首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic mild stress (CMS), a well-validated model of depression, was used to study the effects of the melatonin agonist and selective 5-HT(2C) antagonist agomelatine (S 20098) in comparison with melatonin, imipramine, and fluoxetine. All drugs were administered either 2 h before (evening treatment) or 2 h after (morning treatment) the dark phase of the 12-h light/dark cycle. Chronic (5 weeks) evening treatment with agomelatine or melatonin (both at 10 and 50 mg/kg i.p.) dose-dependently reversed the CMS-induced reduction in sucrose consumption. The magnitude and time course of the action of both drugs was comparable to that of imipramine and fluoxetine (both at 10 mg/kg i.p.); however, melatonin was less active than agomelatine at this dose. The effect of evening administration of agomelatine and melatonin was completely inhibited by an acute injection of the MT(1)/MT(2) antagonist, S 22153 (20 mg/kg i.p.), while the antagonist had no effect in animals receiving fluoxetine or imipramine. When the drugs were administered in the morning, agomelatine caused effects similar to those observed after evening treatment (with onset of action faster than imipramine) but melatonin was ineffective. Moreover, melatonin antagonist, S 22153, did not modify the intakes in stressed animals receiving morning administration of agomelatine and in any other control and stressed groups tested in this study. These data demonstrate antidepressant-like activity of agomelatine in the rat CMS model of depression, which was independent of the time of drug administration. The efficacy of agomelatine is comparable to that of imipramine and fluoxetine, but greater than that of melatonin, which had no antidepressant-like activity after morning administration. While the evening efficacy of agomelatine can be related to its melatonin receptors agonistic properties, its morning activity, which was not inhibited by a melatonin antagonist, indicates that these receptors are certainly required, but not sufficient to sustain the agomelatine efficacy. It is therefore suggested that the antidepressant-like activity of agomelatine depends on some combination of its melatonin agonist and 5-HT(2C) antagonist properties.  相似文献   

2.
The activity of the novel antidepressant agomelatine was evaluated in three models of anxiety and compared with that of melatonin and two anxiolytics, diazepam and buspirone. All drugs were tested 2 h before and 2 h after the dark phase of the diurnal cycle. Morning and evening agomelatine (10-75 mg/kg) administration increased animals' responses in the elevated plus maze and Vogel tests. Melatonin (10-75 mg/kg) enhanced open arms exploration in the evening experiment and was inactive in the Vogel test. In the conditioned ultrasonic vocalization test, agomelatine, but not melatonin, was active in the morning and evening experiment. Melatonin antagonist, S22153 (20 mg/kg), enhanced the action of morning and evening agomelatine administration in the Vogel and conditioned ultrasonic vocalization tests, while in the elevated plus maze test, S22153 inhibited effects of evening but not morning melatonin and agomelatine administration. These results indicate the involvement of both the melatonin and the 5-HT2C receptors in the mechanism of anxiolytic-like action of agomelatine.  相似文献   

3.
Agomelatine is a melatonergic MT1/MT2 agonist and a serotonin (5-HT) 5-HT2C antagonist. The effects of 2-day and 14-day administration of agomelatine were investigated on the activity of ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) 5-HT neurons using in vivo electrophysiology in rats. The 5-HT1A transmission was assessed at hippocampus CA3 pyramidal neurons. After a 2-day regimen of agomelatine (40 mg/kg/day, i.p.), an increase in the number of spontaneously active VTA-DA neurons (p<0.001) and in the firing rate of LC-NE neurons (p<0.001) was observed. After 14 days, the administration of agomelatine induced an increase in: (1) the number of spontaneously active DA neurons (p<0.05), (2) the bursting activity of DA neurons (bursts/min, p<0.01 and percentage of spikes occurring in bursts, p<0.05), (3) the firing rate of DRN-5-HT neurons (p<0.05), and (4) the tonic activation of postsynaptic 5-HT1A receptors located in the hippocampus. The increase in 5-HT firing rate was D2 dependent, as it was antagonized by the D2 receptor antagonist paliperidone. The enhancement of NE firing was restored by the 5-HT2A receptor antagonist MDL-100,907 after the 14-day regimen. All the effects of agomelatine were antagonized by a single administration of the melatonergic antagonist S22153 (except for the increase in the percentage of spikes occurring in burst for DA neurons). The present results suggest that (1) agomelatine exerts direct (2 days) and indirect (14 days) modulations of monoaminergic neuronal activity and (2) the melatonergic agonistic activity of agomelatine contributes to the enhancement of DA and 5-HT neurotransmission.  相似文献   

4.
The novel melatonergic agonist/5-HT(2C) antagonist agomelatine displays robust antidepressant properties in humans and is active in pre-clinical models predictive of antidepressant effects. In this study, we investigated its potential influence on the locomotor hyperactivity displayed by olfactory bulbectomised rats, a putative measure of potential antidepressant activity. In addition, we compared the actions of agomelatine to those of melatonin and S32006, a selective antagonist at 5-HT(2C) receptors. Vehicle, agomelatine (10 and 50mg/kg), melatonin (10 and 50mg/kg), S32006 (0.16mg/kg to 10mg/kg) and the prototypical tricyclic antidepressant, imipramine (10mg/kg), were administered by intraperitoneal injection for 14days to male, Sprague-Dawley sham-operated and bulbectomised rats. In agreement with previous studies, imipramine was active in the model and both the lower and higher doses of agomelatine also significantly and markedly reversed the bulbectomy-induced hyperactivity to a level comparable to that seen in sham operated animals, in which agomelatine exerted no effect. Similarly the 5-HT(2C) antagonist, S32006, dose-dependently and significantly attenuated hyperactivity of bulbectomised animals, albeit with a maximal effect somewhat less marked than that of agomelatine. On the other hand, melatonin did not affect the locomotor behaviour of bulbectomised rats. The activity of agomelatine in the model is consistent with its known antidepressant properties in the clinic.  相似文献   

5.
The antidepressive drug agomelatine combines the properties of an agonist of melatonergic receptors 1 and 2 with an antagonist of the 5-HT2C receptor. We analyzed the effects of agomelatine in psychosocially stressed male tree shrews, an established preclinical model of depression. Tree shrews experienced daily social stress for a period of 5 weeks and were concomitantly treated with different drugs daily for 4 weeks. The effects of agomelatine (40 mg/kg/day) were compared with those of the agonist melatonin (40 mg/kg/day), the inverse 5-HT2C antagonist S32006 (10 mg/kg/day), and the SSRI fluoxetine (15 mg/kg/day). Nocturnal core body temperature (CBT) was recorded by telemetry, and urinary norepinephrine and cortisol concentrations were measured.Chronic social stress induced nocturnal hyperthermia. Agomelatine normalized the CBT in the fourth week of the treatment (T4), whereas the other drugs did not significantly counteract the stress-induced hyperthermia. Agomelatine also reversed the stress-induced reduction in locomotor activity. Norepinephrine concentration was elevated by the stress indicating sympathetic hyperactivity, and was normalized in the stressed animals treated with agomelatine or fluoxetine but not in those treated with melatonin or S32006. Cortisol concentration was elevated by stress but returned to basal levels by T4 in all animals, irrespective of the treatment.These observations show that agomelatine has positive effects to counteract stress-induced physiological processes and to restore the normal rhythm of nocturnal CBT. The data underpin the antidepressant properties of agomelatine and are consistent with a distinctive profile compared to its constituent pharmacological components and other conventional agents.  相似文献   

6.
Agomelatine (β-methyl-6-chloromelatonin), which is structurally homologous to melatonin, is a potent agonist of melatonin MT1 and MT2 receptors as well as an antagonist of serotonin 5-HT2C receptors. Agomelatine appears to improve sleep without causing daytime sedation. It has not been found to be associated with sexual side effects and discontinuation symptoms. Three placebo-controlled trials, one of them a dose finding study and two of them pivotal trials, suggest that agomelatine is an antidepressant at doses of 25 – 50 mg/day. Agomelatine appears to be well tolerated, without sexual or cardiac adverse effects, weight gain or discontinuation syndromes. Animal studies suggest a possible neuroprotective action of agomelatine, although there are more data in favor of an anxiolytic effect. Substantially more research is needed to establish its role in the treatment of mood and circadian rhythm disorders.  相似文献   

7.
Rationale  The novel antidepressant, agomelatine, behaves as an agonist at melatonin MT1 and MT2 receptors and as an antagonist at serotonin (5-HT)2C receptors. In animal models and clinical trials, agomelatine displays antidepressant properties and re-synchronizes disrupted circadian rhythms. Objectives  The objectives of this study were to compare the influence of agomelatine upon sleep–wake states to the selective melatonin agonists, melatonin and ramelteon, and to the selective 5-HT2C receptor antagonist, S32006. Methods  Rats were administered with vehicle, agomelatine, ramelteon, melatonin, or S32006, at the onset of either dark or light periods. Polygraphic recordings were performed and changes determined over 24 h, i.e., number and duration of sleep–wake episodes, latencies to rapid eye movement (REM) and slow-wave (SWS) sleep, power band spectra of the electroencephalogram (EEG), and circadian changes. Results  Administered at light phase onset, no changes were induced by agomelatine. In contrast, administered shortly before dark phase, agomelatine (10 and 40 mg/kg, per os) enhanced duration of REM and SWS sleep and decreased wake state for 3 h. Melatonin (10 mg/kg, per os) induced a transient enhancement in REM sleep followed by a reduction in REM and SWS sleep and an increase in waking. Ramelteon (10 mg/kg, per os) provoked a transient increase in REM sleep. Finally, S32006 (10 mg/kg, intraperitoneally), administered at dark phase onset, mimicked the increased SWS provoked by agomelatine, yet diminished REM sleep. Conclusions  Agomelatine possesses a distinctive EEG profile compared with melatonin, ramelteon, and S32006, possibly reflecting co-joint agonist and antagonist properties at MT1/MT2 and 5-HT2C receptors, respectively. An erratum to this article can be found at  相似文献   

8.
The purpose of this study was to investigate the effect of SB-258585, a selective 5-HT6 receptor antagonist, administered intrahippocampally to rats, in the conflict drinking and forced swim tests, that is models used for evaluating anxiolytic-like and antidepressant-like activity, respectively. Diazepam and imipramine were used as reference drugs. SB-258585 at a dose of 1 microg (but not 0.3 and 3 microg) showed an anticonflict effect that was weaker than that of diazepam (40 microg). SB-258585 at a dose of 3 microg (but not 1 and 10 microg) produced a marked anti-immobility effect comparable with that of imipramine (0.1 microg). The anxiolytic-like and antidepressant-like activity of SB-258585 seemed to be specific, as that compound--when given by the same route in doses effective in each model--did not affect the shock threshold, nonpunished water consumption, or exploratory activity of rats. The results obtained indicate that the hippocampus is one of the neuroanatomical sites involved in the anxiolytic-like and antidepressant-like activity of the selective 5-HT6 receptor antagonist SB-258585.  相似文献   

9.
Agomelatine, an antidepressant with melatonin agonist and 5-HT2C antagonist properties, as well as two of its main metabolites, S 21517 (N-[2-(7-hydroxy-1-naphtyl)ethyl]acetamide) and S21540 (N-[2-(3-hydroxy-7-methoxynaphtalen-1-yl)ethyl]acetamide), have been assessed in vitro on pig choroid plexus preparations to determine their affinities for 5-HT2C receptors and their effects on inositol phosphate production. These compounds were also tested for their ability to inhibit the penile erections induced by the 5-HT2C receptor agonists, m-(chlorophenyl)piperazine (mCPP, 0.75 mg/kg, SC) and Ro 60-0175 (2.5 mg/kg, SC) in Wistar rats. These in vivo effects were compared to those of melatonin and the 5-HT antagonists pizotifen and SB 206,553. Agomelatine and S 21517 had moderate affinity for 5-HT2C receptors and behaved in vitro as weak antagonists at this receptor subtype. S 21540 had a 10-fold lower affinity. Pizotifen and SB 206,553 antagonized mCPP- and Ro 60-0175-induced penile erections, suggesting that penile erections induced by mCPP or Ro 60-0175 resulted from the stimulation of 5-HT2C receptors. Whereas increasing doses (from 1.25 to 40 mg/kg, IP) of melatonin were unable to modify the penile erections induced by mCPP and Ro 60-0175, agomelatine (from 1.25 to 40 mg/kg, IP) dose-dependently decreased mCPP- as well Ro 60-0175-induced penile erections. Furthermore, increasing doses (from 1.25 to 40 mg/kg, IP) of S 21517 and S 21540, the two main metabolites of agomelatine, did not affect the penile erections induced by mCPP and Ro 60-0175. Considering the similar activity of melatonin and agomelatine at melatonin receptors, these data suggested that the reported effects were not due to the stimulation of melatonin receptors and that, contrary to melatonin, agomelatine exerted 5-HT2C receptor antagonist properties in addition to its agonist activity at melatonin receptors. Finally, neither S 21517 nor S 21540 seemed to participate to the observed inhibition of penile erections by agomelatine.Dr. Protais died in 2002  相似文献   

10.
Despite the advances of recent decades, there is still an urgent need for antidepressants with improved efficacy, safety and tolerability. Agomelatine is a new antidepressant with an innovative pharmacological profile. It is the first melatonergic antidepressant, and is a potent agonist of melatonin receptors (MT1 and MT2) with 5-HT2C antagonist properties. The efficacy of 25 mg/day agomelatine in treating major depressive disorder (MDD) has been demonstrated in a number of placebo-controlled studies. Evidence of improvement in depressive symptoms was observed in a dose-ranging study in which 25 mg/day agomelatine was significantly better than placebo, whatever the rating scale used (Hamilton Rating Scale for Depression, Clinical Global Impression, and Montgomery-Asberg Depression Rating Scale). These results have been confirmed in two similarly designed placebo-controlled studies. Agomelatine also produces a significant improvement in anxiety compared to placebo, according to Hamilton Rating Scale for Anxiety scores. The efficacy of agomelatine has been studied in subpopulations with more severe depression, demonstrating its efficacy in these difficult-to-treat patients. In view of the available data on agomelatine, this antidepressant can be regarded as an innovative treatment for MDD patients, offering a new approach in the management of depressed patients.  相似文献   

11.
Rationale The novel antidepressant agent, agomelatine, behaves as an agonist at melatonin receptors and as an antagonist at serotonin (5-HT)2C receptors.Objectives To determine whether, by virtue of its antagonist properties at 5-HT2C receptors, agomelatine elicits anxiolytic properties in rats.Methods Employing a combined neurochemical and behavioural approach, actions of agomelatine were compared to those of melatonin, the selective 5-HT2C receptor antagonist, SB243,213, and the benzodiazepine, clorazepate.Results In unfamiliar pairs of rats exposed to a novel environment, agomelatine enhanced the time devoted to active social interaction, an action mimicked by clorazepate and by SB243,213. In a Vogel conflict procedure, agomelatine likewise displayed dose-dependent anxiolytic activity with a maximal effect comparable to clorazepate, and SB243,213 was similarly active in this procedure. In a plus-maze procedure in which clorazepate significantly enhanced percentage entries into open arms, agomelatine revealed only modest activity and SB243,213 was inactive. Further, like SB243,213, and in contrast to clorazepate, agomelatine did not suppress ultrasonic vocalizations emitted by rats re-exposed to an environment associated with an aversive stimulus. Whereas clorazepate reduced dialysate levels of 5-HT and noradrenaline in hippocampus and frontal cortex of freely moving rats, agomelatine did not affect extracellular levels of 5-HT and elevated those of noradrenaline. SB243,213 acted similarly to agomelatine. Melatonin, which did not modify extracellular levels of 5-HT or noradrenaline, was ineffective in all models of anxiolytic activity. Furthermore, the selective melatonin antagonist, S22153, did not modify anxiolytic properties of agomelatine in either the social interaction or the Vogel Conflict tests.Conclusions In contrast to melatonin, and reflecting blockade of 5-HT2C receptors, agomelatine is active in several models of anxiolytic properties in rodents. The anxiolytic profile of agomelatine differs from that of benzodiazepines from which it may also be distinguished by its contrasting influence on corticolimbic monoaminergic pathways.  相似文献   

12.

Objectives

Agomelatine, a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, is a new antidepressant and a potential therapeutic option for major depressive episodes and negative symptoms in persons with schizophrenia. We investigated such treatment outcomes with respect to antidepressant efficacy, safety, and tolerability.

Methods

We report a consecutive case series of seven patients with schizophrenia and comorbid major depressive symptoms who received agomelatine for a period of at least six weeks in addition to stable doses of antipsychotic agents. General psychopathology, positive, negative and depressive symptoms were assessed with standardized interviews. Relevant blood parameters were assessed.

Results

Depressive symptoms improved significantly. Positive symptoms remained stable, while negative symptoms and global psychopathology improved significantly. Agomelatine was well tolerated in most patients.

Conclusions

Our findings provide initial evidence that agomelatine is safe and efficacious in treating depressive symptoms in patients with schizophrenia. Furthermore, agomelatine seems to be effective for the treatment of negative symptoms. Randomized controlled trials are necessary to confirm these first observations.  相似文献   

13.
Agomelatine is a new antidepressant that is a potent agonist of melatonin receptors and an antagonist of the serotonin 5-HT(2C) receptor subtype. It is in late-phase trials for the treatment of major depressive disorder (MDD).Symptoms of depression significantly improved with agomelatine compared with placebo in large placebo-controlled trials, and agomelatine appears to be as efficacious in treating MDD as other antidepressants but with fewer adverse effects. Agomelatine appears to improve sleep quality and ease of falling asleep, as measured subjectively in depressed patients. Polysomnographic studies have shown that agomelatine decreases sleep latency, decreases wake after sleep onset (WASO), and improves sleep stability as measured by changes in the cyclic alternating pattern.Agomelatine is generally well tolerated in patients with MDD; in clinical trials, adverse events were generally mild to moderate in nature, with an overall frequency close to that of placebo. Discontinuation of agomelatine because of adverse effects occurred at a similar rate to placebo.  相似文献   

14.
The aim of the present study was to examine the effect of the selective 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine (SB-269970), administered alone or in combination with imipramine, on the immobility time of rats in the forced swim test as well as on the extracellular levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex of freely moving rats. Both compounds were administered intraperitoneally (ip). Like imipramine (30 mg/kg, but not 20 mg/kg), SB-269970 (1.25 and 2.5 mg/kg, but not 0.625 mg/kg) significantly shortened the immobility time of rats without affecting their exploratory locomotor activity measured in the open field test. SB-269970 (0.625 and 1.25 mg/kg) raised the extracellular levels of DA, NA, 5-HT and their metabolites in rat prefrontal cortex. In that structure, imipramine (20 mg/kg) produced an increase in all the neurotransmitters measured, but failed to affect the levels of their metabolites. A combination of the inactive doses of SB-269970 (0.625 mg/kg) and imipramine (20 mg/kg) found in the forced swim test produced antidepressant-like effect, which did not stem from the increased exploratory locomotor activity. At the same time, that combination voked a vast increase in the output of NA - but not DA and 5-HT - compared to the effects of both those drugs given alone. These results open up a possibility that the stimulating effect of SB-269970 on DA, NA and 5-HT transmission in the prefrontal cortex plays some role in the antidepressant-like activity of this compound. Moreover, these findings suggest that the increase in cortical NA level seems to account for the anti-immobility action observed after joint administration of the selective 5-HT(7) receptor antagonist and imipramine in rats.  相似文献   

15.
Periventricular leukomalacia is a major cause of cerebral palsy. Perinatal white matter lesions associated with cerebral palsy appears to involve glutamate excitotoxicity. When injected intracerebrally into newborn mice, the glutamatergic analog, ibotenate, induces white matter cysts mimicking human periventricular leukomalacia. Intraperitoneal injection of melatonin was previously shown to be neuroprotective in this mouse model. The goal of the present study was to compare in this model the protective effects of agomelatine (S 20098), a melatonin derivative, with melatonin. Mice that received intraperitoneal S 20098 or melatonin had significant reductions in size of ibotenate-induced white matter cysts when compared with controls. Although agomelatine and melatonin did not prevent the initial appearance of white matter lesions, they did promote secondary lesion repair. Interestingly, while melatonin effects were only observed when given within the first two hours following the excitotoxic insult, agomelatine was still significantly neuroprotective when administered eight hours after the insult. The protective effects of agomelatine and melatonin were counter-acted by co-administration of luzindole or S 20928, two melatonin receptor antagonists. Agomelatine, acting through melatonin receptors, could represent a promising new drug for treating human periventricular leukomalacia and have beneficial effects on neuroplasticity.  相似文献   

16.
Agomelatine, a novel melatonin analogue and anti-depressant that acts as an agonist on melatonin receptors 1 and 2 and as an antagonist at the 5HT2C receptor, was tested for its effects on cell proliferation in the dentate gyrus of the adult rat hippocampus under intact and flattened corticosterone rhythm conditions. Agomelatine stimulated mitosis rates in the intact male rat. Flattening the daily corticosterone rhythm by inserting a subcutaneous pellet of this steroid prevented the action of agomelatine. However, adding a daily injection of corticosterone at CT1200 to rats with implanted corticosterone pellets failed to restore agomelatine’s efficacy on cell proliferation. The 5HT2C receptor antagonist SB242084 stimulated progenitor cell proliferation in the dentate gyrus, while a 5HT2C agonist (RO600175) had no effect on cell proliferation alone, but counteracted that of agomelatine. These results suggest that agomelatine, a new anti-depressant, can stimulate progenitor cell mitosis in the dentate gyrus. Its action requires an intact diurnal corticosterone rhythm. The action of agomelatine on neurogenesis is likely to reside in its antagonism of the 5HT2C receptor, and suggests a mechanism distinct from that of fluoxetine, another anti-depressant, which, as previous work shows, acts through the 5HT1A receptor, but whose action is also blocked by a flattened corticosterone rhythm.  相似文献   

17.
The mechanism of the antidepressant-like activity of the selective 5-hydroxytryptamine(6) (5-HT(6) receptor antagonist N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide (SB-399885) was studied in the forced swim test in rats. SB-399885 administered intraperitoneally at a single dose of 10 mg/kg potently shortened the immobility time in rats. That potential antidepressant-like effect of SB-399885 was not modified in animals with a lesion of the 5-HT system produced by p-chloroamphetamine (p-CA, 2 x 10 mg/kg). The anti-immobility effect of SB-399885 was blocked by the dopamine D(1)- and D(2)-like receptor antagonists SCH 23390 (0.063 mg/kg) and sulpiride (10 mg/kg), respectively, as well as by the alpha(2)-adrenoceptor antagonist idazoxan (4 mg/kg), but it was not changed by the alpha(1)-adrenoceptor antagonist prazosin (1 mg/kg). Neither sulpiride (10 mg/kg) or idazoxan (4 mg/kg) nor SCH-23390 (0.063 mg/kg) administered jointly with SB-399885 (10 mg/kg) noticeably changed the exploratory locomotor activity of rats evaluated by the open field test. The results described in the present paper indicate that the anti-immobility activity of SB-399885 is not connected with 5-HT innervation, and that D(1)- and D(2)-like receptors and alpha(2)-adrenoceptors are involved in this action.  相似文献   

18.
The limitations of current antidepressant medications merit the exploration of alternative agents with novel antidepressant mechanisms of action. The established clinical finding that desynchronization of internal rhythms plays an important role in the pathophysiology of depressive disorders has stimulated the idea that resetting normal circadian rhythms may have antidepressant potential. Recent experiments using the novel melatonin receptor agonist and serotonin 2 (5-HT2c) receptor antagonist agomelatine (S20098; N[2-(7-methoxy-1-naphthyl)ethyl]- acetamide) revealed a notable chronobiotic activity and clear antidepressant-like effects in a variety of preclinical models. Binding studies performed in vitro proved that agomelatine is a high-affinity agonist at both the melatonin MT1 and MT2 receptor types. In addition, these studies revealed that agomelatine, in contrast to melatonin, blocks 5-HT2c receptors with significant affinity. Antagonism of 5-HT2c receptors is reported for various established antidepressant compounds. The antidepressant properties of agomelatine are thus based on its melatonergic actions and 5-HT2c receptor antagonism.  相似文献   

19.
Chronic Fatigue Syndrome (CFS) represents a disabling condition characterized by persistent mental and physical fatigue, bodily discomfort and cognitive difficulties. To date the neural bases of CFS are poorly understood; however, mono-aminergic abnormalities, sleep–wake cycle changes and prefrontal dysfunctions are all thought to play a role in the development and maintenance of this condition. Here we explored in a group of 62 CFS subjects the impact on fatigue levels of agomelatine, an antidepressant with agonist activity at melatonin receptors (MT1 and MT2) and antagonist activity at serotoninergic 2C receptors (5HT2C). To tease out the relative effects of MT-agonism and 5HT2C antagonism on fatigue, we compared agomelatine 50 mg u.i.d. with sustained release melatonin 10 mg u.i.d. in the first 12-week-long phase of the study, and then switched all melatonin-treated subjects to agomelatine in the second 12-week-long phase of the study. Agomelatine treatment, but not melatonin, was associated with a significant reduction of perceived fatigue and an increase in perceived quality of life. Moreover the switch from melatonin to agomelatine was associated with a reduction of fatigue levels. Agomelatine was well tolerated by all enrolled subjects. Our data, albeit preliminary, suggest that agomelatine treatment could represent a novel useful approach to the clinical care of subjects with CFS.  相似文献   

20.
Agomelatine (S 20098) has a unique and new pharmacological profile. It is a melatoninergic agonist and selective antagonist of 5-HT2C receptors, and has been shown to be active in several animal models of depression. The aim of this study was to determine the active dose of agomelatine in the treatment of major depressive disorder (DSM-IV criteria). The methodology used was a conventional double-blind design comparing three different doses of agomelatine (1, 5 and 25 mg once a day) with placebo over an 8-week treatment period. Paroxetine was used as the study validator. Seven hundred and eleven patients with a baseline mean score of 27.4 on the 17-item Hamilton Rating Scale for Depression (HAM-D) were included. On the pivotal analysis, the mean final HAM-D total score (Full Analysis Set LOCF) demonstrated agomelatine 25 mg to be statistically more effective than placebo. This was confirmed by other analyses and criteria (responders, remission, subpopulation of severely depressed patients, Montgomery-Asberg Depression Rating Scale, Clinical Global Impression-Severity of Illness). Agomelatine 25 mg alleviated the anxiety associated with depression, as measured on Hamilton Anxiety Scale. Paroxetine was found to be effective on pivotal analysis and most of the secondary criteria used to validate the study methodology and population. Agomelatine, whatever the dose, showed good acceptability with a side-effects profile close to that of placebo. In conclusion, this study demonstrates that agomelatine is efficient in the treatment of major depressive disorder and that 25 mg is the target dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号