首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: The percentage of satellite cells rapidly decreases in aneurally regenerating soleus muscles of rat. Also denervation of intact muscles causes fiber loss and regeneration, but the fate of satellite cells is unknown; myonuclei have been suggested to undergo changes resembling those in apoptotic cells. Methods: Rat soleus and extensor digitorum longus (EDL) muscles were denervated at birth or at age 5 weeks and investigated after periods of up to 38 weeks. At least 400 myonuclei in each muscle were assessed by electron microscopy, and satellite cell nuclei were counted. In sity nick translation and tailing were performed after 30 weeks denervation in order to demonstrate DNA breaks associated with apoptosis. Results: Myotubes indicating regeneration were prominent in the adult denervated soleus and deep layers of EDL muscles after 7 weeks and in the superficial parts of EDL muscle after 16 weeks. The percentage of satellite cell nuclei slowly decreased to less than one fifth of normal after 20–30 weeks. Almost all satellite cells had vanished 10 weeks after neonatal denervation. Degenerating myonuclei in adult, but not in neonatally denervated muscles, remotely resembled apoptotic nuclei of lymphocytes, but no evidence of DNA breaks was found. Conclusion: Denervation of rat skeletal muscles causes, in addition to fiber atrophy, loss of fibers with subsequent regeneration. Proliferation of satellite cells under aneural conditions may lead to exhaustion of the satellite cell pool. This process is more rapid in growing than in adult muscles. Myonuclei in denervated muscles do not show DNA breaks which can be demonstrated by in situ nick translation. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Various metabolic, histochemical, and contractile measurements were made on soleus and gastrocnemius muscles of adult rats treated with triamcinolone acetonide (1 mg . kg-1 . day-1 for 6 wk), and compared to similar measurements in pair-fed and control animals. Contractile measurements were performed in situ under pentobarbital anesthesia. Gastrocnemius muscles from steroid-treated rats showed higher twitch and tetanic tensions when expressed in grams/gram of muscle, compared to control rats. Similar, although less marked, trends occurred in the less atrophied gastrocnemius muscles from pair-fed rats. Soleus muscles from steroid-treated rats exhibited significantly higher (139% of control) twitch tension (grams/gram of muscle), and elevated twitch/tetanus ratios, compared to control and pair-fed groups. No alterations occurred in muscle contractile speed in either muscle. The greater atrophy of fast compared to slow fiber types in gastrocnemius muscles under both experimental conditions did not occur in the soleus, a predominantly slow-twitch muscle. The atrophic and contractile responses of fast and slow muscles to these two conditions were quantitatively as well as qualitatively different.  相似文献   

3.
Kangaroo rats (Dipodomys spp.) use specialized bipedal hopping like that of kangaroos. In contrast to kangaroos that have elastic tendons capable of storing energy, kangaroo rats have inelastic tendons that are unable to store large amounts of energy. Thus, the musculature of the ankle joint provides the greatest power contribution to kangaroo rat hopping. Skeletal muscle can be characterized by several fiber types, including slow twitch (Type I) and fast twitch (Type II) fibers. Fast fibers are found in higher concentration in muscles that perform quick, dynamic movements, whereas slow fibers are found in higher proportion in muscles that perform slow, endurant movements. Using fiber type specific antibodies, we identified four pure (Types I, IIA, IIB, and IIX) and two hybrid (Types I/IIA and IIA/IIX) fiber types in six hindlimb muscles from three kangaroo rats (Dipodomys merriami) to investigate the relationship between fiber composition and hindlimb muscle function. Hindlimb muscles (except soleus) were dominated by Type IIB fibers, which were largest in cross-sectional area, and are known to be best suited for rapid and explosive movements. Oxidative Type IIA and Type IIX fibers were found at moderate concentrations and likely function in maintaining continual saltatory locomotion. Thus, kangaroo rats can use these two fiber type populations as “gears” for both endurant and explosive behaviors.  相似文献   

4.
This study tested the specific and combined effects of testosterone treatment and hindlimb suspension (HS) on the properties of steroid receptors in skeletal muscle. Male rats were either administered weekly high doses of testosterone heptylate (10?mg?·?kg?1) or olive oil placebo, and were either tail-suspended or acted as controls. After 3 weeks of treatment, three muscles were excised from each animal, soleus (SOL), extensor digitorum longus (EDL), and plantaris. The results showed that the testosterone treatment was unable to minimise the HS-induced atrophy of skeletal muscle. As expected, HS altered the fibre-type composition of SOL muscles (?33% of type I, +188% and +161% of type IIa and intermediate fibres respectively, P?P?相似文献   

5.
Hypoxia-induced fibre type transformation in rat hindlimb muscles   总被引:1,自引:0,他引:1  
Summary Twelve male Sprague-Dawley rats (21 days old) were randomly assigned into two experimental groups: sea level control (CONT) and hypobaric hypoxia (HYPO). The HYPO rats were kept in an hypobaric chamber maintaining a simulated altitude of 4000 m (61.1 kPa). After 10 weeks of treatment, the rat hindlimb muscles [soleus (SOL) and extensor digitorum longus (EDL)] were subjected to histochemical and electro-mechanical analyses. Results indicated that compared to CONT the HYPO SOL muscle had a significantly greater relative distribution of fast-twitch-oxidative-glycolytic (FOG) fibres (28.9% SEM 2.0 vs 18.3% SEM 1.8,P<0.01) with a significant decrease in slow twitch oxidative fibre distribution (69.5% SEM 2.4 vs 82.9% SEM 3.1,P<0.01). Compared to CONT the HYPO EDL muscle also manifested a significant increase in FOG fibre distribution (51.6% SEM 0.8 vs 46.6% SEM 1.1,P<0.01), but this was accompanied by a significant decrease in fast twitch glucolytic fibres (44.3% SEM 0.9 vs 49.2% SEM 1.7,P<0.05). These histochemical fibre type transformations accompanied significant and expected changes in the electro-mechanical parameters tested in situ, e.g. maximal twitch force, maximal rate of force development, contraction time, half relaxation time, force:frequency curve, and fatigability. It was concluded that chronic hypobaric hypoxia could have a potent influence upon the phenotype expression of muscle fibres.  相似文献   

6.
The effect of a mild weight-lifting program on the progress of glucocorticoid-induced atrophy was investigated. Groups of rats were either injected daily for 6 weeks with triamcinolone acetonide, 1 mg/kg (group S), subjected to a weight-lifting program 4 times per week (group T), or subjected to the injection and weight-lifting programs concurrently (group ST). The traningng program, besides decreasing the normal body weight gain of control (group C) rats, had no effects on gastrocnemius and soleus muscles. In group ST, the extent of gastrocnemius atrophy was less severe than in group S, and the mean areas of all fiber types were greater in similar proportion. Gastrocnemius muscles were also tetanically stronger (g, g/g body weight) in group ST than group S. The soleus muscles of groups ST and S were similar in all indices of size and strength, except for a significantly decreased fast-twitsch-oxidative-glycolytic (FOG) mean fiber area in the ST seleus muscles. The extent of fast-twitsch muscle atrophy resulting from chronic glucocorticoid treatment can be lessened by mild weight-lifting exercise. Differences in fiber area responses between soleus and gastrocnemius may reflect recruitment and/or metabolic differences of similar fiber types in the two muscles.  相似文献   

7.
Five muscles of the rat's lower hindlimb were compared with regard to their histochemical fibre type distribution at seven different proximo-distal levels. The muscles were: extensor digitorum longus (ED), flexor digitorum and hallucis longus (FD), gastrocnemius medialis (GM), peroneus longus (PE) and tibialis anterior (TA). In all the five muscles, the relative density of the slow type I fibres showed a striking and similar decrease from proximal toward more distal levels. In addition, the type I fibres were concentrated within smaller and more eccentrically placed regions at distal than at more proximal levels. As a background for the further analysis of these lengthwise aspects of type I fibre regionalization, architectural features of the muscles were determined. Pinnation angles and the position of major tendons and tendon sheets were assessed in fresh specimens. Muscle fibre lengths were measured for single fibres dissected from different regions of macerated muscles. In all cases, fibre length was much shorter than muscle length (mean fraction ranging from 21 to 55%), implying that the proximo-distal changes in histochemical fibre properties were indeed explainable as being due to gradual lengthwise changes in fibre type populations. The similarity of these lengthwise changes across the muscles was in contrast to their differences in other aspects of functional organization, such as the average density of type I fibres and architectural features determining their relative capacities for shortening and force generation. The possible functional role of the proximal accumulation of type I fibres was discussed in relation to circulation and thermal balance; besides, the proximo-distal regionalization of type I fibres might (partly) reflect processes that had been associated with early stages of muscle differentiation. Furthermore, the results underline that, when determining the fibre type composition of rat hindlimb muscles, identifying the proximo-distal level of sampling is a matter of great importance.  相似文献   

8.
9.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusi-motor (γ) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the γ axons coin-nervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of efferents that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem γ efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hind-limb muscle in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag2 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrently. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static γ axons, and a higher incidence of skeletofusimotor (β) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

10.
We studied the effects of different protocols of post-disuse rehabilitation on angiogenesis and myosin heavy chain (MHC) content in rat hindlimb muscles after caudal suspension. Thirty female Wistar rats were divided into five groups: (1) Control I, (2) Control II, (3) Suspended, (4) Suspended trained on declined treadmill, and (5) Suspended trained on flat treadmill. Fragments of the soleus and tibialis anterior (TA) muscles were frozen and processed by electrophoresis and immunohistochemistry (CD31 antibody). Hindlimb suspension caused reduction of capillary/fiber (C/F) ratios and contents of MHC type I (MHCI) in the soleus in parallel to increased capillary density. Flat treadmill protocols increased the content of the MHCI isoform. The C/F ratio was increased by concentric training after hypokinesis, but was not modified by eccentric training, which caused a greater reduction of capillary density compared to the other protocols. In the TA muscle, hindlimb suspension caused a non-significant increase in capillary density and C/F ratio with limited changes in MHC. The present data demonstrate that the different training protocols adopted and the functional performance of the muscles analyzed caused specific changes in capillarization and in the content of the various MHC types.  相似文献   

11.
The relationships between ultrastructural and metabolic profiles in different types of single muscle fiber after hindlimb suspension in rats were examined. Glycolytic (lactate dehydrogenase, LDH; phosphofructokinase, PFK) and oxidative (succinate dehydrogenase, SDH; malate dehydrogenase, MDH) enzyme activities in extensor digitorum longus (EDL) and soleus (SOL) muscles were measured. Relative mitochondrial and lipid droplet volumes were also measured in single muscle fiber of different types. Glycolytic enzyme activity in EDL muscle and oxidative enzyme activity in soleus muscle decreased following suspension for 2 weeks. LDH and PFK activities in fast-twitch (FG, fast-twitch glycolytic; FOG, fast-twitch oxidative glycolytic) fibers and oxidative enzymes in FOG and FG fibers decreased following suspension. Relative mitochondrial volume decreased significantly in all types (SO, slow-twitch oxidative; FOG, and FG) of fibers following suspension. The mitochondrial volume in SO fiber of the control group was significantly (p less than 0.01) higher than that of suspended group; however, SDH and MDH activities were not different between the control and suspended groups. The structural and metabolic changes following hindlimb suspension were influenced by different factors, respectively. Changes in ultrastructural and metabolic profiles in response to the hindlimb suspension differed according to the type of fibers.  相似文献   

12.
AIM: Hindlimb immobilization produces similar percentage decreases in muscle mass in the predominantly type I soleus and type II vastus lateralis muscles. Consequently we hypothesized that the percentage changes in potential regulatory molecules for atrophy would be similar in the two muscle fibre types. METHODS: Therefore, the purpose of the current study was to measure phosphorylated p38 MAPK and JNK, as well as the protein levels of p53, growth arrest and DNA damage-inducible 45 (GADD45), and full-length poly(ADP-ribose) polymerase (PARP) to determine whether their changes in expression in the soleus and vastus lateralis muscles were similar at 10th day of hindlimb immobilization in young rats. RESULTS: Unexpectedly, preferential increases in phosphorylation of p38 MAPK and JNK and in the protein levels of p53, GADD45, as well as decreases in full-length PARP occurred in the soleus muscle, while only p38 phosphorylation increased in the white portion of the vastus lateralis muscle at 10th day of hindlimb immobilization. CONCLUSION: Taken together, these results are interpreted to suggest that some of regulatory processes or kinetics in the atrophy of type I and II muscle fibres during limb immobilization may differ at the 10th day of limb immobilization.  相似文献   

13.
The purpose of the study was to examine the pattern of electromyographic (EMG) activity of the rat soleus (SOL) and tibialis anterior (TA) muscles during treadmill locomotion at various speeds after 7 days of hindlimb unloading (HU). Raw EMG signals were processed to determine cycle duration, burst duration and mean EMG (burst surface divided by its duration). Cycle duration and SOL burst duration increased after HU (+7% and +5%, respectively) while TA burst duration decreased (?16%). After HU, the alternating pattern of activity between extensor and flexor muscles was maintained. Nevertheless, a co-activation of the two muscles was sometimes observed. The EMG pattern revealed no difference in the timing of the coordination between flexor and extensor muscles after HU. The delay between TA offset and SOL onset was increased (+12 ms), but this increase could be explained by the decrease in TA burst duration. Neither TA burst duration nor TA mean EMG were changed with increased treadmill speed, so that the flexor muscle activity was not related to speed of locomotion. These results would suggest that SOL activity is centrally programmed. Moreover, it is proposed that a decline in afferent feedback from SOL in rats which are suspended has an effect upon the locomotor pattern, leading to an hyperexcitability of SOL motoneurons and, via reciprocal inhibition, to a reduction in TA activity.  相似文献   

14.
The sciatic nerve was crushed in the right hindlimb in newborn (3-8 h old) rats. Two to four months later, electromyographic activity was recorded from both the control and reinnervated ankle extensor muscles soleus or lateral gastrocnemius and from the ankle flexor muscle tibialis anterior. Tonic postural activity was present in the extensor muscles on both sides during quiet stance. The control flexor muscles were usually silent in this situation, but the reinnervated flexors exhibited abnormal sustained activity. During locomotion, the control extensors were activated during the stance phase and their mean burst made up 61.5% of the step cycle. The control tibialis anterior muscle fired only during the swing phase, with the burst lasting 18.1% of the step cycle. In the reinnervated extensor muscles, the mean burst duration was decreased (46% of the cycle) but the basic locomotor pattern was not impaired. The reinnervated tibialis muscle, however, was activated abnormally, with one appropriate flexor burst during the swing phase and an "extensor-like" burst during the stance phase of the step. Reflex responses to stretch were weak or absent on the operated side. Histological examination showed that the reinnervated soleus and tibialis muscles were almost devoid of muscle spindles. The motor unit mean firing rates in the reinnervated soleus (22 imp/s) and lateral gastrocnemius (45 imp/s) matched those of the control muscles (25 and 42 imp/s, respectively). In contrast to the phasic, high-frequency firing (52-80 imp/s) in the control tibialis, the reinnervated tibialis motor units fired at significantly lower rates (22-56 imp/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Findings that increased neuromuscular activity significantly reduced sprouting in partially denervated muscles prompted this present study to determine if the converse is true, namely that reduced activity promotes sprouting and motor unit (MU) enlargement. Partial denervation of rat hindlimb muscles by either the L4 or L5 spinal root avulsion resulted in extensive denervation (> 80%) in tibialis anterior (TA) and medial gastrocnemius (MG) muscles, and moderate denervation (∼50%) in soleus (SOL) and plantaris (PL) muscles. The partially denervated muscles were then subjected to a 4 week programme of normal caged activity or TTX-induced neuromuscular inactivity. At 1 month, measurement of MU enlargement and quantification of sprouting were evaluated, respectively, by electrophysiological and histochemical means. Analysis of electrophysiological data showed that MU forces were significantly increased in both extensively and moderately denervated muscles 1 month after partial denervation and normal cage activity and that neuromuscular activity blockade by TTX completely abolished the MU enlargement in these partially denervated muscles. Histochemical analysis of sprouting revealed that the number of sprouts was significantly increased after partial denervation and normal cage activity, particularly after extensive denervation. TTX-induced neuromuscular inactivity dramatically reduced the number of sprouts and increased the number of free endplates in the extensively but not the moderately denervated muscles. These data demonstrate that a reduction in neuromuscular activity mediated by presynaptic blockade of neural action potentials reduces MU enlargement in partially denervated muscles by reducing axonal sprouting.  相似文献   

16.
Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flown rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The purpose of this study was to investigate the effects of hindlimb suspension (HS) on contractile properties of skeletal muscles of young and old rats and to determine the impact of electrical stimulation (ES) on the quality and degree of recovery of these muscles. After 21 days of HS, young soleus (SOL) muscle became faster, but there was no impact on young extensor digitorum longus (EDL) muscle. Twitch tension (Pt) decreased 61% in young and 70% in old SOL muscles. Specific tetanic tension (Po) decreased 53% in young and 64% in old SOL muscles, but again there was no impact on EDL muscle. After a 14-day period of recovery, contraction time (CT), half-relaxation time (RT1/2), Pt and Po returned to control group values in both young and old SOL muscles. Measurements of the contractile properties of young and old skeletal rat muscles showed ES sometimes to be beneficial but also sometimes to be harmful. A 14-day period of recovery, with or without ES, seemed sufficient for many variables to return to control group values.  相似文献   

18.
19.
While it is well know that the percentage of stellite cells in relation to myonuclei rapidly decreases in aneurally regenerating adult muscle, the fate of satellite cells in neonatally denervated muscles has received little attention so far. In the present study, rat tibialis anterior muscles were denervated at birth and analysed after 5, 7 and 10 weeks. At least 400 myonuclei in each muscle were assessed by electron microscopy and the percentage of satellite cell nuclei in relation to the number of myonuclei was calculated. The results indicated that the percentage of satellite cells steeply declines after neonatal denervation and, after 10 weeks, satellite cells were practically lacking in the muscles under analysis. This process of exhaustion of the satellite cell pool appears to be more rapid in developing than in adult muscles.  相似文献   

20.
Skeletal muscle can release or take up lactate depending on the lactate concentration gradient across the cell membrane. In the perfused rat hindlimb without arterial lactate, both noradrenaline (NA) infusion and increased flow promote lactate release and oxygen consumption (VO 2). However, it is unclear whether NA or increased flow rate have similar effects on lactate uptake. The present study compares these effects in the rat hindlimb perfused at a basal flow rate of 0.33 mL min?1 g?1 and 25 °C in the presence of added arterial lactate. When 10 mmol L?1 L-(+)-lactate was added to the arterial perfusate, lactate was taken up (16 ± 1.0 μmol g?1 h?1, n = 13) by the hindlimb with a 35% higher VO 2 than that without added lactate. Doubling perfusion flow rate enhanced lactate uptake and VO 2 by 120% and 40%, respectively. Glucose uptake was also increased (by 253%) with increased flow. Infusion of NA increased perfusion pressure, VO 2 and glucose uptake similarly to those induced by increased flow rate. However, lactate uptake was inhibited by NA. This inhibition was not altered by the β-adrenergic antagonist propranolol. Vasopressin also showed similar effects to NA to decrease lactate uptake associated with increased VO 2 and vasoconstriction. These data indicate that in the presence of a high arterial lactate concentration, NA has opposite effects from increased flow rate on skeletal muscle lactate uptake although both have similar effects on lactate release in the absence of arterial lactate. Inhibition of lactate uptake may relate to the vasoconstrictive action of NA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号