffering of ions or signaling molecules, i.e., properties generally assigned to astrocytes.  相似文献   

10.
Endothelins regulate astrocyte gap junctions in rat hippocampal slices   总被引:9,自引:0,他引:9  
Gap junctional communication (GJC) is a typical feature of astrocytes proposed to contribute to the role played by these glial cells in brain physiology and pathology. In acutely isolated hippocampal slices from rat (P11-P19), intercellular diffusion of biocytin through gap junction channels was shown to occur between hundreds of cells immuno-positive for astrocytic markers studied in the CA1/CA2 region. Single-cell RT-PCR demonstrated astrocytic mRNA expression of several connexin (Cx) subtypes, the molecular constituent of gap junction channels, whereas immunoblotting confirmed that Cx43 and Cx30 are the main gap junction proteins in hippocampal astrocytes. In the brain, astrocytes represent a major target for endothelins (Ets), a vasoactive family of peptides. Our results demonstrate that Ets decrease the expression of phosphorylated Cx43 forms and are potent inhibitors of GJC. The Et-induced effects were investigated using specific Et receptor agonists and antagonists, including Bosentan (Tracleer trade mark ), an EtA/B receptor antagonist, and using hippocampal slices and cultures from EtB-receptor-deficient rats. Interestingly, the pharmacological profile of Ets effects did not follow the classical profile established in cardiovascular systems. The present study therefore identifies Ets as potent endogenous inhibitory regulators of astrocyte networks. As such, the action of these peptides on astrocyte GJC might be involved in the contribution of astrocytes to neuroprotective processes and have a therapeutic potential in neuropathological situations.  相似文献   

11.
The olfactory ensheathing cell (OEC) is a unique glial cell able to support neurite outgrowth in the CNS throughout life. The OEC has been described as having both Schwann cell-like and astrocyte-like characteristics. The purpose of this study was to compare gap junctional communication and connexin (Cx) expression in cultured olfactory ensheathing cells with both astrocytes and Schwann cells to establish which of these two cells types they most closely resemble. We examined the Cx mRNA profile of OECs, astrocytes, and Schwann cells using primers to Cx26, Cx32, Cx37, Cx43, Cx46, and Cx50. All connexins tested except Cx50 were expressed by all three cell types when initially cultured. However, we observed differences in the levels of expression of Cx32 and Cx26 between astrocytes, Schwann cells, and OECs that became pronounced with time. All three cell types show limited and variable gap junctional communication in culture as assessed by the transfer of microinjected Lucifer yellow. OECs had limited coupling compared with Schwann cells and astrocytes, although the extent of the dye spread through OECs was more comparable to that seen with Schwann cells than astrocytes. Thus, OECs display a profile of Cx expression that more closely resembles the Cx expression of Schwann cells rather than astrocytes.  相似文献   

12.
Robe PA  Rogister B  Merville MP  Bours V 《Neuroreport》2000,11(13):2837-2841
Transforming growth factor (TGF) beta1 enhanced in vitro [3H]thymidine incorporation into C6 cells and reduced that of astrocytes in the presence of a high serum concentration. It concomitantly raised the gap junction intercellular communication (GJIC) in normal astrocytes but reduced the coupling of C6 cells, and respectively increased or decreased the proportion of P2-phosphorylated connexin (Cx) 43 isoform in these cells. Finally, octanol, which inhibited GJIC in both cell types, increased the thymidine incorporation in C6 cells, but neither altered the proliferation of astrocytes nor their response to TGFbeta1. These data indicate that an inhibition of gap junction intercellular communication, due to an altered phosphorylation of connexin 43, may contribute to the proliferative response of C6 glioblastoma cells to TGFbeta1.  相似文献   

13.
The function of gap junctions is regulated by the phosphorylation state of their connexin subunits. Numerous growth factors are known to regulate connexin phosphorylation; however, the effect of nerve growth factor on gap junction function is not understood. The phosphorylation of connexin subunits is a key event during many aspects of the lifecycle of a connexin, including open/close states, assembly/trafficking, and degradation, and thus affects the functionality of the channel. PC12 cells infected with connexin43 (Cx43) retrovirus were used as a neuronal model to characterize the signal transduction pathways activated by nerve growth factor (NGF) that potentially affect the functional state of Cx43. Immunoblot analysis demonstrated that Cx43 and the mitogen-activated protein kinase (MAPK), ERK-1/2, were phosphorylated in response to TrkA activation via NGF and that phosphorylation could be prevented by treatment with the MEK-1/2 inhibitor U0126. The effects of NGF on gap junction intercellular communication were examined by monitoring fluorescence recovery after photobleaching PC12-Cx43 cells preloaded with calcein. Fluorescence recovery in the photobleached area increased after NGF treatment and decreased when pretreated with the MEK-1/2 inhibitor U0126. These data are the first to show a direct signaling link between neurotrophins and the phosphorylation of connexin proteins through the MAPK pathway resulting in increased gap junctional intercellular communication. Neurotrophic regulation of connexin activity provides a novel mechanism of regulating intercellular communication between neurons during nervous system development and repair.  相似文献   

14.
Theis M  Speidel D  Willecke K 《Glia》2004,46(2):130-141
Connexin43 (Cx43) mainly provides the molecular basis for astrocytic gap junctions. Interastrocytic coupling is thought to mediate extracellular ion homeostasis, long-range signaling, and neuroprotection in the brain. Cx43 has been implicated in astrocytic growth control and is also expressed in other cell types in the brain, such as leptomeningeal and vascular cells. Cx43 function has been studied in astrocyte cultures of Cx43-deficient mice, which lack Cx43 in all cell types. We have generated conditionally deficient mice with an astrocyte-directed inactivation of Cx43, which leaves expression in other cell types unaffected. Other connexins have been detected in astrocytes. For the study of astrocytes lacking Cx45 and Cx26 in vitro, which deficiencies are embryonic lethal, conditionally deficient astrocyte cultures are essential. In the present study, we describe the developmental kinetics of Cx43 inactivation and loss of intercellular communication in astrocyte cultures derived from conditional Cx43-deficient mice. Conditional ablation of Cx43 is efficient, reaches a plateau at 4 weeks in culture, but retains Cx43 expression in contaminating nonastrocytic cells. Our findings indicate that conditional knockout astrocytes are a promising tool for the study of embryonic lethal genes in astrocyte cultures.  相似文献   

15.
The impact of connexin30 (Cx30) on interastrocytic gap junction coupling in the normal hippocampus is matter of debate; reporter gene analyses indicated a weak expression of Cx30 in the mouse hippocampus. In contrast, mice lacking connexin43 (Cx43) in astrocytes exhibited only 50% reduction in coupling. Complete uncoupling of hippocampal astrocytes in mice lacking both Cx30 and Cx43 suggested that Cx30 participates in interastrocytic gap junction coupling in the hippocampus. With comparative reporter gene assays, immunodetection, and cre/loxP-based reporter approaches we demonstrate that Cx30 is more abundant than previously thought. The specific role of Cx30 in interastrocytic coupling has never been investigated. Employing tracer coupling analyses in acute slices of Cx30 deficient mice here we show that Cx30 makes a substantial contribution to interastrocytic gap junctional communication in the mouse hippocampus.  相似文献   

16.
Propagation of intercellular calcium waves (ICW) between astrocytes depends on the diffusion of signaling molecules through gap junction channels and diffusion through the extracellular space of neuroactive substances acting on plasmalemmal receptors. The relative contributions of these two pathways vary in different brain regions and under certain pathological conditions. We have previously shown that in wild-type spinal cord astrocytes, ICW are primarily gap junction-dependent, but that deletion of the main gap junction protein (Cx43) by homologous recombination results in a switch in mode of ICW propagation to a purinoceptor-dependent mechanism. Such a compensatory mechanism for ICW propagation was related to changes in the pharmacological profile of P2Y receptors, from an adenine-sensitive P2Y(1), in wild-type, to a uridine-sensitive P2U receptor subtype, in Cx43 knockout (KO) astrocytes. Using oligonucleotide antisense to Cx43 mRNA for acute downregulation of connexin43 expression levels, we provide evidence for the molecular nature of such compensatory mechanism. Pharmacological studies and Western blot analysis indicate that there is a reciprocal regulation of P2Y(1) and P2Y(4) expression levels, such that downregulation of Cx43 leads to decreased expression of the adenine-sensitive P2Y(1) receptor and increased expression of the uridine-sensitive P2Y(4) receptor. This change in functional expression of the P2Y receptor subtype population in acutely downregulated Cx43 was paralleled by changes in the mode of ICW propagation, similar to that previously observed for Cx43 KO spinal cord astrocytes. On the basis of these results, we propose that Cx43 regulates both modes of ICW by altering P2Y receptor subtype expression in addition to providing intercellular coupling.  相似文献   

17.
Nakase T  Yoshida Y  Nagata K 《Glia》2006,54(5):369-375
Astrocytes support neurons not only physically but also chemically by secreting neurotrophic factors and energy substrates. Moreover, astrocytes establish a glial network and communicate through gap junctions in the brain. Connexin 43 (Cx43) is one of major component proteins in astrocytic gap junctions. Heterozygote Cx43 KO mice and astrocyte specific Cx43 KO mice exhibited amplified brain damage after ischemic insults, suggesting a neuroprotective role for astrocytic gap junctions. However, some reports mentioned unfavorable effects of gap junctions in neuronal support. Therefore, the role of astrocytic gap junctions under ischemic condition remains controversial. Since these studies have been performed using animal models, we investigated the Cx43 expression in human brain after stroke. Brain slice sections were prepared from pathological samples in our hospital. Embolic stroke brains sectioned because of the stroke were considered as acute ischemic models. Multiple infarction brains sectioned because of pneumonia or cancer were considered as chronic models. We observed the levels of Cx43 in both lesioned and intact areas, and compared them with acute and chronic models. As the results, astrocytes were strongly activated in penumbral lesions both of acute and chronic ischemic models. The Cx43 immunoreactivity was significantly amplified in the penumbra of chronic model compared to that of the acute model. Neurons were well preserved in chronic model compared to acute model. These findings suggested that the brain may generate neuronal protection by increasing the levels of Cx43 and amplifying the astrocytic gap junctional intercellular communication under hypoxic condition.  相似文献   

18.
19.
The gap junction protein connexin43 (Cx43) is the primary component of intercellular channels in cardiac tissue and in astrocytes, the most abundant type of glial cells in the brain. Mice in which the gene for Cx43 is deleted by homologous recombination die at birth, due to profound hypertrophy of the ventricular outflow tract and stenosis of the pulmonary artery. Despite this significant cardiovascular abnormality, brains of connexin43 null [Cx43 (−/−)] animals are shown to be macroscopically normal and to display a pattern of cortical lamination that is not detectably different from wildtype siblings. Presence of Cx40 and Cx45 in brains and astrocytes cultured from both Cx43 (−/−) mice and wildtype littermates was confirmed by RT-PCR, Northern blot analyses and by immunostaining; Cx46 was detected by RT-PCR and Northern blot analyses. Presence of Cx26 in astrocyte cultures was indicated by RT-PCR and by Western blot analysis, although we were unable to resolve whether it was contributed by contaminating cells; Cx30 mRNA was detected by Northern blot in long term (2 weeks) but not fresh cultures of astrocytes. These studies thus reveal that astrocyte gap junctions may be formed of multiple connexins. Presumably, the metabolic and ionic coupling provided by these diverse gap junction types may functionally compensate for the absence of the major astrocyte gap junction protein in Cx43 (−/−) mice, providing whatever intercellular signaling is necessary for brain development and cortical lamination.  相似文献   

20.
INTRODUCTION Gap junction (GJ) is a special channel, which, at present, is thought to be the only one channel that can directly perform energy, sub- stance and information exchanges between two adjacent cells. GJ channel, widely existing in nervous system…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号