首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of drug oxidation in a reconstituted system which contains two forms of cytochrome P-450 and a limiting amount of NADPH-cytochrome P-450 reductase were determined. Cytochrome P-450 (termed MC P-4481 and MC P-4482) purified from liver microsomes of 3-methyl-cholanthrene-treated rats was active in both 2- and 4-hydroxylation of biphenyl but cytochrome P-450 (termed PB P-450) purified from liver microsomes of phenobarbital-treated rats was active in 4-hydroxylation of biphenyl only. PB P-450, MC P-4481 and MC P-4482 were most active toward benzphetamine N-demethylation, aniline hydroxylation and 7-ethoxycoumarin O-deethylation, respectively. PB P-450 inhibited the activity of biphenyl 2-hydroxylation supported by MC P-4481 or MC P-4482. On the contrary, no inhibition of PB P-450 supported benzphetamine N-demethylation was observed when MC P-4481 or MC P-4482 was added to the system containing PB P-450 and limited amount of the reductase. The apparent Km of PB P-450 for the reductase obtained from double reciprocal plot of the reductase concentration and the activity of biphenyl hydroxylase or benzphetamine N-demethylation was lower than that of MC P-4481 or MC P-4482. These and other results suggest that there is a certain hierarchy among the cytochrome P-450 species for receiving electrons from reductase.  相似文献   

2.
3.
1. Both the cytochrome P-450-dependent mono-oxygenase system and the FAD-containing mono-oxygenase catalyse the sulphoxidation of thioether-containing organophosphate insecticides. Using purified FAD-containing mono-oxygenase and purified cytochrome P-450 isozymes isolated from mouse liver microsomes, the stereospecificity of the oxidation of phorate to (+)-and (-)-phorate sulphoxide and the further oxidations of the (+)-and (-)-phorate sulphoxides to the sulphone, the oxon sulphoxide and the oxon sulphone were examined. 2. The FAD-containing mono-oxygenase catalysed the formation of (-)-phorate sulphoxide, while two cytochrome P-450 isozymes (cytochrome P-450-B2, a constitutive form, and cytochrome P-450-PB, the principal form induced by phenobarbital) produced (+)-phorate sulphoxide. The other three constitutive cytochrome P-450 isozymes examined yielded racemic mixtures. 3. The FAD-containing mono-oxygenase had the lowest Km for the sulphoxidation reaction, 32 microM, while the Km values for the cytochrome P-450 isozymes ranged from 67 microM to 250 microM. No additional oxidation of phorate sulphoxide by the FAD-containing monooxygenase was detected using either (+)-phorate sulphoxide or (-)-phorate sulphoxide as substrates. 4. In contrast, all five cytochrome P-450 isozymes tested formed additional oxidation products; the (+)-phorate sulphoxide was the preferred substrate for all cytochrome P-450 forms. 5. The final oxidation product, phorate oxon sulphone, was derived by desulphuration of phorate sulphone, with the formation of the oxon sulphoxide being a terminal pathway.  相似文献   

4.
Several reports have described the effects of trichloroethylene (TCE) on the microsomal mixed function oxidase system (MFOS). These studies suggest that repeated TCE administration induces MFOS, especially cytochrome P-450 and NADPH-cytochrome c reductase. However, it is uncertain what isozymes are induced by TCE treatment, and it is not clear how microsomal enzymes or cytochrome P-450 isozymes are altered when TCE is administered for a duration longer than 28 days. We investigated the changes of MFOS by long-term TCE treatment. Male Wistar rats were injected with TCE, 1.0 g/kg body weight once a day for 5 continuous days or 2.0 g/kg body weight twice a week for 15 days. The mean body weight of the rats treated with TCE for 15 weeks was slightly, but not significantly, less than that of the control rats. Relative liver weights (liver wt/body wt) of the TCE-treated group were however significantly larger (21%) than those of the control group. The weights of the other organs were not changed by long-term TCE treatment. Trichloroethylene treatments for 5 days and 15 weeks caused significant increases in microsomal protein, cytochrome P-450, cytochrome b-5 and NADPH-cytochrome c reductase. TCE treatments produced an increase in a polypeptide band at 52,000 molecular weight range observed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This increase in similar to, but less pronounced than that induced by phenobarbital (PB) treatment. There were no remarkable changes at 56,000 molecular weight range where a band appeared after the treatment with 3-methylcholanthrene (MC). It is likely that the induction of cytochrome P-450 by TCE is relatively similar to that by PB.  相似文献   

5.
1. Pretreatment of rats with 6-(3-picolyl)amino-2,2,5,8-tetramethylchromane (PATC) for 7 days resulted in a significant increase in the activities of benzphetamine N-demethylase, p-nitroanisole O-demethylase and aniline hydroxylase in liver microsomes prepared 24 h after the last treatment. 2. Analysis by Western blot showed that PATC induces cytochrome P-450 b, P-450 c and P-450 d, which are the major forms of cytochrome P-450 in liver microsomes of rats when pretreated with phenobarbital and 3-methylcholanthrene. 3. Exposure of liver sections to the antibodies to cytochrome P-450 b and P-450 c resulted in intense immunostaining within the centrilobular regions, but produced staining of considerably weaker intensity in the perilobular region. Semiquantitative immunochemical analysis, by image analyser, of cytochrome P-450 b and P-450 c showed that centrilobular hepatocytes were stained more intensively than perilobular hepatocytes. 4. These results indicate that PATC induces cytochromes P-450 b and P-450 c, in the centrilobular hepatocytes to a greater degree than those in the perilobular hepatocytes. 5. Co-administration of PATC with pentobarbital caused a significant increase in pentobarbital sleeping time. Furthermore, PATC was found to cause a decrease in the activity of benzphetamine N-demethylase in liver microsomes prepared 30 min after treatment with the drug.  相似文献   

6.
Effect of nutritional imbalances on cytochrome P-450 isozymes in rat liver   总被引:1,自引:0,他引:1  
Male Sprague-Dawley rats were fed for six weeks either a control diet containing 22% casein (C) and 5% fat (F) or a low-protein diet (6% C, 5% F) or high-lipid diet (30% C, 30% F). A group of rats received a control diet containing 50 ppm of Phenoclor DP6. Three major forms of cytochrome P-450, UT 50, BP 3a and MC 2 were purified from livers of DP6-fed rats and only two forms, UT 50 and PB 3a, were purified from control and dietary groups. The amino acid composition and the catalytic activities towards all substrates tested were only significantly modified in the purified UT 50 P-450 isozyme from rats fed the low-protein diet. The N-terminal sequence analysis shows that cytochrome P-450 UT 50 (from control group) and UT 501 (from low-protein group) are two distinct proteins.  相似文献   

7.
1. Pretreatment of rats with 6-(3-picolyl)amino-2,2,5,8-tetramethylchromane (PATC) for 7 days resulted in a significant increase in the activities of benzphetamine N-demethylase, p-nitroanisole O-demethylase and aniline hydroxylase in liver microsomes prepared 24?h after the last treatment.

2. Analysis by Western blot showed that PATC induces cytochrome P-450 b, P-450 c and P-450 d, which are the major forms of cytochrome P-450 in liver microsomes of rats when pretreated with phenobarbital and 3-methylcholanthrene.

3. Exposure of liver sections to the antibodies to cytochrome P-450 b and P-450 c resulted in intense immunostaining within the centrilobular regions, but produced staining of considerably weaker intensity in the perilobular region. Semiquantitative immunochemical analysis, by image analyser, of cytochrome P-450 b and P-450 c showed that centrilobular hepatocytes were stained more intensively than perilobular hepatocytes.

4. These results indicate that PATC induces cytochromes P-450 b and P-450 c, in the centrilobular hepatocytes to a greater degree than those in the perilobular hepatocytes.

5. Co-administration of PATC with pentobarbital caused a significant increase in pentobarbital sleeping time. Furthermore, PATC was found to cause a decrease in the activity of benzphetamine N-demethylase in liver microsomes prepared 30?min after treatment with the drug.  相似文献   

8.
The effect of a choline-deficient diet on microsomal cytochrome P-450 and mixed-function oxidase (MFO) activity was investigated in relation to the development of nutritional cirrhosis. In rats that received the choline-deficient diet for 28 weeks cirrhosis was evident macroscopically and histologically; control rats that received an identical diet supplemented with choline had normal livers. Microsomal cytochrome P-450 and cytochrome b5 were reduced in cirrhotic liver to 50% of control levels. Three MFO activities (ethylmorphine N-demethylase, aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase) were also reduced to 40-70% of control levels. However, the turnover number for the O-deethylation of 7-ethoxycoumarin was not reduced in cirrhotic liver. This finding suggested that certain drug oxidations may be selectively depressed in nutritional cirrhosis. To examine the possibility that selective changes in MFO activity may reflect the suppression of certain cytochrome P-450 isozymes, partially purified fractions of the cytochrome were prepared after solubilisation and hydrophobic affinity chromatography (on n-octylamino-Sepharose 4B) of cirrhotic and control liver microsomes. Analysis of these fractions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and laser densitometry indicated that a protein band of apparent minimum molecular weight 50.5 kD was primarily affected in cirrhotic rat liver microsomes. Levels of two other bands (apparent minimum molecular weight 48 and 52.5 kD) appeared essentially unaltered. Additional electrophoretic studies, conducted under non-reduced conditions, indicated the haemoprotein nature of protein bands in the 48-55 kD region. These data strongly suggest that cirrhosis produced in rats by a choline-deficient diet is associated with selective decreases in oxidative drug metabolism and individual cytochrome P-450 isozymes.  相似文献   

9.
10.
We have reported previously that both dietary iron and selenium regulate intestinal cytochrome P-450 content by modulating the synthesis of its prosthetic heme moiety. Whether these elements are required for synthesis and/or viability of its apocytochrome moiety is unknown. We have examined the effects of intraluminal deprivation of these elements on the apocytochrome moieties of the constitutive (P-450) and the beta-naphthoflavone inducible (P-448) intestinal isozymes. The relative content of intestinal apocytochrome P-450 moieties generated by dietary deprivation of iron and/or selenium was assessed indirectly by complexing with exogenous heme in vitro, to reassemble the holocytochromes which could be monitored spectrally and catalytically. We now report that, whereas both intraluminal iron and selenium are required for maintenance of the prosthetic apocytochrome moiety of the constitutive intestinal isozyme, only intraluminal selenium is required for the viability of apocytochrome P-448. The latter apparently survives in the absence of intraluminal iron and can be assembled to the holocytochrome, with exogenously added heme. The mechanistic basis of the critical requirement of intestinal apocytochromes for intraluminal selenium is unclear. It is intriguing, however, that the deleterious effects of selenium deprivation are principally exerted in cell systems actively synthesizing protein and inexorably dependent on their extracellular milieu for their nutriment.  相似文献   

11.
By the treatment of newborn male rats with monosodium glutamate (MSG), microsomal benzo[a]pyrene hydroxylation, propoxycoumarin O-depropylation, and testosterone (T) 6 beta- and 2 beta-hydroxylations in the adult rats were decreased significantly, while microsomal aniline and T 7 alpha-hydroxylations were increased. However, the treatment of newborn female rats did not significantly alter any of the drug-metabolizing activities examined, except that T 6 beta-hydroxylation and androstenedione formation were slightly increased. The hepatic contents of male-specific cyt. P-450, P-450-male and P-4506 beta, which show high catalytic activities on respective T 16 alpha/2 alpha-, and T 6 beta/2 beta-hydroxylations, decreased in MSG-treated male rats. The level of the female specific enzyme, P-450-female, slightly decreased in the MSG-treated female rats, whereas higher phenobarbital (PB)-induction of PB-inducible isozymes, P-450b and P-450e, was observed in MSG-treated than in control female rats. These results are consistent with the idea that disruption of a pulsatile secretion of growth hormone, which is induced by the neonatal MSG treatment, leads to changes in drug metabolizing activities through the alteration of the levels of sex-specific cyt. P-450s, but also indicate that MSG-treated rats are not an animal model equivalent to hypophysectomized rats.  相似文献   

12.
Phenobarbital treatment of rats enhanced 2-fold the hepatic aninopyrine (AP) and dimethylhydrazine (DMH) demethylation but not that of N-nitrosodimethylamine (NDMA). Pyrazole enhanced the demethylation rate of DMH and NDMA but not that of AP. The in vitro effects of metyrapone and SKF-525A on the demethylation rate of various substrates were dependent on the substrate and treatment of rats. The data suggest that the demethylation of various substrates might be catalyzed by different cytochrome P-450 isozymes.  相似文献   

13.
Microsomes from male rats treated with picloram (100 mg/kg/day) for 7 days showed a 48% decrease in 16 alpha-hydroxylase activity when incubated with (4-14C) androstenedione. These data are consistent with the assertion that picloram decreases the titer of hepatic male specific cytochrome P-450h. Several lines of evidence suggested that picloram is an inducer of hepatic cytochrome P-450 in male rats. First, SDS polyacrylamide gel electrophoresis revealed an intensified hepatic microsomal polypeptide (MW 54,000) following picloram pretreatment. This polypeptide co-migrated with protein bands which were correspondingly intensified after pretreatment with known inducers of cytochrome P-450d (3-methylcholanthrene and isosafrole). Second, no increase in the binding of metyrapone to picloram treated microsomes was noted compared with controls, suggesting no increase in phenobarbital-inducible forms of cytochrome P-450. Third, hepatic microsomes from picloram treated rats activated 2-amino-3-methylimidazo [4,5-f] quinoline (a cytochrome P-450d mediated catalysis) causing a 5-fold increase in the number of induced Salmonella typhimurium TA98 revertant colonies formed compared with control microsomes. Fourth, the binding of n-octylamine to hepatic microsomes from picloram-treated rats showed, like microsomes from 3-methylcholanthrene-treated rats, an increase in the proportion of high-spin cytochrome P-450 present. Cytochrome P-450d is known to be a high spin haemoprotein.  相似文献   

14.
The primary metabolism of m-xylene in rat lung and liver microsomes was investigated. The ratio of side chain to aromatic hydroxylation was found to be approximately 1:1 in lung microsomes from untreated rats and in a reconstituted system containing the major cytochrome P-450 isozyme induced in rat liver by phenobarbital, cytochrome P-450-PB-B2, as compared to 8:1 in liver microsomes. Antibody inhibition studies showed the major importance of cytochrome P-450-PB-B2 for the formation of both primary m-xylene metabolites (3-methylbenzylalcohol and 2,4-dimethylphenol) in lung microsomes. Antibodies to the major cytochrome P-450 isozyme induced in rat liver by beta-naphthoflavone, P-450-BNF-B2, did not inhibit m-xylene metabolism in either liver or lung microsomes from beta-naphthoflavone treated rats although this isozyme efficiently catalyzed m-xylene hydroxylation in a reconstituted system. m-Xylene metabolism by purified P-450-BNF-B2 appeared to cause rapid inactivation of the enzyme.  相似文献   

15.
The effect of polyamines on the activity of the mixed-function oxidase (MFO) system from human, rat and rabbit liver microsomes was investigated in detail. It was shown that polyamine (spermine) stimulates NADPH-dependent activity of the MFO system several-fold whatever the substrate (foreign drug or natural), not only with microsomes but also with the reconstituted system consisting of highly purified cytochrome P-450 (LM2 isozyme), cytochrome P-450 NADPH reductase and dilauroylphosphorylcholine. Stimulation (extent and concentration dependence) appeared to be dependent on a number of parameters such as ionic strength, pH, animal species and treatment, nature of the substrate, and was stereospecific (different effect on 6β-and 16α-testosterone hydroxylation). Further, the spermine effect was evaluated on some elementary steps of the cytochrome P-450 reaction cycle, like substrate binding, P-450 reduction and second electron transfer. Finally, it was shown that the organic peroxide dependent activity was not stimulated by spermine with microsomes nor with the purified P-450 LM2 isozyme.On the basis of this study, it was concluded that the locus of polyamine action is cytochrome P-450 and that stimulation could result either from increased stability of the oxyferrous intermediate of P-450 or from an increased rate of second electron transfer from reductase to P-450.  相似文献   

16.
1. Five isozymes of cytochrome P-450 were purified from liver microsomes of phenobarbital-pretreated (P-450-SD-I and -II), 3-methylcholanthrene-pretreated (P-450-SD-III) and untreated rats (P-450-SD-IV and -V) to determine their catalytic activities in metabolic reactions of methamphetamine. 2. All the isozymes except P-450-SD-III showed considerably high N-hydroxylating activity of methamphetamine. The cytochromes P-450 initiate N-demethylation of this drug by two metabolic pathways, C-hydroxylation and N-hydroxylation. 3. Both N-demethylation and N-hydroxylation of methamphetamine were efficiently catalysed by the phenobarbital-inducible forms P-450-SD-I and -II and constitutive forms P-450-SD-IV and -V. 4. The constitutive forms P-450-SD-IV and -V revealed high catalytic activities of p-hydroxylation of methamphetamine, but phenobarbital- and 3-methylcholanthrene-inducible isozymes showed only low activities. 5. The present results indicate that the different extents of the metabolic intermediate complex formation with cytochrome P-450 (455 nm complex) in the microsomes from phenobarbital-, 3-methylcholanthrene-pretreated, and untreated rats is not attributable to the activities of the respective isozymes of cytochrome P-450 to form the precursor of the complex, N-hydroxymethamphetamine.  相似文献   

17.
Human liver preparations were used to screen various drugs for their capability of binding to mephenytoin p-hydroxylase and sparteine monooxygenase, two cytochrome P-450-catalyzed activities that are independently heritable. For this screening, any indication of competitive inhibition by the drug was interpreted as an indication of binding. Among 64 drugs and alkaloids tested, 24 compounds caused inhibition of mephenytoin p-hydroxylation but the inhibition was weak in most cases; by contrast, 40 of the 64 compounds inhibited sparteine oxidation, the inhibition being potent in many cases. The only fairly strong inhibitors of mephenytoin p-hydroxylation were the alkaloid papaverine and the monoamine oxidase inhibitors tranylcypromine and nialamide. The results of these inhibition studies confirm the independence of the two monogenic defects observed in different populations. Metabolism is possibly altered in poor metabolizers of mephenytoin with fewer drugs than in poor metabolizers of sparteine.  相似文献   

18.
The primary metabolism of n-hexane in rat lung and liver microsomes was investigated. In liver microsomes from untreated animals the formation of each of the metabolites, 1-, 2- and 3-hexanol, was best described kinetically by a two-enzyme system, whereas for lung microsomes a one-enzyme system was indicated for each metabolite. Cytochrome P-450-PB-B, the major cytochrome P-450 isozyme induced in rat liver by phenobarbital, appeared to be responsible for the formation of 2- and 3-hexanol in lung microsomes from untreated rats as judged by antibody inhibition studies. The presence of this isozyme was confirmed by immunoblotting. In contrast, formation of 1-hexanol in rat lung was catalyzed by a cytochrome P-450 isozyme different from the major isozymes induced by either phenobarbital or beta-naphthoflavone. Similarly, formation of 2,5-hexanediol from 2-hexanol was catalyzed by a P-450 isozyme different from cytochrome P-450-PB-B and present in liver but not in lung microsomes. Furthermore, alcohol dehydrogenase activity with hexanols or hexanediol as the substrate was found exclusively in liver cytosol. These results suggest that inhaled n-hexane must be transported to the liver either intact or in the form of 2-hexanol before the neurotoxic metabolite 2,5-hexanedione can be formed.  相似文献   

19.
20.
Cytochrome P-450, NADPH-cytochrome P-450 reductase, and glucuronyltransferase were immobilized simultaneously on cyanogen bromide-activated Sepharose from phenobarbital-induced rabbit liver microsomes. The activity of the P-450 system was demonstrated by the N-demethylation of ethylmorphine and the O-demethylation of p-nitroanisole. p-Nitrophenol produced from the oxidation of p-nitroanisole was conjugated to p-nitrophenyl glucuronide, as evidenced by isolation and characterization of the glucuronide by GC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号