首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular alpha-synuclein inclusion formation in glial cells is frequently seen in Parkinson's disease and multiple system atrophy. Microglial activation in these neurodegenerative disorders suggests that neuroinflammatory responses might interact with alpha-synuclein and contribute to the pathogenesis of these disorders. To study the role of tumor necrosis factor-alpha (TNF-alpha), an important proinflammatory cytokine produced by microglia, on cells overexpressing alpha-synuclein we have used the astrocytoma cell line U373 engineered to express C-terminally truncated alpha-synuclein as a fusion protein with red or green fluorescent proteins. We demonstrate that alpha-synuclein overexpression augmented TNF-alpha-induced apoptotic cell death in U373 cells by induction of caspase activation. Furthermore, TNF-alpha exposure was associated with significant cytoskeletal changes characterized by altered inclusion composition with loss of cytoskeletal proteins and elevation of high-molecular-weight alpha-synuclein species. We conclude that alpha-synuclein overexpression significantly increases the vulnerability of U373 cells to apoptosis through TNF-alpha-mediated pathways.  相似文献   

2.
Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.  相似文献   

3.
Tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, has been implicated in the pathogenesis of several disorders and injuries in the central nervous system (CNS). Unlike IGF-I, which promotes CNS growth, TNF-alpha causes brain growth retardation and neural damage. Recently TNF-alpha has been shown to inhibit IGF-I signaling and actions in non-neural tissue. To investigate whether TNF-alpha deleteriously influences brain growth by altering the IGF-I system in vivo, we examined the expression of IGF-I, the type 1 IGF receptor (IGF1R) and IGF binding proteins (IGFBPs) in the brain of transgenic (Tg) mice with murine TNF-alpha overexpression. We show that overexpression of TNF-alpha reduces the weights of whole brain and all brain regions examined during development. In adult TNF-alpha Tg mice, cerebellum (CB) exhibited the greatest reduction in weight among the five brain regions examined, being approximately 77% of that in wild-type (WT) mice. IGF-I abundance was decreased in the CB, as well as in cerebral cortex and diencephalon, of TNF-alpha Tg mice. When compared to those in WT mice, CB IGF-I abundance in Tg mice was reduced by approximately 35%, approximately 45%, and approximately 40% at 2, 6, and 9 weeks of age, respectively. Of the IGFBPs studied the abundance of IGFBP-3 and IGFBP-4 was increased by 2-3.7-fold, and the abundance of IGFBP-5 was decreased by approximately 3-fold (as judged by Western immunoblot analysis). Histological analysis and immunocytochemical staining confirmed that TNF-alpha specifically increases IGFBP-3 and IGFBP-4 immunoreactivity, as well as that of the IGF1R, in radial glial and Purkinje cells. In addition, TNF-alpha alters CB cytoarchitecture, apparently by influencing granule cell migration. Our data indicate that TNF-alpha alters the expression of IGF-I system proteins in vivo, and suggest that altered expression of IGF-I system proteins may in part explain TNF-alpha deleterious actions on brain growth.  相似文献   

4.
Our groups have reported that tumor necrosis factor-alpha (TNF-alpha) causes myelin damage and apoptosis of oligodendrocytes and their precursors in vitro and in vivo. We also have reported that insulin-like growth factor-I (IGF-I) can protect cultured oligodendrocytes and their precursors from TNF-alpha-induced damage. In this study, we investigated whether IGF-I can protect oligodendrocytes and myelination from TNF-alpha-induced damage in vivo by cross-breeding TNF-alpha transgenic (Tg) mice with IGF-I Tg mice that overexpress IGF-I exclusively in brain. At 8 weeks of age, compared with those of wild-type (WT) mice, the brain weights of TNF-alpha Tg mice were decreased by approximately 20%, and those of IGF-I Tg mice were increased by approximately 20%. The brain weights of mice that carry both TNF-alpha and IGF-I transgenes (TNF-alpha/IGF-I Tg mice) did not differ from those of WT mice. As judged by histochemical staining and immunostaining, myelin content in the cerebellum of TNF-alpha/IGF-I Tg mice was similar to that in WT mice and much more than that in TNF-alpha Tg mice. Consistently, Western immunoblot analysis showed that myelin basic protein (MBP) abundance in the cerebellum of TNF-alpha/IGF-I Tg mice was double that in TNF-alpha Tg mice. In comparison with WT mice, the number of oligodendrocytes was decreased by approximately 36% in TNF-alpha Tg mice, whereas it was increased in IGF-I Tg mice by approximately 40%. Oligodendrocyte number in TNF-alpha/IGF-I Tg mice was almost twice that in TNF-alpha Tg mice. Furthermore, IGF-I overexpression significantly reduced TNF-alpha-induced increases in apoptotic cell number, active caspase-3 abundance, and degradaion of MBP. Our results indicate that IGF-I is capable of protecting myelin and oligodendrocytes from TNF-alpha-induced damage in vivo.  相似文献   

5.
Cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha), can initiate dual effects resulting in either cell growth or cell death. In this study, the human oligodendroglial cell lines HOG and MO3.13 were used as a model to study the molecular mechanisms of cytokine-induced cell death in human oligodendrocytes. We have previously shown that TNF-alpha and IFN-gamma induce apoptosis in both oligodendroglial cell lines within 72 hr. In the present study, the cell death pathways operating within these cells were further investigated at the gene expression level. Both cell lines express a broad repertoire of caspases and apoptosis-related genes. Some of these genes are specifically up-regulated by cytokine treatment; e.g., caspase-1 is up-regulated by IFN-gamma. In addition to direct cytotoxic effects, IFN-gamma and TNF-alpha also enhance the expression of Fas, TNFR1, and MHC class I molecules in both cell lines. This suggests that cytokines can make oligodendrocytes more vulnerable to different cell death pathways in an inflammatory environment. cDNA microarray analysis of the HOG cell line revealed that TNF-alpha induces genes that regulate apoptosis, survival, inflammation, cell metabolism, and cell signaling. The data suggest that oligodendroglial cells activate both death and survival pathways upon cytokine challenges. However, the survival pathways seem to be unable to compete with the death signal after more than 24 hr of cytokine treatment. These results may contribute to the development of therapeutic strategies aimed at interfering with cytokine-induced cell death of oligodendrocytes in patients with multiple sclerosis.  相似文献   

6.
The exact role of TNF-alpha in excitotoxic neurodegeneration of the brain is unclear. To address this issue, the kainic acid (KA)-induced hippocampal injury model, a well-characterized model of human neurodegenerative diseases, was used in TNF-alpha receptor 1 (TNFR1)-knockout (TNFR1-/-) mice in the present study. After nasal application of a single dose of 40 mg of KA per kilogram body weight, TNFR1-/- mice showed significantly more severe seizures than the wild-type mice. In addition, obvious neurodegeneration, enhanced microglia activation, and astrogliosis in the hippocampus, as well as increased locomotor activity, were found in TNFR1-/- mice compared with the wild-type controls 8 days after KA delivery. Moreover, CC chemokine receptor 3 expression on activated microglia was increased 3 days after KA treatment in TNFR1-/- mice, as measured by flow cytometry. These data suggest that TNF-alpha may play a protective role through TNFR1 signaling.  相似文献   

7.
The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is involved in the generation of inflammatory and neuropathic pain. This study investigated if TNF-alpha has any effect on spinal synaptic and/or sensory transmission by using whole-cell recordings of substantia gelatinosa (SG) neurons in transverse lumbar spinal cord slices of adult rats and by using behavioral tests. After intrathecal administration of TNF-alpha in adult rats, spontaneous hind paw withdrawal behavior and thermal hyperalgesia were rapidly induced (approximately 30 min), while mechanical allodynia slowly developed. Bath application of TNF-alpha (0.1-1 nM, 8 min) depressed peak amplitude of monosynaptic Adelta and C fiber-evoked excitatory postsynaptic currents (EPSCs) without changing in holding currents and input resistances, whereas this application generally potentiated polysynaptic Adelta fiber-evoked EPSCs. Moreover, the frequencies, but not the amplitudes, of spontaneous and miniature EPSCs and spontaneous inhibitory postsynaptic currents were significantly increased by bath-applied TNF-alpha in most of the SG neurons. The effects of TNF-alpha on Adelta/C fiber-evoked monosynaptic and polysynaptic or spontaneous EPSCs were significantly blocked by 5 microM TNF-alpha antagonist that inhibits TNF-alpha binding to its type 1 receptor (TNFR1). Because this study also found high protein expression of TNFR1 in the adult dorsal root ganglion and no change of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) induced whole-cell currents by TNF-alpha, we conclude that presynaptic TNFR1 at Adelta/C primary afferent terminals contributes to the rapid alteration of synaptic transmission in the spinal SG, and the development of abnormal pain hypersensitivity by exogenous TNF-alpha.  相似文献   

8.
This study investigates the effect of microglial activation on microglial glutamate transporters in vitro. Stimuli known to activate microglia and/or to be associated with pathological conditions with an impaired astroglial glutamate uptake were compared. Morphological changes and marked increases in ED1 antigen expression were found after 8-h incubation of rat microglia in 56 mM KCl, 1 ng/ml lipopolysaccharide (LPS), and 100 microM glutamate, as well as in acidic and basic conditions, showing that the cells were activated. Of the stimuli used, only LPS induced a significant release of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), and was the only stimulus that increased microglial GLT-1 expression and glutamate uptake capacity after 12-h incubation. This effect was probably mediated by TNF-alpha, since this cytokine mimicked the effect of LPS. Furthermore, the effect of LPS was blocked by thalidomide, an inhibitor of TNF-alpha synthesis. Additionally, neutralizing antibodies against TNF-alpha also blocked the increase, indicating TNF-alpha as an inducer of GLT-1 expression in microglia. It was also found that preincubation with glutamate dose-dependently inhibited the microglial glutamate uptake. This could suggest different physiological functions for microglial and astroglial glutamate uptake and might indicate a reciprocal control of GLT-1 expression between microglia and astrocytes.  相似文献   

9.
Dheen ST  Jun Y  Yan Z  Tay SS  Ling EA 《Glia》2005,50(1):21-31
The release of proinflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha) and nitric oxide by microglia has been implicated in neurotoxicity in chronic neurodegenerative diseases such as Alzheimer's disease. As all-trans-retinoic acid (RA) has been reported to exert anti-inflammatory actions in various cell types, we have examined its effects on the expression of TNF-alpha and inducible nitric oxide synthase (iNOS) in microglia activated by beta-amyloid peptide (Abeta) and lipopolysaccharide (LPS). Exposure of primary cultures of rat microglial cells to Abeta or LPS stimulated the mRNA expression level of TNF-alpha (6-116-fold) and iNOS (8-500-fold) significantly. RA acted in a dose-dependent manner (0.1-10 microM) by attenuating both TNF-alpha (29-97%) and iNOS (61-96%) mRNA expression in microglia exposed to Abeta or LPS. RA-induced inhibition of TNF-alpha and iNOS mRNA expression in activated microglia was accompanied by the concomitant reduction in release of iNOS and TNF-alpha proteins as revealed by nitrite assay and ELISA, respectively. The anti-inflammatory effects of RA were correlated with the enhanced expression of retinoic acid receptor-beta, and transforming growth factor-beta1 as well as the inhibition of NF-kappaB translocation. These results suggest that RA may inhibit the neurotoxic effect of activated microglia by suppressing the production of inflammatory cytokines and cytotoxic molecules.  相似文献   

10.
Male Wistar rats received unilateral intrahippocampal injections of 3 nmol (3.18 microg) aggregated Abeta(25-35), intracerebroventricular bilateral injections of 0.5 microg human recombinant TNFalpha or both (Abeta(25-35) + TNFalpha-treated animals). Seven days after the surgery brain sections were stained with cresyl violet (Nissl), for fragmented DNA (TUNEL), glial fibrillar acidic protein (GFAP) and isolectin B4-reactive microglia. In addition, caspase-3 activity in brain regions was measured fluorometrically. The morphology of the hippocampus after the injection of Abeta(25-35) or both Abeta(25-35) and TNFalpha (but not TNFalpha alone) showed cell loss in the CA1 pyramidal cell layer. The extension of neuronal degeneration measured in the CA1 field was significantly larger in Abeta(25-35)-treated groups compared to the contralateral hemisphere of both vehicle-treated controls and animals injected with TNFalpha alone. TNFalpha augmented the Abeta(25-35)-induced damage, significantly increasing the extension of degenerating area. Administration of Abeta(25-35) caused reactive gliosis in the ipsilateral hemisphere as demonstrated by upregulation of GFAP expression and the presence of hypertrophic astrocytes in the hippocampus. This effect was much more prominent in the hippocampi of rats treated with Abeta(25-35) + TNFalpha but absent after administration of TNFalpha alone. In both Abeta(25-35)-treated groups, the damaged area of the hippocampal CA1 field and lateral band of dentate gyrus displayed many darkly stained round isolectin B4-positive phagocyte-like microglial cells. Sparse TUNEL-positive nuclei were found in the hippocampi of rats treated with Abeta(25-35) alone or together with TNFalpha, but not in the control brain sections or in brain sections of TNFalpha-injected animals. The activity of caspase-3 increased significantly in the ipsilateral hippocampus after the injection of Abeta(25-35). Surprisingly, administration of TNFalpha into the cerebral ventricles prevented this Abeta(25-35)-induced increase in hippocampal caspase-3 activity. The results are discussed from the perspective of dual (neuroprotective and neurodestructive) roles of TNF in the brain.  相似文献   

11.

1. 1. The CMS opioid receptors consist of a major triad: μ, δ and κ.

2. 2. The κ agonists presently available act as κ agonists, δ antagonists and μ2 isoreceptor antagonists.

3. 3. Pure opiate antagonists possess a broad spectrum of activity at all 3 opioid receptor populations.

4. 4. The Ag/Ant analgesics also possess a broad spectrum of receptor affinities which awaits the definition of complex species differences in their actions.

5. 5. The design of more specific opioid agonists and antagonists will lead to a greater understanding of the many possible roles opioids serve within the CNS.

Author Keywords: opioid receptors; κ; μ; δ; isoreceptors  相似文献   


12.
13.
Activated macrophages have been shown to produce brain-derived neurotrophic factor (BDNF) in diseases such as multiple sclerosis (MS) or allergic bronchial asthma (BA). However, there is little data on BDNF regulation in these cells. We demonstrate that unstimulated human peripheral blood monocytes, but not lymphocytes, constitutively secrete BDNF. IL-6 and TNF-alpha specifically enhanced BDNF secretion in monocytes, whereas typical Th1- and Th2-cytokines did not show any effect. None of the cytokines induced BDNF secretion in T- or B-cells. Thus, our data provide evidence that IL-6 and TNF-alpha represent a specific link between monocyte infiltration and neuronal changes in inflammatory diseases.  相似文献   

14.
15.
背景:肿瘤坏死因子α可降低牙周膜纤维细胞碱性磷酸酶的活性,抑制牙周膜纤维细胞向成骨细胞的功能转化。 目的:观察肿瘤坏死因子α对小鼠成骨细胞生长及cbfa1/runx2基因表达的影响。 方法:取生长良好的小鼠成骨细胞系MC3T3/E1细胞,分别以20,40,60,80 μg/L的肿瘤坏死因子α进行干预,以正常培养的细胞作为对照。采用RT-PCR法检测MC3T3/E1细胞cbfa1/runx2 mRNA的表达;PNPP法测定碱性磷酸酶活性;MTT法检测细胞活力。 结果与结论:正常培养的MC3T3/E1细胞cbfa1/runx2 mRNA呈阳性表达,随着肿瘤坏死因子α浓度的增高,其表达水平逐渐下降。同时MC3T3/E1细胞活力和碱性磷酸酶活性也随肿瘤坏死因子α浓度的增高而下降。提示肿瘤坏死因子α可抑制MC3T3/E1细胞生长,而cbfa1/runx2可能参与了成骨细胞的分化过程。  相似文献   

16.
Activated microglia in the human glaucomatous optic nerve head   总被引:5,自引:0,他引:5  
To investigate the distribution and potential participation of microglia, the resident defense cells of the central nervous system, in the optic nerve head (ONH) in glaucoma, histological paraffin sections of optic nerves from normal and glaucoma patients with mild to advanced nerve damage were studied using double labeling immunohistofluorescence. A monoclonal antibody for HLA-DR, indicating activated microglia, was colocalized with antibodies for functional proteins. In normal ONHs, microglia do not contain TGF-beta2, COX-2, or TNF-alpha and are not positive for PCNA; however, in glaucomatous ONHs, microglia contain abundant TGF-beta2, TNF-alpha, and PCNA. In glaucomatous eyes, a few microglia are usually positive for COX-2. In normal ONHs, there are rarely microglia containing TGF-beta1, NOS-2, TSP, TIMP-2, and CD68, but, in glaucomatous tissue, a few microglia are positive from the prelaminar to the postlaminar regions. MMP-1, MMP-2, MMP-3, and MMP-14 are constitutively present in the perivascular microglia in normal ONHs and appear to be more abundant in glaucomatous tissue. COX-1, TNF-R1, TIMP-1, and c-fms are constitutively present in normal tissues and appear to be increased in microglia in the glaucomatous ONHs. HSP27 is not present in microglia. In glaucomatous ONHs, microglia become activated and phagocytic and produce cytokines, mediators, and enzymes that can alter the extracellular matrix. Our findings suggest that activated microglia may participate in stabilizing the tissue early in the disease process, but, as the severity of the glaucomatous damage increases, the activities of microglia may have detrimental consequences for the pathological course of glaucomatous optic neuropathy.  相似文献   

17.
Astrocytes play a key role regulating aspects of inflammation in the central nervous system (CNS). Several enzymes, such as the inducible nitric oxide synthase (iNOS) or the cyclooxygenase-2 (COX-2), along with different inflammatory mediators such as the free radical nitric oxide (NO) or proinflammatory cytokines, have been proposed to be involved in the cell damage associated with neuroinflammation. Recent studies suggest that the endogenous cannabinoid system (ECS) may be involved in the regulation of neuroinflammation. Cannabinoid agonists decrease neurotoxicity and release of proinflammatory factors from activated glial cells and anandamide itself is able to promote antiinflammatory responses in astrocytes via CB1 cannabinoid receptors. The present study is aimed at studying whether UCM707, a potent and selective anandamide uptake inhibitor, is able to inhibit the production of proinflammatory mediators by LPS-stimulated astrocytes. Our findings indicate that UCM707 is able to reduce NO release, iNOS expression, and the production of the proinflammatory cytokines tumoral necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in a significant manner, while producing a slight increase in IL-6 levels. These effects can be reproduced by administration of the synthetic agonist HU210 and partially or totally blocked by administration of CB1 or CB2 selective antagonists, further supporting the involvement of the ECS. These results confirm the ability of UCM707 to reinforce the beneficial effects induced by anandamide and make it an attractive candidate for the management of those pathologies with neuroinflammation as one of their hallmarks.  相似文献   

18.
Li J  Hu S  Zhou L  Ye L  Wang X  Ho J  Ho W 《Glia》2011,59(1):58-67
Herpes simplex virus Type I (HSV-1) is a neurotropic virus that is capable of infecting not only neurons, but also microglia and astrocytes and can establish latent infection in the central nervous system (CNS). We investigated whether IFN lambda (IFN-λ), a newly identified member of IFN family, has the ability to inhibit HSV-1 infection of primary human astrocytes and neurons. Both astrocytes and neurons were found to be highly susceptible to HSV-1 infection. However, upon IFN-λ treatment, HSV-1 replication in both astrocytes and neurons was significantly suppressed, which was evidenced by the reduced expression of HSV-1 DNA and proteins. This IFN-λ-mediated action on HSV-1 could be partially neutralized by antibody to IFN-λ receptor. Investigation of the mechanisms showed that IFN-λ treatment of astrocytes and neurons resulted in the upregulation of endogenous IFN-α/β and several IFN-stimulated genes (ISGs). To block IFN-α/β receptor by a specific antibody could compromise the IFN-λ actions on HSV-1 inhibition and ISG induction. In addition, IFN-λ treatment induced the expression of IFN regulatory factors (IRFs) in astrocytes and neurons. Furthermore, IFN-λ treatment of astrocytes and neurons resulted in the suppression of suppressor of cytokine signaling 1 (SOCS-1), a key negative regulator of IFN pathway. These data suggest that IFN-λ possesses the anti-HSV-1 function by promoting Type I IFN-mediated innate antiviral immune response in the CNS cells.  相似文献   

19.
Inflammatory demyelinating disorders of the CNS, such as multiple sclerosis (MS), are mediated, at least in part, by various cytokines and proteases. In the present study, we investigated the expression of A disintegrin and metalloproteinase (ADAM)-17, an important sheddase for various proteins, including tumor necrosis factor-alpha (TNF-alpha), and the p75- and p55-TNF receptors, as well as ADAM-10, a protease implicated in myelin degradation, in post mortem CNS tissue samples from patients with MS, and normal brain tissue (as control) by immunohistochemistry. ADAM-10 was found to be expressed by astrocytes in all MS and control sections studied; however, in some MS sections, perivascular macrophages were determined as an additional cellular source as well. ADAM-17 could be observed exclusively in acute and chronic active MS plaques and localized to invading T lymphocytes. The staining pattern of ADAM-17 in MS plaques was mirrored in distribution and extent by the pattern obtained with an antibody against the p75-TNF-receptor (TNFR-2), whereas TNF-alpha was found to be expressed primarily by perivascular macrophages. In studying cerebrospinal fluid (CSF) samples from MS patients, we were able to detect increased protein levels of ADAM-17 as compared with noninflammatory controls. In addition, increased levels of soluble TNFR-2 could be measured, suggestive of an active shedding process mediated by ADAM-17. The stimulation of peripheral blood mononuclear cells (PBMC) obtained from MS patients and healthy individuals corroborated these findings by revealing expression of ADAM-17 by T lymphocytes and ADAM-10 by macrophages in vitro. Our results indicate that ADAM-10 is expressed constitutively by astrocytes in the normal and inflamed human CNS. In contrast, under inflammatory conditions, ADAM-10, expressed by perivascular macrophages, and ADAM-17, expressed by invading T cells, may actively contribute to the pathogenesis of inflammatory disorders of the CNS.  相似文献   

20.
We studied genetic polymorphisms in the promoter region at position -511 of the interleukin (IL) -1beta gene (IL-1B-511) and at position -889 of the IL-1alpha gene (IL-1A-889), in 111 Japanese patients with multiple system atrophy (MSA) and 160 controls. The distribution of IL-1B-511 was significantly different between MSA patients and controls, because of the under-representation of patients with homozygotes for allele 2 (IL-1B-511*2), a high producer of IL-1beta. The frequency of IL-1A-889*2, a high secretor of IL-1alpha, was also decreased in MSA patients. Our findings suggest that abnormal cytokine expression may be implicated in the pathogenesis of MSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号