首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural organic matter (NOM) was concentrated from various sites across Canada using a portable reverse-osmosis unit to obtain a range of NOM types, from mainly allochthonous (terrestrially derived) to mainly autochthonous (aquatically derived) NOM. The addition of NOM to Cu exposures in ion-poor water always decreased Cu toxicity to rainbow trout (Oncorhynchus mykiss, approximately 1 g) over a 96-h period, and the degree of protection varied with respect to NOM source. A good correlation was found between the specific absorbance coefficient (SAC) and time to reach 50% mortality (LT50; p < 0.001), indicating that more optically dark, allochthonous-like NOM decreases Cu toxicity better than does optically light, more autochthonous-like NOM. A similar, good relationship between NOM source and Pb toxicity was seen (p < 0.001), once confounding effects of Ca binding to NOM were accounted for. No significant relationship between Cd toxicity and NOM optical quality was seen (p = 0.082), and in toxicity tests with Cd the presence of some of the NOM sources increased Cd toxicity compared to Cd-only controls. Specific absorbance coefficients were used as a proxy measurement of NOM aromaticity in our study, and fluorescence indices were run on some NOM samples to obtain percent aromaticity for each sample. A good correlation was found between SAC and percent aromaticity, indicating that the simple SAC measurement is a reasonable indication of NOM aromaticity and of metal binding by NOM.  相似文献   

2.
Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.  相似文献   

3.
Subchronic toxicity of nitrite in rainbow trout (Oncorhynchus mykiss; mean mass±S.D., 18.9±1.3 g) was assessed in a 28-day trial. The influence of nitrite on fish mortality, growth rate, haematology, blood biochemistry, and gill histology was observed. Survival was not affected by exposures up to 1 mg l−1 NO2 (at 10 mg l−1 Cl). On the basis of growth rate inhibition data, the values of NOEC (28 d LC0) and LOEC (28 d LC10) were estimated at 0.01 and 0.2 mg l−1 NO2, respectively. At 0.01 mg l−1 NO2 (the lowest concentration tested), there was segmental hyperplasia of the respiratory epithelium of secondary lamellae and elevated glucose and decreased potassium. Elevated nitrite concentrations were found in blood plasma of fish exposed to concentrations of 1.0 mg l−1 NO2 and higher, and in muscle tissue at the highest concentration 3.0 mg l−1 NO2. Plasma and muscle nitrite levels were lower than those in the ambient water in all experimental groups.  相似文献   

4.
Rainbow trout (Oncorhynchus mykiss; 2-17 g) were exposed to approximately 0.1 microM silver as AgNO3 for 3 to 4 h in synthetic, ion-poor water (20 microM Ca, 100 microM Na, 150 microM Cl, pH 7) to which was added Mg, Ca, or thiosulfate (S2O3). Gills were extracted and assayed for Ag using graphite furnace atomic absorption spectrophotometry. Up to 210 mM Mg (fourfold the concentration of Mg in seawater) did not reduce accumulation of Ag by trout gills. The conditional equilibrium stability constant (K) for Mg at silver-binding sites on the gills was calculated to be log K(Mg-gillAg) = 3.0, or approximately half-as-strong binding as for Ca at these sites. The inclusion of the Mg-gill stability constant into the original Ag-gill binding model increases the flexibility of the model, although the competitive effects of Mg are only important in sodium-poor systems.  相似文献   

5.
Juvenile rainbow trout were fed semi-purified diets containing graded levels of disodium arsenate heptahydrate (DSA) for 12–24 weeks under standard laboratory conditions to define the maximum acceptable toxicant concentration (MATC) and to correlate signs of toxicity with diet and tissue arsenic concentrations. The MATC for DSA was between 13 and 33 g As/g diet or 0.281–0.525 mg As/kg body weight/day. The most sensitive and reliable indicator of chronic dietary DSA toxicity in rainbow trout was chronic inflammation of the gallbladder wall. Chronic inflammatory changes in the sub-epithelial tissues of the gallbladder wall were evident in 71% of rainbow trout exposed to 33 g As/g diet for 24 weeks, and 100% of rainbow trout exposed to 65 g As/g diet for 24 weeks or 49 g As/g diet for 12 weeks. No fish exposed to 13 g As/g diet or less for up to 24 weeks showed any demonstrable gallbladder lesions or any other ill effect of arsenic exposure. Other signs of chronic dietary DSA toxicity to rainbow trout included decreased growth rate, mild to moderate anemia, and, at higher levels of exposure, active feed refusal leading to decreased feed consumption. Mild nephrocalcinosis was noted in one experiment where kidney arsenic residues exceeded 14 g As/g tissue dry weight.Supported by the Natural Sciences and Engineering Research Council of Canada and the Ontario Ministry of Agriculture and FoodPortions of this material were presented at the 29th Annual Meeting of the Canadian Federation of Biological Societies, June 16–20, 1986, Guelph, Ontario, and the 14th Annual Aquatic Toxicity Workshop, November 2–4, 1987, Toronto, Ontario, Canada  相似文献   

6.
The chronic (early life stage) toxicity of silver to rainbow trout (Oncorhynchus mykiss) was determined in flow-through exposures. Rainbow trout embryos were exposed to silver (as AgNO3) from 48 h or less postfertilization to 30 d postswimup in soft water in the presence and absence of 49 mg/L of NaCl (30 mg/L of Cl). The studies determined effect levels for rainbow trout exposed throughout an extended development period and assessed possible protective effects of sodium chloride. Lowest-observed-effect concentrations were greater than 1.25 microg/L of dissolved silver for survival, mean day to hatch, mean day to swimup, and whole-body sodium content in both studies. Whole-body silver concentrations increased significantly at 0.13 microg/L of dissolved silver in unmodified water and at 1.09 microg/L of dissolved silver in amended water. The maximum-acceptable toxicant concentration for growth was greater than 1.25 microg/L of dissolved silver in unmodified water and 0.32 microg/L of dissolved silver in amended water. Whole-body silver concentrations were more sensitive than survival and growth end points in unmodified water. Interpretation of sodium chloride effects on chronic silver toxicity to rainbow trout was complicated by differences in measured effect levels that were potentially the result of strain differences between test organisms in the two studies.  相似文献   

7.
Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Past and present habitat for this species includes waterways contaminated with heavy metals released from mining activities. Because the sensitivity of this species to copper was previously unknown, we conducted acute copper toxicity tests with bull and rainbow trout (Oncorhynchus mykiss) in side-by-side comparison tests. Bioassays were conducted using water at two temperatures (8 degrees C and 16 degrees C) and two hardness levels (100 and 220 mg/L as CaCO3). At a water hardness of 100 mg/L, both species were less sensitive to copper when tested at 16 degrees C compared to 8 degrees C. The two species had similar sensitivity to copper in 100-mg/ L hardness water, but bull trout were 2.5 to 4 times less sensitive than rainbow trout in 220-mg/L hardness water. However, when our results were viewed in the context of the broader literature on rainbow trout sensitivity to copper, the sensitivities of the two species appeared similar. This suggests that adoption of toxicity thresholds that are protective of rainbow trout would be protective of bull trout; however, an additional safety factor may be warranted because of the additional level of protection necessary for this federally threatened species.  相似文献   

8.
To evaluate the toxic effects of sublethal concentrations of the fungicide triphenyltinacetate (TPTAc), a prolonged toxicity study was made on rainbow trout (Oncorhynchus mykiss). Fish were exposed to TPTAc concentrations ranging from 1 to 6 g TPTAc/L for 28 and 18 days, respectively, using a flow-through exposure system. Hematological findings included an increase of the total number of erythrocytes and an elevated incidence of erythrocyte degradation stages at 4 g TPTAc/L and higher. The hemoglobin content and the packed-cell volume increased as well at 4 and 1 g TPTAc/L. Whereas the total number of leucocytes increased in fish exposed to 1 g TPTAc/L, the number of leucocytes tended to decrease at higher concentrations. The percentage of lymphocytes within the differential blood cell count decreased. The histopathological examination of TPTAc-exposed fish showed a dose-related lymphocytic depletion of the spleen, accompanied by a proliferation of reticuloendothelial cells and an increased erythrophagia even at the lowest TPTAc concentration. In severe cases, cell necrosis was evident. In liver tissue, a depletion of the glycogen deposits within the hepatocytes could be detected in fish exposed to 4 and 6 g TPTAc/L. The analysis of the phenyltin compounds within various organs of fish by HRGC-FPD revealed remarkable concentrations of triphenyltin of up to 16.1 g/g with the following order of residue levels: liver > kidney > spleen > gills > muscle. Di- and monophenyltin were found only in traces of 1–109 ng/g in these organs. The present study indicates that TPTAc negatively affects rainbow trout in a concentration range that might be present in aquatic environments.  相似文献   

9.
Subadult rainbow trout (Oncorhynchus mykiss) were exposed to four waterborne concentrations each of 64–426 g/L mercuric chloride (HgCl2) and 4–34 g/L methylmercury chloride (CH3HgCl) until death to evaluate the critical body burden concept. Mean days to death for fish exposed to the highest and lowest concentrations of HgCl2 were 1 and 58 d, and 2 and >100 d for fish exposed to CH3HgCl. Time to death was an important factor that influenced Hg tissue concentration, and was most evident among fish that died within a few days of exposure. Critical body burdens for Hg could be difficult to establish at the tissue level because no threshold concentrations were clearly indicated among the liver, kidney, spleen, brain, muscle, and gill that were monitored in this study. A critical burden for Hg was derived on a whole body basis for Hg in its organic form. An evaluation of this and other studies suggests whole body concentrations of 10–20 mg/kg Hg could be lethal to fish. Extrapolation from other studies indicate whole body concentrations of 1–5 mg/kg Hg could have chronic effects on fish and possibly other aquatic organisms. This concept could be used to assess the toxicological significance of chemical concentrations that are monitored in feral aquatic organisms. This tissue-based approach appears to have some advantages over current assessment protocols that focus on waterborne concentrations.  相似文献   

10.
Diesel is a complex mixture containing polycyclic aromatic hydrocarbons, which persist after a spill, pass readily from water into tissues, and are toxic to early life stages of fish. The bioavailability and chronic toxicity of hydrocarbons dissolved into water from floating diesel (water-accommodated fraction) and chemically dispersed diesel (chemically enhanced water-accommodated fraction) were measured by the extent of ethoxyresorufin-O-deethylase (EROD) induction in juvenile rainbow trout (Oncorhynchus mykiss) and by the severity of blue sac disease in embryos. The water-accommodated fraction of floating diesel was virtually nontoxic to embryos at nominal concentrations up to 1,000 mg/L, causing only small weight changes. Liver EROD induction in juvenile trout was only observed at the highest nominal water-accommodated fraction concentration (10,000 mg/L). Chemical dispersion increased the bioavailability and toxicity of diesel to trout by 100-fold. Diesel chemically enhanced water-accommodated fraction induced EROD activity, caused blue sac disease, and impaired development and growth of embryonic trout at nominal concentrations as low as 10 mg/L; 88% mortality occurred at 100 mg/L. However, when total hydrocarbon concentrations were measured, differences between dispersed and undispersed diesel disappeared, with a median lethal concentration of 8 mg/L of total hydrocarbons and sublethal median effective concentrations ranging from 1.3 to 6.1 mg/L. Dispersion of diesel by high-energy mechanical mixing was recently reported to cause acute lethality to juvenile trout between 40 and 200 mg/L. Therefore, dispersion of oil by any means increases the bioavailability and apparent toxicity of diesel to fish embryos without changing the toxicity of its components. Nevertheless, in an actual spill, dispersion of diesel increases the effects of oil on fish populations.  相似文献   

11.
In this study, the toxicity of mercuric chloride (HgCl(2)), an important pollutant threatening water resources for many years, and the effects of water temperature and hardness on the toxicity in cultured rainbow trout Oncorhynchus mykiss (4.79 ± 0.16 g; 7.38 ± 0.24 cm; mean ± SD) were investigated at different temperatures (12 and 17°C) and hardness concentrations (35, 70 and 120 mg l(-1) as calcium carbonate, CaCO(3)). For this purpose, the acute toxicity tests were performed by 96-h static tests in different water temperatures and water hardness concentrations. For acute toxicity tests, solutions ranging from 0.4 to 1.2 mg l(-1) were used at 12°C and solutions ranging from 0.4 to 1.0 mg l(-1) at 17°C. The LC(50) values of HgCl(2) that killed 50% of rainbow trout within 96 h in the hardness concentrations of 35, 70 and 120 mg l(-1) CaCO(3) were calculated using probit analysis, and were found to be 0.725, 0.788, 0.855 mg l(-1) at 12°C and 0.670, 0.741, 0.787 mg l(-1) at 17°C, respectively. Consequently, the toxicity of HgCl(2) on rainbow trout decreased when the temperature decreased from 17 to 12°C. Toxicity increased when the hardness decreased from 120 to 35 mg l(-1) CaCO(3). In contrast to temperature, water hardness presents a negative effect on the toxicity of HgCl(2).  相似文献   

12.
Pharmaceutical and personal care products (PPCPs) are found in municipal effluents and represent the major sources of contamination for the aquatic environment. A preliminary chemical analysis of wastewater identified several compounds associated with PPCPs, including caffeine, ibuprofen, naproxen, oxytetracycline, novobiocin, carbamazepine, gemfibrozil, bezafibrate, trimethoprim, sulfamethoxazole, and sulfapyridine. The purpose of this study was to examine the cytotoxic and oxidative effects of these products and other wastewater-related products (i.e., coprostanol, cotinine, estradiol-17beta, nonylphenol, and cholesterol) in primary cultures of rainbow trout hepatocytes. The redox activity of various PPCPs in trout (Oncorhynchus mykiss) liver microsomes was investigated in vitro by tracking the rate of oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the formation of lipid peroxidation (LPO) after a 60-min incubation period. In addition, primary cultures of rainbow trout hepatocytes were exposed to various drugs identified in the municipal effluent for 48 h at 15 degrees C. Our results show that most PPCPs (83%) accelerated the rate of NADPH oxidation in the presence of microsomes and 72% of them increased LPO in microsomal membranes. LPO levels were significantly correlated (R = 0.5; P<0.05) with the number of functional groups on the molecule's backbone (i.e., number of O, S, N, P/number of C and H) and negatively so (R = -0.44; P<0.05) with the octanol/water partition coefficient, suggesting that nucleophilicity and hydrophobicity are related to oxidative activity for these compounds. Exposure of trout hepatocytes to these products leads in many cases to decreased cell viability, increased CYP3A-related monooxygenase activity (benzylether resorufin dealkylase), and LPO. No induction of CYP1A1-related activity (7-ethoxyresorufin O-deethylase) was observed. Moreover, municipal effluent extracts (ethanol) were able to increase all the above responses in a dose-dependent manner. These results suggest that the basic redox properties of PPCPs could influence oxidative metabolism in liver cells and lead to oxidative damage. These products have the potential to produce a toxic response in aquatic organisms and the above biomarkers were shown to respond readily to PPCPs in aquatic organisms.  相似文献   

13.
As part of an effort to validate the use of heat shock proteins (HSPs) as biomarkers of exposure to and effects of contaminants, we evaluated the effect of two handling regimens on the induction of HSP 60 and 70 in rainbow trout (Oncorhynchus mykiss). Fish were acclimated to laboratory conditions for several weeks before the beginning of the experiment. Fish were then captured by net, placed in a cooler for 1 h while being transported in a truck, returned to their original tanks, then sacrificed 6 to 8 h later. Tricaine methane sulfonate (MS-222) was used during different phases of handling to reduce handling stress. Heat-stressed fish were included in the experiment as a positive control. Muscle, liver, gills, and heart were analyzed for HSP 60 and 70 by immunoblotting. We found no effect of any handling regimen on the induction of HSPs. These findings suggest that the capture and transport of fish for environmental monitoring purposes should not interfere with the use of stress proteins as biomarkers.  相似文献   

14.
Biochemical and hematological parameters in blood of rainbow trout treated to various concentrations of propolis for 96 h were determined. Total leukocyte count and granulocytes values increased (p<0.05) in 0.02 and 0.03 g/L propolis groups. There was a decrease in agranulocytes (p<0.05) erythrocytes, hemoglobin and hematocrit values for fish exposed to 0.02 and 0.03 g/L propolis. MCV and MCH values (p<0.05) were significantly increased; 0.02 and 0.03 g/L propolis caused an increase (p<0.05) in the levels of glucose, blood urea nitrogen, triglyceride, total cholesterol, lactate dehydrogenase, amylase and gamma glutamyltransferase. There was a decrease in the levels of aspartate aminotransferase and alkaline phosphatase. Hematological and biochemical protective effects of 0.01 g/L propolis were investigated. Dose-dependent effects of propolis on blood of fish can be favorable, opening new perspectives of investigation on their biological properties and utilization.  相似文献   

15.
Juvenile rainbow trout were fed diets containing control (0.26 mmol/g) or elevated (1.3 mmol/g) dietary Na+ in combination with either background (19 nmol/L) or moderately elevated levels (55 or 118 nmol/L) of waterborne Cu for 21 d. Unidirectional waterborne Na+ uptake rates (measured with 22Na) were up to four orders of magnitude higher than those of Cu (measured with 64Cu). Chronic exposure to elevated dietary Na+ alone or in combination with elevated waterborne Cu decreased whole-body uptake rates of waterborne Na+ and Cu. Accumulation of new Cu and Na+ at the gills was positively and highly significantly correlated and responded to the experimental treatments in a similar fashion, suggesting that Na+ and Cu have common branchial uptake pathways and that dietary Na+ preexposure modifies these pathways. Chronic exposure to elevated waterborne Cu significantly increased Cu concentrations in the liver but caused only modest increases in total Cu concentrations in the whole body and gill. Chronic exposure to elevated dietary Na+ slightly decreased whole-body Cu concentration on day 14 and greatly reduced liver Cu concentration on days 14 and 21; new Cu accumulation in whole-body, gill, and internal organs was reduced on all days. Chronic exposure to elevated waterborne Cu or dietary Na+ alone reduced short-term gill Cu binding at low waterborne Cu concentrations. At high waterborne Cu concentrations, chronic exposure to elevated waterborne Cu had no effect, while elevated dietary Na+ increased Cu binding to the gills. Combined chronic exposure to elevated dietary Na+ and waterborne Cu decreased gill Cu binding over the entire range of Cu concentrations tested. Clearly, chronic exposure to elevated dietary Na+ and waterborne Cu appears to modify gill Cu-binding characteristics and may be important considerations in future development of a chronic biotic ligand model for Cu.  相似文献   

16.
The effects of Ca, Mg and pH on the toxicity of Ni to juvenile rainbow trout (Oncorhynchus mykiss) were examined during 17-26-day exposures to Ni in 15 synthetic test solutions. Higher chemical activities of Ca2+, Mg2+ and H+ reduced Ni toxicity, as demonstrated by increased 17-day median lethal concentrations expressed as Ni2+ activity (17-d LC50(Ni2+)). A non-linear increase of the 17-d LC50(Ni2+) with increasing H+ suggested that the effect of pH could not be appropriately described by single-site competition between Ni(2+) and H+ for sensitive sites on the fish gill. Instead, a linear increase of pNi2+ (=-log 17-d LC50(Ni2+)) with increasing pH was observed with a slope of 0.32. This slope was used as the basis for modelling the effect of pH. The effects of Ca and Mg were modelled according to single-site competition with logK(CaBL)=logK(MgBL)=3.6, both assumed to be independent of pH. The effect of pH was superimposed on this competition effect and was also assumed to be independent of Ca and Mg concentrations. The model was able to predict 17-d LC50s (expressed as dissolved Ni) in most synthetic test waters within a factor 2 deviation from observed toxicity. The model's predictive capacity was also evaluated using results of similar laboratory toxicity tests with juvenile rainbow trout in Ni-spiked European natural surface waters. For most of these waters, predicted 17-d LC50s did not deviate more than a factor 2 from observed toxicity. The same model, calibrated to account for sensitivity differences between species, life stages and/or exposure durations, was able to accurately predict 96-h LC50s for larval and juvenile fathead minnow (Pimephales promelas) and juvenile rainbow trout, based on data taken from literature. Although the developed model seems very promising, the uncertainty around the role of alkalinity and the exact mechanisms by which Ca, Mg and pH modify Ni toxicity need to be further explored.  相似文献   

17.
Acute 96-h toxicity tests were performed with juvenile rainbow trout (Oncorhynchus mykiss) exposed to AgNO3 in either the absence or the presence of 100 nM reactive sulfide to evaluate the protective effect of aqueous sulfides against ionic Ag toxicity. The sulfide was presented in the form of zinc sulfide (ZnS) clusters under oxic conditions. Silver was lost from the water column during the course of the experiment, so mean measured Ag concentrations were used to generate all median lethal concentration (LC50) data. The system was complicated in that Ag2S precipitated because of the need for large amounts of Ag to obtain lethal effects in the presence of ZnS. Some of the losses of Ag could be explained by complexation with ZnS and formation of solid Ag2S. Other losses were probably the result of partial adsorption to exposure-chamber walls or to complexation with ligands or functional groups within organic material produced by the fish. The LC50 (95% confidence interval) values generated using measured concentrations for total Ag were 139 (122-162) nM in the absence of sulfide and 377 (340-455) nM in the presence of 100 nM sulfide. The LC50 values generated using measured concentrations from filtered (pore size, 0.45 microm) water samples were 122 (105-145) nM in the absence of sulfide and 225 (192-239) nM in the presence of 100 nM sulfide. These results suggest a stoichiometric protection of sulfides up to a 2:1 ratio of Ag:sulfide. Greater accumulation of Ag at the gills was measured in fish exposed to AgNO3 in the presence of sulfide.  相似文献   

18.
Perfluorinated acids (PFAs) recently have emerged as persistent global contaminants after their detection in wildlife and humans from various geographic locations. The highest concentrations of perfluorooctane sulfonate are characteristically observed in high trophic level organisms, indicating that PFAs may have a significant bioaccumulation potential. To examine this phenomenon quantitatively, we exposed juvenile rainbow trout (Oncorhynchus mykiss) simultaneously to a homologous series of perfluoroalkyl carboxylates and sulfonates for 34 d in the diet, followed by a 41-d depuration period. Carcass and liver concentrations were determined by using liquid chromatography-tandem mass spectrometry, and kinetic rates were calculated to determine compound-specific bioaccumulation parameters. Depuration rate constants ranged from 0.02 to 0.23/d, and decreased as the length of the fluorinated chain increased. Assimilation efficiency was greater than 50% for all test compounds, indicating efficient absorption from food. Bioaccumulation factors (BAFs) ranged from 0.038 to 1.0 and increased with length of the perfluorinated chain; however, BAFs were not statistically greater than 1 for any PFA. Sulfonates bioaccumulated to a greater extent than carboxylates of equivalent perfluoroalkyl chain length, indicating that hydrophobicity is not the sole determinant of PFA accumulation potential and that the acid function must be considered. Dietary exposure will not result in biomagnification of PFAs in juvenile trout, but extrapolation of these bioaccumulation parameters to larger fish and homeothermic organisms should not be performed.  相似文献   

19.
Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity.  相似文献   

20.
Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). In the present work, the interaction of alkylphenols and alkylated non-phenolics with hepatic rainbow trout (Oncorhynchus mykiss) estrogen receptors (rtERs) was determined. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure was assessed. The results showed that the rtERs bound most alkylphenols, although with 20,000 to 2 million times lower affinity than the endogenous estrogen 17beta-estradiol. Mono-substituted alkylphenols with moderate (C4-C6) and long (C8 and C12) alkyl chain length in the para position exhibited the highest affinity for the rtERs. Substitution with multiple alkyl groups, presence of substituents in the ortho- and meta-position, and lack of a hydroxyl group on the benzene ring reduced the binding affinity. The rtERs resembled the reported binding specificity of the human ER for alkylphenols, although some exceptions were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号