首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mediterranean myoclonus is a progressive myoclonus epilepsy with autosomal recessive inheritance. Anothe form has been described in Finland, the so-called Baltic myoclonus. Mediterranean myoclonus and Baltic myoclonus are also known as Unverricht-Lundborg disease. Linkage analyses have shown that the genes for both these forms of myoclonus are closely linked to 21q22.3 DNA markers, suggesting that they are caused by mutations at the same locus (EPM1). Recently, two heterozygous mutations were found in the cystatin B gene in patients with Unverricht-Lundborg disease. We report recombinational and linkage disequilibrium mapping of EPM1, and cystatin B gene sequencing, in 14 consanguineous pedigrees with Mediterranean myoclonus. Linkage to 21q22.3 DNA markers was observed in all these families. Haplotype analysis suggests that a common mutation segregates within these pedigrees, and that this mutation is different from the common one responsible for the Finnish form of Unverricht-Lundborg disease. No mutation was found in the exons or splice junctions of the cystatin B gene in the 14 pedigrees.  相似文献   

2.
Unverricht‐Lundborg disease or progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disease caused by mutation of the cystatin B gene (CSTB), located on chromosome 21q22.3. The most common mutation is an expansion of unstable dodecamer repetition (CCCCGCCCCGCG), whereas other types of mutations are rare. Among these, heterozygous compound mutations are described to induce a more severe phenotype than that of homozygous dodecameric repetition. We report two siblings affected by heterozygous compound mutations carrying a novel mutation of the deletion of three nucleotides in exon 2 of the gene in position 132–134 of the coding sequence (c.132‐134del) in the allele not including the dodecamer repetition. This mutation results in the loss of two amino acid residues and insertion of an asparagine in position 44 (p.Lys44_Ser45delinsAsn). Our patients presented a very different clinical picture. The male patient had a severe myoclonus, drug‐resistant epilepsy and psychiatric comorbidity, while his affected sister had only very rare seizures and sporadic myoclonic jerks at awakening. The revision of literature about heterozygous compound EPM1 patients confirms this gender phenotypic expressivity, with female patients carrying less severe symptoms than male patients. These data lead to the hypothesis of complex gender‐specific factors interacting with CSTB expressivity in EPM1 patients.  相似文献   

3.
Summary:  Purpose: To evaluate the levels of tryptophan and its metabolites along serotonin (5-HT) and kynurenine (KYN) pathways in serum of progressive myoclonus epilepsy (EPM1) patients and cystatin B (CSTB)-deficient mice, a model system for EPM1.
Methods: Tryptophan and its metabolites along serotonin (5-HT) and KYN pathways were determined in serum of EPM1 patients and CSTB-deficient mice by reverse-phase high-pressure liquid chromatography (HPLC) with electrochemical detection.
Results: Reduced levels of 5-HT and KYN intermediate metabolite 3-hydroxyanthranilic acid were found in serum of CSTB-deficient mice. A similar trend was found in EPM1 patients. Although tryptophan concentration was reduced in serum of EPM1 patients, no such decrease was observed in CSTB-deficient mice.
Conclusions: The present study demonstrates that tryptophan metabolism along 5-HT and KYN pathways are disrupted in EPM1. Further studies are needed to elucidate the role of KYN pathway in pathogenesis of EPM1.  相似文献   

4.
5.
Unverricht-Lundborg disease (EPM1) is an autosomal recessively inherited neurodegenerative disorder and the most common single cause of progressive myoclonus epilepsy worldwide. Mutations in the gene encoding cystatin B (CSTB), a cysteine protease inhibitor, are responsible for the primary defect underlying EPM1. Here, progress toward understanding the molecular mechanisms in EPM1 is reviewed. We summarize the current knowledge about the CSTB gene and mutations as well as the cellular biology of the CSTB protein with emphasis on data emerging from analysis of EPM1 patients. We shed light on the disease mechanisms of EPM1 based on characterization of the CSTB-deficient mouse model.  相似文献   

6.
Vaarmann A  Kaasik A  Zharkovsky A 《Epilepsia》2006,47(10):1650-1654
PURPOSE: Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is a rare neurologic disorder, associated with mutations in the Cystatin B (Cstb) gene. Mice lacking Cstb, a cysteine protease inhibitor of the cathepsine family of proteases, provide a mammalian model for EPM1 by displaying similarly progressive ataxia, myoclonic seizures, and neurodegeneration. However, the linkage of Cstb deficit on the molecular level to pathologic features like myoclonic jerks or tonic-clonic seizures has remained unclear. We examined the tryptophan (TRP) metabolism, along the serotonin (5HT) and kynurenine (KYN) pathway in the brain of Cstb-deficient mice, in relation to their possible involvement in the seizure phenotype. METHODS: TRP and its metabolites, along the 5HT and KYN pathways, were assayed in brain tissue by high-pressure liquid chromatography (HPLC) with electrochemical detection. The inverted wire grid and mild handling tests were used for evaluation of ataxia and myoclonic activity. RESULTS: The Cstb-deficient mice had constitutively increased TRP, 5HT, and 5-hydroxyindole acetic acid (5HIAA) levels in the cerebral cortex and cerebellum and increased levels of KYN in the cerebellum. These neurochemical changes were accompanied with ataxia and an apparent myoclonic phenotype among the Cstb-deficient mice. CONCLUSIONS: Our findings suggest that secondary processes (i.e., overstimulation of serotoninergic transmission) on the cellular level, initiated by Cstb deficiency in specific brain regions, may be responsible for the myoclonic/seizure phenotype in EPM1.  相似文献   

7.
Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is a recessively inherited neurodegenerative disease caused by loss-of-function mutations in the gene encoding cystatin B, a cysteine protease inhibitor. Mice with disruptions in this gene display myoclonic seizures, progressive ataxia, and cerebellar pathology closely paralleling EPMI in humans. To provide further insight into our understanding of EPM1, we report pathological findings in brains from cystatin B-deficient mice. In addition to confirming the loss of cerebellar granular cell neurons by apoptosis, we identified additional neuronal apoptosis in young mutant mice (3-4 months old) within the hippocampal formation and entorhinal cortex. In older mutant mice (16-18 months old), there was also gliosis most marked in the presubiculum and parasubiculum of the hippocampal formation, as well as the entorhinal cortex, neocortex, and striatum. Furthermore, widespread white matter gliosis was also noted, which may be a secondary phenomenon. Within the cerebral cortex, cellular atrophy was a prominent finding in the superficial neurons of the prosubiculum. Finally, we show that mutant mice in either a "seizure-prone" or "seizure-resistant" genetic background display similar neuropathological changes. These findings indicate that neuronal atrophy is an important consequence of cystatin-B deficiency independent of seizure events, suggesting a physiological role for this protein in the maintenance of normal neuronal structure.  相似文献   

8.
Unverricht–Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death.  相似文献   

9.
The biogenic amine histamine is an important neurotransmitter in the central nervous system that has been implicated in learning and memory processes. Experimental evidence indicates that the role of the cerebellum may be more complex than the simple regulation of motor responses, and recent studies have demonstrated significant involvement of the cerebellum in emotional memory consolidation. This study investigated the effect of histamine microinjected into the cerebellar vermis on emotional memory consolidation in mice in the elevated plus-maze (EPM). The cerebellar vermis of male mice (Swiss Albino) were implanted with guide cannulae. The mice weighed between 25 and 30 g. After three days of recovery, behavioral tests in the EPM were performed on two consecutive days; the testing periods were called, Trial 1 and Trial 2. Immediately after Trial 1, the animals received microinjections of histamine in the cerebellar vermis (0.54, 1.36, 2.72, and 4.07 nmol/0.1 μl). On both days, the test sessions were recorded to enable analysis of behavioral measures. The decrease in open arm exploration (% entries and % time spent in the open arms) in Trial 2 relative to Trial 1 was used as a measure of learning and memory. The data were analyzed using One-way Analysis of Variance (ANOVA) and Duncan's tests. The percentage of open arm entries (%OAE) and the percentage of time spent in the open arms (%OAT) were reduced in Trial 2 relative to Trial 1 for the control group; the same was true for the group that was microinjected with histamine at doses of 0.54 (%OAE and %OAT) and 1.36 nmol (%OAT). However, when the animals received histamine at doses of 2.72 and 4.07 nmol, their open arm exploration did not decrease. No significant changes were observed in the number of enclosed arm entries (EAE), an EPM index of general exploratory activity. These results suggest that there is a dose-dependent inhibitory effect of histamine microinjected into the cerebellar vermis on emotional memory consolidation.  相似文献   

10.
11.
Neurosteroids play an important role in the development of the cerebellum. In particular, estradiol and progesterone appear capable of inducing increases in dendritic spine density during development, and there is evidence that both are synthesized de novo in the cerebellum during critical developmental periods. In normal neonates and adults, there are few differences in the cerebellum between the sexes and most studies indicate that hormone and receptor levels also do not differ significantly during development. However, the sexes do differ significantly in risk of neuropsychological diseases associated with cerebellar pathology, and in animal models there are noticeable sex differences in the response to insult and genetic mutation. In both humans and animals, males tend to fare worse. Boys are more at risk for autism and Attention Deficit Hyperactivity Disorder than girls, and schizophrenia manifests at an earlier age in men. In rats males fare worse than females after perinatal exposure to polychlorinated biphenyls, and male mice heterozygous for the staggerer and reeler mutation show a more severe phenotype. Although very recent evidence suggests that differences in neurosteroid levels between the sexes in diseased animals may play a role in generating different disease phenotypes, the reason this hormonal difference occurs in diseased but not normal animals is currently unknown.  相似文献   

12.
Lafora disease (LD) can be diagnosed by skin biopsy, but this approach has both false negatives and false positives. Biopsies of other organs can also be diagnostic but are more invasive. Genetic diagnosis is also possible but can be inconclusive, for example, in patients with only one heterozygous EPM2A mutation and patients with apparently homozygous EPM2B mutations where one parent is not a carrier of the mutation. We sought to identify occult mutations and clarify the genotypes and confirm the diagnosis of LD in patients with apparent nonrecessive disease inheritance. We used single nucleotide polymorphism, quantitative PCR, and fluorescent in situ hybridization analyses. We identified large EPM2A and EPM2B deletions undetectable by PCR in the heterozygous state and describe simple methods for their routine detection. We report a coding sequence change in several patients and describe why the pathogenic role of this change remains unclear. We confirm that adult-onset LD is due to EPM2B mutations. Finally, we report major intrafamilial heterogeneity in age at onset in LD.  相似文献   

13.
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal‐recessively inherited neurodegenerative disorder characterized by severely incapacitating myoclonus, seizures, and ataxia, and caused by loss‐of‐function mutations in the cystatin B gene (CSTB). A central neuropathological finding in the Cstb?/? mouse, an animal model for EPM1, is early microglial activation, which precedes astroglial activation, neuronal loss, and onset of myoclonus, thus implying a critical role for microglia in EPM1 pathogenesis. Here, we characterized phenotypic and functional properties of microglia from Cstb?/? mice utilizing brain tissue, microglia directly isolated from the brain, and primary microglial cultures. Our results show significantly higher Cstb mRNA expression in microglia than in neurons and astrocytes. In Cstb?/? mouse brain, expression of the inflammatory marker p‐p38 MAPK and the proportion of both pro‐inflammatory M1 and anti‐inflammatory M2 microglia is higher than in control mice. Moreover, M1/M2 polarization of microglia in presymptomatic Cstb?/? mice is, compared to control mice, skewed towards M2 type at postnatal day 14 (P14), but towards M1 type at P30, a time point associated with onset of myoclonus. At this age, the high expression of both pro‐inflammatory inducible nitric oxide synthase (iNOS) and anti‐inflammatory arginase 1 (ARG1) in Cstb?/? mouse cortex is accompanied by the presence of peripheral immune cells. Consistently, activated Cstb?/? microglia show elevated chemokine release and chemotaxis. However, their MHCII surface expression is suppressed. Taken together, our results link CSTB deficiency to neuroinflammation with early activation and dysfunction of microglia and will open new avenues for therapeutic interventions for EPM1. GLIA 2015;63:400–411  相似文献   

14.
Tottering mice are a spontaneously occurring animal model of human absence epilepsy. They carry a mutation in the P/Q-type calcium channel alpha1A subunit gene which is highly expressed by cerebellar Purkinje cells. In this study, we investigated the role of calretinin and ryanodine receptor type 1 (RyR1) gene expression in the cerebellum of tottering mice. Cerebellar tissue specimens from four experimental groups were processed for in situ hybridization histochemistry (ISHH): (1) wild-type (+/+); (2) heterozygous (tg/+) and two homozygous groups; either (3) without occurrence of an episode of paroxysmal dyskinesia (tg/tg-N); or (4) after an episode of paroxysmal dyskinesia (tg/tg-P) that lasted about 45 min on average. Quantitative analysis showed a statistically significant decrease (p = 0.0001, ANOVA) of calretinin gene expression at the level of the simple lobule of the cerebellum in both homozygous groups compared to the wild-type and heterozygous groups. RyR1 was decreased in the flocculus of the cerebellum in both the tg/tg-N and tg/tg-P groups compared to wild type (p = 0.0174, ANOVA). These results suggest that calretinin gene expression, as well as other genes involved in regulation of calcium homeostasis, such as RyR1, may play a role in the biochemical functional alterations present in tottering mice.  相似文献   

15.
The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.  相似文献   

16.
Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A gene encoding laforin or in the EPM2B gene encoding malin. It is characterized by the presence of polyglucosan intracellular inclusion bodies (Lafora bodies) in brain and other tissues. Targeted disruption of Epm2a or Epm2b genes in mice produced widespread neuronal degeneration and accumulation of Lafora bodies in neuronal and nonneuronal tissues. Here we analyzed the neurologic alterations produced by disruption of the laforin gene in Epm2a mice and compared them to those in malin-deficient mice. Both Epm2a and Epm2b mice showed altered motor activity, impaired motor coordination, abnormal hind limb clasping, and episodic memory deficits. Epm2a mice also had tonic-clonic seizures, whereas both Epm2a and Epm2b mice had spontaneous single spikes, spike-wave, polyspikes, and polyspike-wave complexes with correlated myoclonic jerks. Neurologic alterations observed in the mutants were comparable and correlated with the accumulation of abundant Lafora bodies in the cerebral cortex, the hippocampus, the basal ganglia, the cerebellum, and the brainstem, suggesting that these inclusions could cause cognitive and behavioral deterioration. Thus, both Epm2a and Epm2b mice exhibit many pathologic aspects seen in patients with Lafora disease and may be valuable for the study of this disorder.  相似文献   

17.
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.  相似文献   

18.
Mucopolysaccharidosis IIIB (MPS IIIB; Sanfilippo syndrome type B) is characterized by profound neurological deterioration. Because a murine model of MPS IIIB disease is available, we focused on analysis of gene expression in the brain and cerebellum of 7-month-old MPS IIIB mice by pathway-specific filter microarrays designed to probe apoptotic-related, neurotrophic signalling molecules and inflammatory cytokines and receptors. Moreover, we extended the analysis with real-time PCR performed at 1, 3, 7 months after birth. Bdnf was down-regulated in the brain but up-regulated in the cerebellum at 7 months of age, both at RNA and at protein levels. Cbln1 presented a threefold increase in the oldest brains while remaining unaltered in the cerebellum. Ccl3, Casp11, gp91(phox), p67(phox), and p47(phox) showed an increased expression in both brain and cerebellum at each examined time point. Ccl3, in particular, exhibited in both organs and at all times tested approximately a tenfold increase in its expression. Insofar as p47(phox), p67(phox), and gp91(phox) are all components of the phagocyte NADPH oxidase, our results suggest the possible involvement of the reactive oxygen species in the genesis of neurodegeneration in MPS IIIB disease.  相似文献   

19.
Spinocerebellar ataxia-1 (SCA-1), like other polyglutamine diseases, is associated with aggregation of mutant protein ataxin-1 in the nuclei of susceptible neurons. The role of ataxin-1 aggregates in the pathogenesis of susceptible neurons, especially cerebellar Purkinje cells, is unknown. The present study was initiated to determine the temporal relationship between ataxin-1 aggregation and the sequence of specific biochemical changes in Purkinje cells in SCA-1 transgenic mice (TM). Earlier, we demonstrated that SCA-1 TM with no Purkinje cell loss and no alterations in home cage behavior show decreased expression of calcium-binding proteins calbindin-D28k (CaB) and parvalbumin (PV) in Purkinje cells. To determine if increased expression of mutant ataxin-1 in TM is also associated with earlier biochemical changes in Purkinje cells, both heterozygous and homozygous (B05 line of SCA-1) TM were used. The age of onset of ataxia in SCA-1 TM was at 12 weeks in heterozygotes and 6 weeks in homozygotes. In 6 week old heterozygous TM, Western blot analysis of growth associated protein 43 (GAP-43) and synaptophysin revealed no significant alterations as compared with the age-matched nontransgenic mice (nTM), whereas CaB was significantly reduced. beta-III-Tubulin was used as a specific Purkinje cell marker protein, immunohistochemical localization showed strong beta-III-tubulin immunoreactivity (IR) in Purkinje cells in 6 week old heterozygous TM, whereas CaB and PV IR were markedly reduced in the same neurons (double immunofluorescence staining). Most Purkinje cells from heterozygous (12 weeks old) and homozygous (6 weeks old) TM contained ataxin-1 nuclear inclusions (NIs). Cells with and without visible NIs revealed reduced PV and CaB IR; however, the changes were overtly more severe in cells with visible NIs. In contrast, the same cells were strongly immunoreactive to beta-III-tubulin. CaB, which is also present in the nucleus, colocalized with ataxin-1 and ubiquitin positive NIs. Further, RT-PCR analysis of CaB mRNA in the cerebellum in 6 week old heterozygous TM demonstrated a significant decrease in mRNA in comparison with the aged-matched nTM. These data suggest that there are selective alterations in the expression of CaB and PV in Purkinje cells which possibly occur earlier than ataxin-1 aggregation. Further, we speculate that ataxin-1 aggregates may not be toxic in general; however, they may deplete specific proteins essential for Purkinje cell viability in SCA-1 TM.  相似文献   

20.
Cystatin B (cystB) is an anti-protease implicated in EPM1, a degenerative disease of the central nervous system. This work analyzes the pattern of expression of cystB in developing and adult cerebellum, identifying the cystB positive cells by double immune-fluorescence microscopy using specific cell markers. In primary glial cells, cystB is found in progenitor and differentiated oligodendrocytes as well as in astrocytes. In the cerebellum, only oligodendrocyte progenitors express cystB. In myelin-producing cells, cystB synthesis is strongly down-regulated and the protein is not detectable. Astrocytes and Bergmann glia express cystB at all the developmental stages analyzed both in the cell body and in the fibers. Most neurons of developing and adult rat cerebellum do not express detectable amounts of cystB, with the exception of the Purkinje cells and of some cells of the differentiated molecular layer. In human cerebellum, cystB is present in Purkinje cells and Bergmann glial fibers only. cystB is also found in the cortical neurons of the dentate gyrus of the hippocampus. In rat cerebellum, cystB forms a complex with a number of proteins, two of which are specific to the nervous system. The cellular co-localization of cystB and its partners in developing and adult cerebellum is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号