首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate changes of electrocardiographic parameters with aging and their relation to the presence of SCN5A mutation in probands with Brugada syndrome (BS), we measured several electrocardiographic parameters prospectively during long-term follow-up (10 +/- 5 years) in 8 BS probands with SCN5A mutation (SCN5A-positive group, all men; age 46 +/- 10 years) and 36 BS probands without SCN5A mutation (SCN5A-negative group, all men; age 46 +/- 13 years). Throughout the follow-up period, depolarization parameters, such as P-wave (lead II), QRS (leads II, V(2), V(5)), S-wave durations (leads II, V(5)), and PQ interval (leads II) were all significantly longer and S-wave amplitude (II, V(5)) was significantly deeper in the SCN5A-positive group than in the SCN5A-negative group. The SCN5A-positive group showed a significantly longer corrected QT interval (lead V(2)) and higher ST amplitude (lead V(2)) than those in the SCN5A-negative group. The depolarization parameters increased with aging during the follow-up period in both groups; however, the PQ interval (lead II) and QRS duration (lead V(2)) were prolonged more prominently and the QRS axis deviated more to the left with aging in the SCN5A-positive group than in the SCN5A-negative group. In conclusion, conduction slowing was more marked and more progressively accentuated in Brugada probands with SCN5A mutation than in those without SCN5A mutation.  相似文献   

2.
3.
The present study examined the effects of aging and sex differences on the suprachiasmatic nucleus (SCN) of F344/N rats. In juveniles (1.6-1.9 months of age), adults (11.7-16.3 months of age), and old (29.2-34 months of age) rats, the volume, size of neuronal nucleus and neuronal cell number of the SCN were determined with cresyl fast violet-stained sections. In addition, immunohistochemical analysis was performed for glial fibrillary acidic protein (GFAP). There was no significant effect of aging and sex differences on the SCN volume. The number of neurons in the SCN gradually decreased from juvenile to old age in females. However, in males, the number was significantly decreased in adult and old age rats. The size of neuronal nuclei in the SCN was significantly decreased by increasing age in both sexes, except for the ventrolateral part of the SCN of males. In the dorsomedial part of the SCN of females, the density of GFAP-immunoreactive components was significantly higher in adult age rats than in rats of other ages. However, there was no significant increase in the density of the SCN in adult males. These results suggest that morphological changes in neuronal and astroglial cells occur in the SCN with aging in a sex-specific manner.  相似文献   

4.
《Pancreatology》2021,21(5):983-989
BackgroundCurrent guidelines discourage surgery for serous cystic neoplasms (SCN) of the pancreas, because of their benign character, slow growth, and excellent prognosis. Nevertheless, SCN continue to contribute up to 30% of resected cystic pancreatic lesions worldwide.MethodsSpectrum of indications and outcomes of surgery were analysed in a retrospective series of 133 SCN at a single high-volume center in Germany between 2004 and 2019.ResultsRelevant symptoms justified surgery in 60% of patients with SCN, while 40% underwent surgery because of preoperative diagnostic uncertainty about suspected malignancy. There were 4 malignant SCN (3%). Ninety-day mortality was 0.75%, major morbidity - 15%, 10-year survival - 95%. Risks of malignant transformation and of postoperative mortality were similarly low.ConclusionsSurgery is reasonable and safe for symptomatic patients with SCN. Preoperative diagnostic uncertainty is the main reason for futile resections of benign asymptomatic SCN. Conservative management with close initial surveillance should be the first choice for this population. Surgery for supposed SCN without symptoms is justified only in carefully selected patients with suspected malignancy.  相似文献   

5.
Brugada综合征SCN5A基因的三个新突变   总被引:2,自引:0,他引:2  
目的 研究Brugada综合征相关基因SCN5A突变情况。方法 以4例Brugada综合征患者和9例临床可疑Brugada综合征患者为研究对象,采用聚合酶链反应和双脱氧末端终止测序法对所有患者进行SCNSA基因扫描。对阳性结果者进行家系中其他成员的筛查。结果 在1个Brugada综合征家系发现两个杂合突变,即SCN5A基因第3外显子上发现一错义突变(G283A),导致代表缬氨酸残基的第95位密码子突变为异亮氨酸残基(V95I),第28外显子上也发现一错义突变(CA946T),导致代表丙氨酸的第1649位密码子突变为缬氨酸(A1649V)。在1个临床可疑Brugada综合征家系发现一杂合突变,即SCN5A基因第28外显子缺失3个碱基(TCT),导致代表苯丙氨酸残基的第1617位密码子缺失(delF1617)。结论 在Brugada综合征患者发现了3个SCN5A基因新突变(V95I、A1649V、delF1617)。  相似文献   

6.
中国一家系Brugada综合征相关基因SCN5A突变位点的检测   总被引:2,自引:0,他引:2  
目的研究一个中国家系Brugada综合征相关基因SCNSA的突变情况。方法收集一个Brugada家系的临床资料,采用聚合酶链反应及直接测序法对该家系进行SCN5A基因突变检测,同时对136例家系外健康对照者的该位点进行单链构象多态性分析。结果在Brugada家系中发现了两个杂合变异,即SCN5A基因第二外显子上发现一个同义变异(A129G),没有导致氨基酸的改变(A29A);第26外显子发现一个错义变异(T4492A),导致代表酪氨酸的1494位密码子突变为天门冬酰胺(Y1494N)。结论在中国人Brugada综合征患者的SCNSA基因上发现了一个已经报道的同义多态位点(A29A)及一个新的错义突变位点(Y1494N)。  相似文献   

7.
Severe congenital neutropenia (SCN) is a BM failure syndrome with a high risk of progression to acute myeloid leukemia (AML). The underlying genetic changes involved in SCN evolution to AML are largely unknown. We obtained serial hematopoietic samples from an SCN patient who developed AML 17 years after the initiation of G-CSF treatment. Next- generation sequencing was performed to identify mutations during disease progression. In the AML phase, we found 12 acquired nonsynonymous mutations. Three of these, in CSF3R, LLGL2, and ZC3H18, co-occurred in a subpopulation of progenitor cells already in the early SCN phase. This population expanded over time, whereas clones harboring only CSF3R mutations disappeared from the BM. The other 9 mutations were only apparent in the AML cells and affected known AML-associated genes (RUNX1 and ASXL1) and chromatin remodelers (SUZ12 and EP300). In addition, a novel CSF3R mutation that conferred autonomous proliferation to myeloid progenitors was found. We conclude that progression from SCN to AML is a multistep process, with distinct mutations arising early during the SCN phase and others later in AML development. The sequential gain of 2 CSF3R mutations implicates abnormal G-CSF signaling as a driver of leukemic transformation in this case of SCN.  相似文献   

8.
Rauprich  P; Kasper  B; Tidow  N; Welte  K 《Blood》1995,86(12):4500-4505
Severe congenital neutropenia (SCN; or Kostmann syndrome) is an autosomal recessive disorder characterized by a maturation arrest of myelopoiesis at the level of promyelocytes. Myeloid precursor cells from patients with SCN require pharmacological dosages of recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF; Filgrastim; Amgen, Thousand Oaks, CA) to differentiate to normal neutrophils. Thus, it is hypothesized that the underlying defect responsible for SCN is based on an abnormal G-CSF-induced signal transduction pathway. Because JAK2, a nonreceptor tyrosine kinase, is involved in the signaling pathway of G-CSF, we examined the expression and activity of JAK2 in neutrophils from SCN patients during r-metHuG-CSF treatment. The immunoprecipitated JAK2 protein showed increased tyrosine phosphorylation in neutrophils from SCN patients as compared with that in neutrophils from healthy donors, suggesting that this kinase is activated. In vitro kinase assays of immunoprecipitated JAK2 confirmed that neutrophils from SCN patients show an increased autophosphorylation of JAK2 in comparison with that of neutrophils from healthy volunteers. These findings suggest that JAK2 is activated in SCN patients.  相似文献   

9.
K Mempel  T Pietsch  T Menzel  C Zeidler  K Welte 《Blood》1991,77(9):1919-1922
Severe congenital neutropenia (SCN), also known as Kostmann Syndrome, is characterized by a maturation arrest of myelopoiesis at the level of promyelocytes with absence of neutrophils in bone marrow (BM) and blood. Hypotheses of the pathophysiology of SCN include (1) defective production of granulocyte colony-stimulating factor (G-CSF), and/or (2) defective response to G-CSF. To exclude defective G-CSF production we tested sera from patients with SCN for the presence of G-CSF using Western blot analysis and NFS-60 proliferation assay. Using these assays we were able to detect increased G-CSF serum levels in SCN patients (150 to 910 pg/mL) as compared with normal controls (between undetectable and 100 pg/mL). These results suggest that patients with SCN have no defect in G-CSF production but a defective response of neutrophil precursors to endogenous G-CSF.  相似文献   

10.
Background:  Tolerance to ethanol is observed over a variety of time courses, from minutes to days. Acute tolerance, which develops over 5 to 60 minutes, has been observed for both behavioral and neurophysiological variables and may involve changes in signaling through NMDA, GABA, or other receptors. Previous work has shown that both acute and chronic ethanol treatments modulate photic and nonphotic phase resetting of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). Although not specifically tested, the data thus far do not point to the development of chronic tolerance to the modulatory effects of ethanol. Here we investigated whether acute tolerance the ethanol occurs with respect to in vitro phase modulation of the SCN clock.
Methods:  Mouse brain slices containing the SCN were pretreated with ethanol for varying lengths of time, followed by treatment concurrent with either glutamate or the serotonin agonist, 8-hydroxy-DPAT (DPAT). The phase of the SCN circadian clock was assessed the following day through extracellular recordings of SCN neuronal activity. SCN neuronal activity normally peaks during mid-day, and this rhythm can be shifted by treatment with either glutamate or DPAT.
Results:  While concurrent treatment of SCN-containing brain slices with ethanol and glutamate blocks glutamate-induced phase delays of the SCN clock, pretreating the slices with ethanol for ≥15 minutes prevents this inhibition. Likewise, while concurrent treatment with ethanol and DPAT enhances DPAT-induced phase advances of the SCN clock, pretreating the slices with ethanol for ≥30 minutes prevents this enhancement.
Conclusions:  Both the inhibiting and enhancing effects of ethanol on in vitro SCN clock phase resetting show acute tolerance. Additional experiments are needed to determine whether more slowly developing forms of tolerance also occur with respect to the SCN circadian clock.  相似文献   

11.
In the present study we investigated how the suprachiasmatic nucleus (SCN) controls the E(2)-induced PRL surge in female rats. First, the role of vasopressin (VP), a SCN transmitter present in medial preoptic area (MPO) projections and rhythmically released by SCN neurons, as a circadian signal for the E(2)-induced PRL surge was investigated. Using a reverse microdialysis technique, VP was administered in the MPO during the PRL surge, resulting in a suppression of the surge. VP administration before the surge did not affect PRL secretion. Also, administration of a V1a receptor antagonist before the surge was ineffective. Second, lesions of the SCN were made that resulted in constant basal PRL levels, suggesting that with removal of the SCN a stimulatory factor for PRL secretion disappeared. Indeed, the PRL secretory response to blockade of pituitary dopamine receptors was significantly reduced in SCN-lesioned animals. These data suggest that the afternoon decrease of VP release in the MPO by SCN terminals enables the PRL surge to occur, and may thus be a circadian signal for the PRL surge. Simultaneously the SCN is involved in the regulation of the secretory capacity of the pituitary, possibly via specific PRL-releasing factors.  相似文献   

12.
BACKGROUND: The Brugada syndrome is an inherited cardiac electrical disorder associated with a high incidence of life-threatening arrhythmias. Screening for mutations in the cardiac Na+ channel-encoding gene SCN5A uncovers a mutation in approximately 20% of Brugada syndrome cases. Genetic heterogeneity and/or undetected SCN5A mutations, such as exon duplications and deletions, could be involved in the remaining 80% mutation-negative patients. OBJECTIVES: Thirty-eight SCN5A mutation-negative Dutch Brugada syndrome probands were studied. The SCN5A gene was investigated for exon duplication and deletion, and a number of candidate genes (Caveolin-3, Irx-3, Irx-4, Irx-5, Irx-6, Plakoglobin, Plakophilin-2, SCN1B, SCN2B, SCN3B, and SCN4B) were tested for the occurrence of point mutations and small insertions/deletions. METHODS: We used a quantitative multiplex approach to determine SCN5A exon copy numbers. Mutation analysis of the candidate genes was performed by direct sequencing of polymerase chain reaction-amplified coding regions. RESULTS: No large genomic rearrangements in SCN5A were identified. No mutations were found in the candidate genes. Twenty novel polymorphisms were identified in these genes. CONCLUSION: Large genomic rearrangements in SCN5A are not a common cause of Brugada syndrome. Similarly, the studied candidate genes are unlikely to be major causal genes of Brugada syndrome. Further studies are required to identify other genes responsible for this syndrome.  相似文献   

13.
AIMS: The distinct cardiac arrhythmia diseases, Brugada syndrome (BS) and isolated cardiac conduction disease (ICCD) are caused by heterozygous mutations in the SCN5A gene. Previous studies have demonstrated an intriguing association between ICCD and BS with the same mutation in the SCN5A gene. METHODS AND RESULTS: The proband of a multigenerational family presented BS and a familial history of sudden death. We performed clinical evaluations in family members including drug testing and screening for SCN5A mutations. Based on electrocardiogram features, we identified four individuals with BS, two with ICCD and one compatible with both. For five individuals, one with BS and ICCD, three with BS and one with ICCD, we characterized a heterozygous C- to T- mutation at position 4313 (P1438L) in the SCN5A gene. Expression studies of the P1438L mutation showed non-functional channels. The proband's father with the BS phenotype was not a carrier of the new SCN5A mutation. CONCLUSION: We report the case of a family with BS and/or ICCD and describe a novel mutation, the P1438L SCN5A mutation. In this family, the occurrence of BS and ICCD could be due to this single mutation but also to the accidental association of both diseases.  相似文献   

14.
Severe congenital neutropenia (SCN) is characterized by low blood neutrophil counts, early bacterial infections, and risk of leukaemia development. As yet, no population-based incidence estimates of SCN have been reported. Children less than 16 years of age with SCN were sought in Sweden during the 20-year period 1987-2006 by a questionnaire to all Swedish Departments of Paediatrics and by reviewing the Swedish Health and Welfare Statistical Databases. Thirty-two patients were diagnosed with congenital neutropenia during this period. All received treatment with recombinant granulocyte-colony stimulating factor (G-CSF). Twenty-one patients were diagnosed as SCN or probable SCN, corresponding to 1·0 per 100,000 live births. Nine (43%) had ELANE mutations, four (19%) HAX1 mutations and eight (38%) were children with disease of unknown genetic aetiology. Four out of 21 patients (19%) developed myelodysplastic syndrome/leukaemia and three (14%) died, all with leukaemia. The cumulative incidence of myelodysplastic syndrome/leukaemia was 31%. The observed incidence of SCN in this population-based study was higher than previously estimated, possibly because genetic testing now can identify SCN cases previously thought to be idiopathic or benign neutropenia. The risk of developing myelodysplastic syndrome/leukaemia is considerable. ELANE mutations are the most commonly identified genetic defects.  相似文献   

15.
OBJECTIVE: It has been suggested that both pacing and treatment with mexiletine may reduce torsade de pointes (TdP) arrhythmias in patients with long QT syndrome 3 (LQT3), but it is not fully understood how these interventions could prevent TdP. We therefore studied the effects of pacing and mexiletine in mice with a heterozygous knock-in DeltaKPQ SCN5A(Delta/+) deletion (SCN5A-Tg), a murine LQT3 model. METHODS: Three right and left ventricular monophasic action potentials (MAPs) were simultaneously recorded in Langendorff-perfused hearts of SCN5A-Tg and wild type (WT) littermates. AV block was induced, and pacing was performed at baseline and during mexiletine infusion (4 microg/ml). MAP recordings were analysed for action potential duration (APD), APD dispersion, and early afterdepolarisations (EADs) and related to spontaneous arrhythmias. RESULTS: After inducing AV block, SCN5A-Tg hearts were bradycardic [SCN5A-Tg 532+/-60 vs. WT 284+/-48 ms cycle length (CL, mean+/-S.E.M., P<0.05(*))]. EADs occurred in 16/18, and polymorphic ventricular tachycardia (pVT) in 11/18 SCN5A-Tg but not in 19 WT. SCN5A-Tg had longer APD than WT hearts*. At CL of 200 ms and longer, APD dispersion was higher in SCN5A-Tg [dispersion (APD70): 12+/-3 ms vs. 5+/-2 ms at CL=200 ms*], and increased to 35+/-4 ms* directly prior to pVT episodes. Sudden rate accelerations initially increased APD dispersion due to EADs and APD alternans in SCN5A-Tg, but pacing then reduced APD dispersion. Pacing suppressed (n=9/9) and prevented (n=49/50) pVT. Mexiletine shortened APD at long CL*, and suppressed pVT (n=4/5*), but did not prevent pVT during normal rhythm. CONCLUSIONS: Bradycardia, increased dispersion of APD and EADs provoke ventricular ectopy and pVT in SCN5A-Tg hearts. Ventricular pacing reduces APD dispersion, suppresses EADs and prevents pVT in SCN5A-Tg hearts. These effects provide a pathophysiological rationale for pacing in LQT3.  相似文献   

16.
Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH-SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns.  相似文献   

17.
Hestdal  K; Welte  K; Lie  SO; Keller  JR; Ruscetti  FW; Abrahamsen  TG 《Blood》1993,82(10):2991-2997
Several mechanisms have been proposed to explain the pathogenesis of severe congenital neutropenia (SCN); however, the mechanism(s) still remains unknown. In particular, clinical observations suggest that abnormal responsiveness of myeloid progenitors to hematopoietic growth factors (HGFs) is a possible mechanism. Therefore, to better define the status of hematopoietic progenitors in the bone marrow (BM) of patients with SCN, the responsiveness of myeloid progenitors to HGFs from two SCN patients was compared with the responsiveness of progenitors from healthy individuals. BM cells (BMCs) from the first SCN patient required higher (10- to 100-fold) concentrations of granulocyte colony- stimulating factor (G-CSF) to achieve maximal and half-maximal colony growth in vitro compared with BMCs from controls. In contrast, the dose- response of interleukin-3 (IL-3) and granulocyte-macrophage-CSF (GM- CSF) in colony formation was normal. Interestingly, IL-3, GM-CSF, and G- CSF at optimal doses showed reduced ability to induce neutrophil differentiation of BMCs from a SCN patient compared with BMCs from controls. Despite an abnormal responsiveness of mature myeloid progenitors to G-CSF in this SCN patient, myeloid progenitors responsive to the combination of stem cell factor (SCF) and G-CSF showed normal dose-response. In contrast to G-CSF alone, the combination of G-CSF and SCF induced the formation of neutrophils almost to the same extent compared with cultures of normal BMCs. Furthermore, also on BM progenitor cells obtained from the second patient with SCN, SCF highly synergized with G-CSF to promote neutrophil progenitor cell growth and differentiation in vitro. Thus, these results indicate that one mechanism of the pathogenesis in SCN patients is reduced responsiveness of neutrophil progenitor cells to G- CSF and that SCF can enhance the responsiveness of these cells to G-CSF.  相似文献   

18.
It is necessary for an organism's survival that many physiological functions and behaviours demonstrate daily and seasonal variations. A crucial component for the temporal control in mammals is the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Neurons in the SCN generate a rhythm in electrical activity with a period of about 24h. The SCN receives photic information from photoreceptive ganglion cells in the retina and processes the information, detecting dawn and dusk as well as encoding day-length. Information processing by the SCN is optimized to extract relevant irradiance information and reduce interferences. Neuronal coupling pathways, including GABAergic signalling, are employed to distribute information and synchronize SCN subregions to form a uniform timing signal. Encoding of day-length is manifested in SCN neuronal activity patterns and may be the product of network interactions rather than being based on the single cell.  相似文献   

19.
Neurons in the mammalian suprachiasmatic nuclei (SCN) generate daily rhythms in physiology and behavior, but it is unclear how they maintain and synchronize these rhythms in vivo. We hypothesized that parallel signaling pathways in the SCN are required to synchronize rhythms in these neurons for coherent output. We recorded firing and clock-gene expression patterns while blocking candidate signaling pathways for at least 8 days. GABA(A) and GABA(B) antagonism increased circadian peak firing rates and rhythm precision of cultured SCN neurons, but G(i/o) did not impair synchrony or rhythmicity. In contrast, inhibiting G(i/o) with pertussis toxin abolished rhythms in most neurons and desynchronized the population, phenocopying the loss of vasoactive intestinal polypeptide (VIP). Daily VIP receptor agonist treatment restored synchrony and rhythmicity to VIP(-/-) SCN cultures during continuous GABA receptor antagonism but not during G(i/o) blockade. Pertussis toxin did not affect circadian cycling of the liver, suggesting that G(i/o) plays a specialized role in maintaining SCN rhythmicity. We conclude that endogenous GABA controls the amplitude of SCN neuronal rhythms by reducing daytime firing, whereas G(i/o) signaling suppresses nighttime firing, and it is necessary for synchrony among SCN neurons. We propose that G(i/o), not GABA activity, converges with VIP signaling to maintain and coordinate rhythms among SCN neurons.  相似文献   

20.
The suprachiasmatic nucleus (SCN), the brain's principal circadian pacemaker, coordinates adaptive daily cycles of behavior and physiology, including the rhythm of sleep and wakefulness. The cellular mechanism sustaining SCN circadian timing is well characterized, but the neurochemical pathways by which SCN neurons coordinate circadian behaviors remain unknown. SCN transplant studies suggest a role for (unidentified) secreted factors, and one potential candidate is the SCN neuropeptide prokineticin 2 (Prok2). Prok2 and its cognate prokineticin receptor 2 (Prokr2/Gpcr73l1) are widely expressed in both the SCN and its neural targets, and Prok2 is light-regulated. Hence, they may contribute to cellular timing within the SCN, entrainment of the clock, and/or they may mediate circadian output. We show that a targeted null mutation of Prokr2 disrupts circadian coordination of the activity cycle and thermoregulation. Specifically, mice lacking Prokr2 lost precision in timing the onset of nocturnal locomotor activity; and under both a light/dark cycle and continuous darkness, there was a pronounced temporal redistribution of activity away from early to late circadian night. Moreover, the coherence of circadian behavior was significantly reduced, and nocturnal body temperature was depressed. Entrainment by light is not, however, dependent on Prokr2, and bioluminescence real-time imaging of organotypical SCN slices showed that the mutant SCN is fully competent as a circadian oscillator. We conclude that Prokr2 is not necessary for SCN cellular timekeeping or entrainment, but it is an essential link for coordination of circadian behavior and physiology by the SCN, especially in defining the onset and maintenance of circadian night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号