首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated the effect of a new bradykinin receptor antagonist, Hoe 140 (D-Arg- Hyp3,Thi5,D-Tic7,Oic8]-bradykinin), on bradykinin- and platelet-activating factor (PAF)-induced bronchoconstriction and airway microvascular leakage in anesthetized guinea pigs. Extravasation of Evans blue dye and lung resistance were measured simultaneously. Both i.v. (15 nmol/kg) and inhaled bradykinin (1 mM, 45 breaths) caused a significant increase in lung resistance and leakage of dye at all airway levels. Hoe 140 (100 nmol/kg i.v.) almost completely inhibited these airway responses induced by bradykinin except for dye extravasation in trachea induced by inhaled bradykinin. Inhaled PAF (3 mM, 30 breaths) significantly increased lung resistance and leakage of due at all airway levels, but Hoe 140 had no effect on these responses. Bradykinin-induced bronchoconstriction and airway microvascular leakage are predominantly mediated by activation of B2 receptor, since Hoe 140 is a B2 receptor antagonist. Bradykinin receptor-mediated mechanisms do not play an important role on inhaled PAF-induced bronchoconstriction and microvascular leakage.  相似文献   

2.
BACKGROUND: U-46619, a thromboxane A(2) (TXA(2)) mimetic, is shown to cause airway microvascular leakage, although the effects is weak when comparing with that to induce bronchoconstriction in guinea pigs. OBJECTIVE: In order to know the airway effect of TXA(2) more accurately, we have examined the effects of STA(2), a TXA(2) mimetic with higher affinity to TXA(2) (TP) receptors than U-46619, to induce airway microvascular leakage and airflow obstruction. METHODS: Anesthetized and ventilated guinea pigs were i.v. given STA(2) (3-30 nmol/kg) or U-46619 (3-100 nmol/kg) 1 min after i.v. Evans blue dye. STA(2)- and U-46619-induced increases in lung resistance (R(L)) was measured for 6 min. The amount of extravasated Evans blue dye in the lower airways was, then, examined as an index of leakage. In selected animals, specific TP receptor antagonists (10 microg/kg S-1452 or 10 mg/kg ONO-3708) were pretreated i.v. RESULTS: Both STA(2) and U-46619 induced significant increases in leakage and airflow obstruction. However, STA(2) induced a slow and significantly less increase in R(L) but caused a significantly greater increase in extravasation of Evans blue dye compared to U-46619. Specific TP receptor antagonists completely abolished both airway effects induced by STA(2) and U-46619. CONCLUSION: Our present results have supported a possibility that TXA(2) induces microvascular leakage as well as bronchoconstriction in the airways.  相似文献   

3.
1. We examined the effect of various pharmacological agents on the acute bronchoconstrictor response and airway microvascular leakage in a model of guinea-pig sensitization to trimellitic anhydride (TMA) a cause of low molecular weight occupational asthma in man. 2. Guinea-pigs were given intradermal injections of 0.1 ml of 0.3% TMA in corn oil; 21-28 days later, anaesthetized guinea-pigs were challenged with TMA conjugated to guinea-pig albumin by tracheal instillation. Changes in lung resistance were measured and airway microvascular leakage was quantified by measuring the extravasation of Evans blue dye into the airway tissue. 3. Sensitized guinea-pig (n = 9 in each group) were pretreated with chlorpheniramine (2.5 mg kg-1, i.v.), WEB 2086 (10 micrograms kg-1, i.v.), BW 4AC (50 mg kg-1, i.p.), nedocromil sodium (2% aerosol for 60 s) or vehicle alone. 4. Pretreatment with chlorpheniramine inhibited both the acute bronchoconstrictor response and the increase in airway microvascular leakage. WEB 2086 and nedocromil sodium partially inhibited the bronchoconstrictor response but had no significant effect on airway microvascular leakage. BW 4AC caused a non-significant reduction of the bronchoconstrictor response and airway microvascular leakage. 5. These results indicate that both the bronchoconstrictor response and the airway microvascular response in this model of sensitization is mediated to a large extent by histamine. PAF but not 5-lipoxygenase products also partially mediates the bronchoconstrictor response but not the airway microvascular leakage. Nedocromil sodium partially inhibits the bronchoconstrictor response only.  相似文献   

4.
1. Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide ligand for a specific G-protein coupled receptor, the N/OFQ peptide receptor (NOP). The N/OFQ-NOP receptor system has been reported to play an important role in pain, anxiety and appetite regulation. In airways, N/OFQ was found to inhibit the release of tachykinins and the bronchoconstriction and cough provoked by capsaicin. 2. Here we evaluated the effects of NOP receptor activation in bronchoconstriction and airway microvascular leakage induced by intraesophageal (i.oe.) hydrochloric acid (HCl) instillation in rabbits. We also tested the effects of NOP receptor activation in SP-induced plasma extravasation and bronchoconstriction. 3. In anesthetized New Zealand rabbits bronchopulmonary function (total lung resistance (R(L)) and dynamic compliance (C(dyn))) and airway microvascular leakage (extravasation of Evans blue dye) were evaluated. 4. Infusion of i.oe. HCl (1 N) led to a significant increase in bronchoconstriction and plasma extravasation in the main bronchi and trachea of rabbits pretreated with propranolol, atropine and phosphoramidon. 5. Bronchoconstriction and airway microvascular leakage were inhibited by N/OFQ (3-30 microg kg(-1) i.v.) in a dose-dependent manner. The NOP receptor agonist [Arg14,Lys15]N/OFQ mimicked the inhibitory effect of N/OFQ, being 10-fold more potent, UFP-101, a peptide selective NOP receptor antagonist, blocked the inhibitory effects of both agonists. 6. Under the same experimental conditions, N/OFQ and [Arg14,Lys15]N/OFQ did not counteract the bronchoconstriction and airway microvascular leakage induced by substance P. 7. These results suggest that bronchoconstriction and airway plasma extravasation induced by i.oe. HCl instillation are inhibited by activation of prejunctional NOP receptors.  相似文献   

5.
Recent in vitro studies have shown that the Rho/Rho kinase pathway is involved in the mechanism of not only airway smooth muscle contraction but also vascular endothelial permeability caused by certain stimuli. This suggests that Rho/Rho kinase inhibitors may become useful agents against asthma via reduction of increased airway microvascular leakage, one of the main features of this disease. Thus, we wanted to know the in vivo effect of Y-27632, a selective Rho kinase inhibitor, on airway microvascular leakage caused by leukotriene D(4) (LTD(4)) and histamine, potent mediators of allergic airway inflammation, by comparing its effect against airflow obstruction. For comparison, the effects of procaterol, a beta(2)-adrenoceptor agonist, on these responses were also studied. Tracheostomized guinea pigs were given either aerosolized Y-27632 (3 or 15 mmol/l), procaterol (6 micromol/l) or vehicle (0.9% NaCl) for 5 min under spontaneous breathing. After being mechanically ventilated, the animals were given intravenous Evans blue dye 15 min after the end of inhalation. One minute later, either 2 nmol/kg LTD(4), 300 nmol/kg histamine or vehicle was administered intravenously. After measurements of lung resistance (R(L)) for 6 min, the lungs of animals were taken out, and the amount of extravasated Evans blue dye was examined as an index of leakage. Inhaled Y-27632 dose-dependently attenuated increases in R(L) caused by LTD(4) and histamine. The degree of inhibition was almost similar between 15 mmol/l Y-27632 and 6 micromol/l procaterol. By contrast, only 15 mmol/l, but not 3 mmol/l, Y-27632 partially reduced LTD(4)-induced leakage. Histamine-induced Evans blue dye extravasation was not inhibited by 15 mmol/l Y-27632. Procaterol significantly inhibited the dye extravasation caused by either LTD(4) or histamine. These results suggest that Y-27632 is not a useful agent in attenuating airway microvascular leakage which is seen in asthma, although it is potent in inhibiting airflow obstruction.  相似文献   

6.
Bradykinin can be inactivated by the peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), both of which are present in the airways. We evaluated the role of these enzymes in bradykinin-induced airway microvascular leakage and lung resistance in anesthetized and mechanically ventilated guinea pigs. We studied the effects of captopril (inhaled; 350 nmol), a specific ACE inhibitor, and phosphoramidon (inhaled; 7.5 nmol), a specific NEP inhibitor. Airway microvascular leakage was measured with the albumin marker Evans Blue dye (20 mg/kg i.v.), and airflow obstruction was measured as lung resistance (RL). Bradykinin was given by inhalation (0.1, 0.3 and 1 mM; 45 breaths), and caused a dose-dependent increase in both RL and airway microvascular leakage. Inhibition of NEP or ACE potentiated the bradykinin-induced microvascular leakage in main bronchi and proximal and distal intrapulmonary airways. However, only NEP inhibition significantly potentiated the extravasation of Evans Blue dye into the tracheal wall and lumen. The combined inhibition of NEP and ACE significantly potentiated plasma leakage at all airway levels, as well as the increase in RL induced by inhaled bradykinin. Recovery RL after one lung inflation significantly correlated with the extravasation of Evans Blue dye in the tissue at all airway levels, indicating that airway edema may have contributed to airway narrowing. We conclude that in the guinea pig, both NEP and ACE modulate bradykinin-induced airway microvascular leakage.  相似文献   

7.
1. Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Our previous results suggest that microvascular leakage induced, in the guinea-pig airways, by intra-oesophageal hydrochloric acid (HCl) infusion was mainly dependent on the release of tachykinins. Nociceptin, an endogenous ligand of the opioid receptor NOP, has been shown to inhibit bronchoconstriction and cough in guinea-pig or cat by inhibiting tachykinin release. 2. The purpose of this study was to investigate the effects of nociceptin on the intra-oesophageal HCl-induced airway microvascular leakage evaluated by Evans blue dye extravasation measurement in anaesthetised guinea-pigs pretreated with propranolol, atropine and phosphoramidon. 3. Infusion of intra-oesophageal HCl led to a significant increase in plasma extravasation in the main bronchi and trachea. This increase was abolished when animals underwent a bilateral vagotomy. 4. Airway microvascular leakage was inhibited by nociceptin (3-30 microg x kg(-1) i.v.) in a dose-dependent manner (maximal inhibition at the dose of 30 microg x kg(-1): 19.76+/-1.13 vs 90.92+/-14.00 ng x mg(-1) tissue for nociceptin and HCl infusion, respectively, in the main bronchi, P<0.01). The NOP receptor agonist [Arg(14),Lys(15)]N/OFQ mimicked the inhibitory effect of nociceptin, but at a 10-fold lower dose (3 microg x kg(-1) i.v). The NOP receptor antagonist J-113397 had no effect on plasma protein extravasation by itself, but was able to block the inhibitory effect of nociceptin. 5. Morphine (1 mg x kg(-1)) had a similar inhibitory effect as that of nociceptin. Naloxone pretreatment abolished the effect of morphine, but was enable to block the inhibitory effect of nociceptin. 6. Under similar conditions, nociceptin, in the previous range of concentration, was unable to counteract the airway microvascular leakage induced by substance P (SP). 7. These results suggest that airway plasma extravasation induced by intra-oesophageal HCl instillation might be inhibited by specific stimulation of the NOP receptor with nociceptin. Nociceptin is likely to act at a pre-junctional level, by inhibiting tachykinin release, since it was unable to prevent SP-induced airway plasma extravasation.  相似文献   

8.
Increased vascular permeability in the trachea, as measured by Evans blue dye leakage, was produced in the anesthetized rat by antidromic stimulation of the right vagus or by exposure to dilute formalin vapors. Corticotropin-releasing factor (CRF) inhibited tracheal protein extravasation at dosages of 6-24 nmol (29-114 micrograms)/kg i.v. injected 10 min before nerve stimulation or formaldehyde exposure. The decrease in respiration rate and blood pressure produced by formaldehyde was also attenuated by CRF.  相似文献   

9.
1. The effects of the beta 2-adrenoceptor agonists, salbutamol and formoterol, on the increase of microvascular permeability induced by histamine or bradykinin in guinea-pig airways have been studied in vivo. Extravasation of intravenously injected Evans blue dye was used as an index of permeability. The effects of salbutamol and formoterol on the increase in pulmonary airway resistance induced by histamine or bradykinin have also been studied. 2. The increase in pulmonary airway resistance induced by histamine or bradykinin was totally inhibited by salbutamol and formoterol. The ED50 of the two mediators were 0.59 +/- 0.21 (n = 5) and 0.20 +/- 0.14 (n = 5) micrograms kg-1 respectively for salbutamol, and 0.13 +/- 0.12 (n = 6) and 0.02 +/- 0.01 (n = 6) micrograms kg-1 respectively for formoterol. 3. Salbutamol (10 and 30 micrograms kg-1) and formoterol (1 and 10 micrograms kg-1) inhibited the increase of microvascular permeability induced by histamine (30 micrograms kg-1) in the guinea-pig airways. The inhibitory effect was predominant in the trachea and the main bronchi, with a maximum inhibition of 20 to 50%. The two drugs had little or no inhibitory effect on the other structures studied, viz. nasal mucosa, larynx, proximal and distal intrapulmonary airways. 4. Salbutamol and formoterol (1 and 10 micrograms kg-1) abolished the increase in microvascular permeability induced by bradykinin (0.3 micrograms kg-1). This inhibitory effect of two beta-adrenoceptor stimulants was predominant in the trachea and the nasal mucosa where it was observed with 1 microgram kg-1 of the beta-adrenoceptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We studied the effects of indomethacin (10 mg/kg i.v.), a cyclooxygenase inhibitor, and OKY-046 (1, 10 and 30 mg/kg i.v.), a selective thromboxane synthetase inhibitor, on airflow obstruction and airway plasma exudation induced by bradykinin (150 nmol) instilled by the airway route to anesthetized guinea pigs. To do this, we studied changes in lung resistance (RL) and extravasation of Evans Blue dye respectively. Instilled bradykinin produced an immediate and marked increase in RL which peaked at approximately 30 s. We also observed a delayed increase in RL, reaching a second peak at approximately 3 min. Bradykinin produced airway plasma exudation at all airway levels, measured as extravasation of Evans Blue dye. Indomethacin significantly inhibited both the immediate and the delayed increase in RL after bradykinin. OKY-046 had a similar significant and dose-dependent inhibitory effect on these responses. In addition, both drugs inhibited bradykinin-induced Evans blue dye extravasation in intrapulmonary airways. Bradykinin instilled by the airway route significantly decreased systemic blood pressure but this effect was not altered in animals pretreated with either indomethacin or OKY-046. We conclude that the bronchoconstrictor response and airway plasma exudation induced by instilled-bradykinin may be mediated in part via thromboxane A2 generation.  相似文献   

11.
We investigated the effects of a novel platelet-activating factor (PAF) receptor antagonist, CIS-19 [cis-2-(3, 4-dimethoxyphenyl)-6-isopropoxy-7-methoxy-1-(N-methylformamido)-1, 2, 3, 4-tetrahydronaphthalene], on PAF-, histamine-, substance P- and antigen-induced bronchoconstriction and microvascular leakage, as well as PAF- and antigen-induced bronchial hyperreactivity to methacholine in urethane-anesthetized guinea-pigs. Administration of CIS-19 (0.5–5 mg/kg, i.v.) inhibited the increase in lung resistance induced by PAF (30 ng/kg, i.v.) in a dose-dependent manner, but failed to inhibit the increase induced by histamine (30 μg/kg, i.v.) or substance P (6.5 μg/kg, i.v.). CIS-19 (5 mg/kg, i.v.) did not inhibit the increase in lung resistance induced by ovalbumin (2 mg/kg, i.v.) in actively sensitized guinea-pigs. PAF (30 ng/kg, i.v.)-induced microvascular leakage, measured by the extravasation of Evans blue dye, was dose-dependently inhibited by CIS-19 (0.5–5 mg/kg, i.v.) in the trachea, main bronchi and intrapulmonary airways, but it did not affect histamine (30 μg/kg, i.v.)- or substance P (6.5 μg/kg, i.v.)-induced microvascular leakage at all airway levels. CIS-19 (2.5 and 5 mg/kg) did not affect ovalbumin (2 mg/kg, i.v.)-induced microvascular leakage in all airway levels in actively sensitized guinea-pigs. CIS-19 (2.5 and 5 mg/kg, i.v.) significantly inhibited PAF-induced enhancement of the bronchial response to methacholine, but had no effect on ovalbumin (0.05 mg/kg, i.v.)-induced bronchial hyperreactivity in actively sensitized guinea-pigs. It is concluded that CIS-19 is a potent PAF receptor antagonist which inhibits PAF- but not antigen-induced bronchoconstriction, microvascular leakage and bronchial hyperreactivity. These results suggest that PAF plays little or no role in early airway responses following antigen challenge. Received: 29 April 1996 / Accepted: 10 October 1996  相似文献   

12.
1. We have investigated the effects of chlorpheniramine, atropine and capsaicin pretreatment on inhaled sodium metabisulphite (MBS)-induced airway microvascular leakage and bronchoconstriction in anaesthetized guinea-pigs in order to clarify the mechanisms involved in these responses. The effects of frusemide and nedocromil sodium were also examined. 2. Lung resistance (RL) was measured for 6 min after inhalation of MBS (20, 40, 80 and 200 mM; 30 breaths), followed by measurement of extravasation of Evans blue dye into airway tissues, used as an index of airway microvascular leakage. MBS caused an increase in RL and leakage of dye at all airway levels in a dose-dependent manner. 3. Chlorpheniramine (10 mg kg-1, i.v.), atropine (1 mg kg-1, i.v.), their combination or inhaled nedocromil sodium (10 mg ml-1, 7 min) had no effect against the airway microvascular leakage induced by 80 mM MBS (30 breaths). Capsaicin pretreatment (50 mg kg-1, s.c.) caused a significant decrease in the leakage of dye in the main bronchi and inhaled frusemide (10 mg ml-1, 7 min) also in the main bronchi and proximal intrapulmonary airway. 4. Chlorpheniramine, atropine, their combination, capsaicin pretreatment and frusemide, but not nedocromil sodium, inhibited significantly the peak RL induced by 80 mM MBS (30 breaths) by approximately 50%. 5. We conclude that a cholinergic reflex and neuropeptides released from sensory nerve endings may participate in the mechanisms of MBS-induced airway responses. Frusemide but not nedocromil sodium may have an inhibitor effect on these neural mechanisms. The inhibitory effect of nedocromil sodium against lower doses of MBS is not excluded.  相似文献   

13.
1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.  相似文献   

14.
1. The triazolodiazepine WEB 2086 has been evaluated as an antagonist of platelet-activating factor (Paf) by studying its effects on Paf-induced human platelet aggregation and microvascular leakage in guinea-pigs. 2. WEB 2086 inhibited Paf-induced platelet aggregation in platelet-rich plasma in vitro (IC50 = 117 +/- 35 nM, mean +/- s.d.) but had no effect on adenosine 3',5'-diphosphate-induced aggregation. 3. Paf-induced microvascular leakage, measured by the extravasation of intravenously-injected Evans blue dye, was inhibited in a dose-related fashion in the airways and other tissues by WEB 2086, achieving a maximal inhibitory effect at 10 micrograms kg-1, i.v. 4. However, WEB 2086 (10 micrograms kg-1, i.v.) did not inhibit a comparable increase in vascular permeability induced by ovalbumin in sensitized guinea-pigs. 5. We conclude that WEB 2086 is a potent antagonist of Paf and that Paf does not appear to be responsible for antigen-induced microvascular leakage.  相似文献   

15.
1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators.  相似文献   

16.
1. Microvascular leakage, a primary feature of inflammation, is well known for worsening the asthmatic condition. Gene expression of and a specific receptor for type-C natriuretic peptide (CNP), initially considered a neuropeptide, have been detected in the human vascular wall and secretion of CNP from vascular endothelial cells has recently been demonstrated. These facts suggest the presence of a vascular natriuretic peptide system and led us to expect that CNP may act beneficially on airway microvascular leakage in asthma. In the present study, we investigated the effects of CNP against leukotriene (LT) D4 -induced airway microvascular leakage and bronchocon-striction and how these effects were potentiated by thiorphan, a potent neutral endopeptidase 3.4.24.11 (NEP) inhibitor. 2. Anaesthetized male guinea-pigs, ventilated via a tracheal cannula, were placed into a plethysmograph for 10 min, in order to measure pulmonary mechanics and mean blood pressure, after challenge with 2 μg/kg LTD4 and then the extravasation of 20 mg/kg Evans blue dye into airway tissue was investigated to indicate and evaluate microvascular leakage. 3. Intravenous administration of CNP (100, 300 and 1000 μg/kg) significantly inhibited the LTD4-induced microvascular leakage and bronchoconstriction in a dose-dependent manner. These inhibitory effects were enhanced by pretreatment with 20 mg/kg thiorphan, suggesting the important role of NEP in the pulmonary metabolism of CNP. 4. We believe that these results are encouraging for the further investigation of the therapeutic applications of exogenous CNP in asthma.  相似文献   

17.
1. The mechanisms behind bradykinin-induced effects in the airways are considered to be largely indirect. The role of cholinergic nerves and eicosanoids, and their relationship in these mechanisms were investigated in guinea-pigs. 2. The role of cholinergic nerves was studied in animals given atropine (1 mg kg-1, i.v.), hexamethonium (2 mg kg-1, i.v.), or vagotomized. To study the role of eicosanoids, animals were pretreated with a thromboxane A2 (TxA2) receptor antagonist (ICI 192,605; 10(-6) mol kg-1, i.v.) or with a leukotriene (LT) receptor C4/D4/E4 antagonist (ICI 198,615; 10(-6) mol kg-1, i.v.). 3. After pretreatment with a drug, bradykinin (150 nmol) was instilled into the tracheal lumen. We measured both airway insufflation pressure (Pi), to assess airway narrowing, and the content of Evans blue dye in airway tissue, to assess plasma exudation. 4. Bradykinin instillation into the trachea caused an increase in Pi and extravasation of Evans blue dye. The increase in Pi was significantly attenuated by atropine or the TxA2 receptor antagonist, but not by hexamethonium, vagotomy or the LT receptor antagonist. 5. The bradykinin-induced exudation of Evans blue dye was significantly attenuated in the intrapulmonary airways by the TxA2 receptor antagonist, but not by atropine, hexamethonium, cervical vagotomy or the LT receptor antagonist. 6. A thromboxane-mimetic U-46619 (20 nmol kg-1, i.v. or 10 nmol intratracheally), caused both an increase in Pi and extravasation of Evans blue dye at all airway levels. Atropine pretreatment slightly attenuated the peak Pi after the intratracheal administration of U-46619, but not after i.v. administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Kinins have been suggested to be involved in human airway diseases such as asthma and rhinitis. MEN16132 is a non-peptide kinin B(2) receptor antagonist able to inhibit the responses produced by intravenous bradykinin into the airways, as bronchoconstriction and microvascular leakage; we tested the effect of MEN16132 on endogenously generated bradykinin through the dextran sulfate-induced contact activation of kinin-kallikrein cascade in guinea-pigs. After dextran sulfate administration (1.5 mg/kg i.v.), the pulmonary insufflation pressure was monitored and the microvascular leakage of upper and lower airways was assessed using Evans blue as tracer of plasma protein extravasation. Our results demonstrated that topical MEN16132 strongly inhibited the dextran sulfate-induced bronchoconstriction (0.3 mM solution aerosol for 5 min) and plasma protein extravasation in both lower airways (3-10 microM solution aerosol for 5 min) and nasal mucosa (0.3 nmol/nostril); Icatibant, the peptide antagonist of kinin B(2) receptor, exerted a 3-30-fold less potent inhibitory effect than MEN16132. We conclude that local application of MEN16132 into the airways abolishes the responses produced by the endogenous generation of bradykinin and it can be useful as new pharmacological tool to check the role of kinins in human diseases.  相似文献   

19.
Acute cerebral ischemia was produced in rats by injection of arachidonic acid (AA) into the internal carotid artery. Evans blue (EB) was intravenously injected and its extravasation into the brain was determined as an indicator of disturbances in the blood-brain barrier and endothelial cells. Control animals showed severe cerebral edema and marked blue staining of the brain. Benidipine (30 micrograms/kg, i.p.) suppressed the increase in cerebral water content and the extravasation of EB. Similarly nicardipine (100 micrograms/kg, i.p.) suppressed the elevation of water content and the extravasation of EB. Furthermore, both benidipine (30 micrograms/kg, i.p.) and nicardipine (100 micrograms/kg, i.p.) improved the neuronal injuries following AA-injection. An antiplatelet agent, ticlopidine (100 mg/kg, i.p.), and a thromboxane A2 synthetase inhibitor, OKY-1581 (3 mg/kg, i.p.), also suppressed the elevation of cerebral water content. A lipoxygenase inhibitor, AA-561 (200 mg/kg, p.o.), and a cyclooxygenase inhibitor, indomethacin (10 mg/kg, i.p.), did not prevent the increase in cerebral water content. Neither benidipine (3-30 micrograms/kg, i.v.) nor nicardipine (100 micrograms/kg, i.v.) inhibited the AgNO3-induced thrombus formation of the abdominal aorta, whereas ticlopidine (100 mg/kg, p.o.) and OKY-1581 (3 mg/kg, i.v.) prevented the thrombus formation. From the present results, it is suggested that benidipine, as well as nicardipine, may protect against AA-induced acute cerebral infarction via a mechanism independent of antithrombotic action.  相似文献   

20.
The paws of pentobarbital-anesthetized rats were immersed in 48 or 58 degree C water for 5 min and the thermal inflammatory response to heat was measured by Evans blue dye leakage into the pawskin. Sauvagine, sucker fish urotensin I and human/rat corticotropin-releasing factor (CRF), homologous peptides belonging to the corticoliberin superfamily, injected i.v. 10 min before heat exposure, inhibited dye leakage with ED50 (nmol/kg) of 0.44, 1.5 and 5.9, respectively. The same rank order of potency was observed when the peptides were tested against the protein extravasation evoked by antidromic stimulation of the rat saphenous nerve. The alpha-helical CRF-(-9-41) antagonist, administered alone at 24 nmol/kg i.v., did not affect the heat-induced dye leakage into skin; but it attenuated the effects of h/rCRF, urotensin I and sauvagine. h/r[Tyr0]CRF, ovine[Nle21,Tyr32]CRF and h/r[Met(O)21,38]CRF, administered 24 nmol/kg i.v., did not affect the dye leakage response to heat. Peptides of the corticoliberin superfamily may have the unusual property of making small blood vessels less permeable when responding to injurious stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号