首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six new flavonoid glycosides, quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(4-O-trans-p-coumaroyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (1), quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (2), isorhamnetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(4-O-trans-p-coumaroyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (3), isorhamnetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (4), isorhamnetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(4-O-cis-p-coumaroyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (5), and isorhamnetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-[alpha-L-rhamnopyranosyl(1-->2)]-(4-O-trans-feruloyl)-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside (6), were isolated from the dried aerial parts of Rhazya orientalis. The structures of 1-6 were determined by spectroscopic and chemical means.  相似文献   

2.
The acetone extract of Dicranopteris dichotoma afforded two new tetranorclerodanes, 18-hydroxyaylthonic acid (1) and 18-oxo-aylthonic acid (2), and four new clerodane-type diterpene glycosides, (6S,13S)-6-O-[6-O-acetyl-beta-d-glucopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl]cleroda-3,14-dien-13-ol (3), (6S,13S)-6-O-[4-O-acetyl-beta-d-glucopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl]cleroda-3,14-dien-13-ol (4), 6-O-[6-O-acetyl-beta-d-glucopyranos-yl-(1-->4)-alpha-l-rhamnopyranosyl]-(13E)-cleroda-3,13-dien-15-ol (5), and 6-O-[beta-d-glucopyranosyl]-(1-->4)-alpha-l-rhamnopyranosyl-(13E)-cleroda-3,13-dien-15-ol (6), together with two known compounds, aylthonic acid (7) and (6S,13S)-cleroda-3,14-diene-6,13-diol (8). The structures of these new compounds were established by a combination of 1D and 2D NMR techniques, MS, and acid hydrolysis. Compound 8 showed modest anti-HIV-1 activity.  相似文献   

3.
Six new apiosyl-(1-->6)-glucosyl isoflavones (1-6) and four known ones were isolated from the stems of Glycosmis pentaphylla. The structures of the new glycosides are 3',7-dihydroxy-4',5,6-trimethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1), 2',7-dihydroxy-4',5',5,6-tetramethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), 2',7-dihydroxy-4',5',5,6-tetramethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3), 7-hydroxy-4',8-dimethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (4), 7-hydroxy-4',6-dimethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (5), and 4',5-dihydroxy-3',7-dimethoxyisoflavone 4'-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (6). Their structures were established primarily by NMR experiments and chemical methods.  相似文献   

4.
Five dammarane-type saponins were isolated by means of centrifugal partition chromatography from the leaves of Zizyphus lotus. Their structures were elucidated using a combination of 1D and 2D 1H and 13C NMR spectra and mass spectroscopy. One of these glycosides is the known jujuboside B (5). Three are new jujubogenin glycosides, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-(2,3,4-O-triacetyl)-alpha-L-rhamnopyranoside (1), 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-alpha-L-rhamnopyranoside (2), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-alpha-L-arabinopyranosyljujubogenin (3). The last is a new sulfated derivative of jujubasaponine IV, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-beta-D-galactopyranosyl-(20R,22R)-16beta,22:16alpha,30-diepoxydammar-24-ene-3beta,20-diol (4).  相似文献   

5.
Four new oleanane-type triterpenoidal glycosides, named gleditsiosides A-D (1-4), were isolated from the anomalous fruits of Gleditsia sinensis. Using modern NMR techniques, including DQF-COSY, HETCOR, HOHAHA, HMBC, and ROESY experiments and MS analysis as well as chemical methods, their structures were determined as 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(6S,2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (1); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(2E)-2-hydroxylmethyl-6-hydroxy-6-methy l-2 ,7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (2); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(2E)-2-h ydroxylmethyl-6-hydroxy-6-methyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (3); and 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(6S, 2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (4).  相似文献   

6.
The structures of gleditsiosides N, O, P, and Q (1-4), isolated from anomalous fruits of Gleditsia sinensis, were characterized as novel complex bisdesmosidic triterpenoid glycosides acylated with monoterpenoid units, by means of extensive 1D and 2D NMR studies. The four compounds shared a common structural feature with a trisaccharide [(beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)-be ta- D-glucopyranoside)] affixed to C-3 and a tetrasaccharide [(beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-r hamnopyranosyl-(1-->2)-beta-D-glucopyranosyl ester)] attached to C-28. Gleditsioside P (3) is the first saponin of this type found to date bearing three monoterpenoid units.  相似文献   

7.
Phenolic compounds from Nymphaea odorata   总被引:3,自引:0,他引:3  
Assay-guided fractionation of the ethanol extract of Nymphaea odorata resulted in the identification of two lignans, one new (1) and one known (2), together with six known flavonol glycosides (3-8). The structures of 1-8 were established by spectroscopic analysis as nymphaeoside A (1), icariside E(4) (2), kaempferol 3-O-alpha-l-rhamnopyranoside (afzelin, 3), quercetin 3-O-alpha-l-rhamnopyranoside (4), myricetin 3-O-alpha-l-rhamnopyranoside (myricitrin, 5), quercetin 3-O-(6' '-O-acetyl)-beta-d-galactopyranoside (6), myricetin 3-O-beta-d-galactopyranoside (7), and myricetin 3-O-(6' '-O-acetyl)-beta-d-galactopyranoside (8). Compounds 3, 4, and 7 showed marginal inhibitory effect against fatty acid synthase with IC(50) values of 45, 50, and 25 microg/mL, respectively.  相似文献   

8.
Six new pregnane glycosides, four of them sulfated derivatives, were isolated from small branches of Periploca graeca. The compounds were identified as 16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-en-20-ol-3beta-yl O-(2-O-acetyl-beta-D-digitalopyranosyl)-(1-->4)-beta-D-cymaropyranoside (1), 16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-en-20-ol-3beta-yl O-beta-D-oleandropyranosyl-(1-->4)-beta-D-oleandropyranoside (2), 16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-en-20-ol-3beta-yl O-beta-D-oleandropyranoside (3), 16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-ene-3beta,20-diol (4), 20-O-[(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->2)-beta-D-digitalopyranosyl)oxy]pregn-5-en-16beta-ol-3beta-yl O-beta-D-digitalopyranosyl-(1-->4)-beta-d-cymaropyranoside (5), and calogenin 3-O-beta-D-digitalopyranoside-20-O-beta-D-canaropyranoside (6). Three pregnane glycosides, previously reported from the genus Periploca, were also isolated. Structures were established on the basis of spectroscopic analyses, including 1D and 2D NMR experiments, HRESIMS, elemental analysis, and chemical degradation.  相似文献   

9.
Two new myricetin glycosides, myricetin 7-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (1) and myricetin 7-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), together with the known compounds quercetin 3-O-beta-D-glucopyranoside (3), quercetin 3-O-alpha-L-rhamnopyranoside (4), quercetin 3-O-beta-D-galactopyranoside (5), methyl gallate (6), isovanillin (7), 4-hydroxymethylbenzoate (8), 3,4-dihydroxymethylbenzoate (9), and caffeoyl aldehyde (10) were isolated from the leaves of Tachigalia paniculata. The structures of these compounds were determined by spectroscopic methods. Their antioxidant activity was determined by measuring free-radical scavenging effects using three different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay, the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay), and the inhibition of xanthine oxidase activity. Compounds 1, 2, and 6 showed activity in the TEAC test, compounds 5-7 and 10 were moderately active in the autoxidation assay, while compounds 1 and 2 were the most potent of the isolates in the xanthine oxidase test.  相似文献   

10.
Phenylethanoid glycosides from Globularia trichosantha.   总被引:1,自引:0,他引:1  
Five phenylethanoid glycosides, crenatoside (= oraposide) (1), verbascoside (= acteoside) (2), trichosanthoside A (3), rossicaside A (4), and trichosanthoside B (5), were isolated from the aerial parts of Globularia trichosantha. Compounds 3 and 5 are new natural compounds, and their structures were established as 3, 4-dihydroxy-beta-phenylethoxy-O-beta-D-xylopyranosyl-(1-->4)-alpha -L- rhamnopyranosyl-(1-->3)-4-O-caffeoyl-beta-D-glucopyranoside and 3, 4-dihydroxy-beta-phenylethoxy-O-[beta-D-xylopyranosyl-(1-->4)-alph a-L -rhamnopyranosyl-(1-->3)]-[beta-D-xylopyranosyl-(1-->6)]-4-O-caffeoyl -beta-D-glucopyranoside, respectively. The structures of all compounds were established by spectral evidence. Compounds 1-5 also demonstrated scavenging properties toward the 2, 2-diphenyl-1-picrylhydrazyl radical in TLC autographic assays.  相似文献   

11.
Phytochemical investigation of the stem bark extract of Boswellia papyrifera afforded two new stilbene glycosides, trans-4',5-dihydroxy-3-methoxystilbene-5-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->6)]-beta-D-glucopyranoside (1), trans-4',5-dihydroxy-3-methoxystilbene-5-O-[alpha-L-rhamnopyranosyl-(1-->6)]-beta-D-glucopyranoside (2), and a new triterpene, 3alpha-acetoxy-27-hydroxylup-20(29)-en-24-oic acid (3), along with five known compounds, 11-keto-beta-boswellic acid (4), beta-elemonic acid (7), 3alpha-acetoxy-11-keto-beta-boswellic acid (8), beta-boswellic acid (9), and beta-sitosterol (10). The stilbene glycosides exhibited significant inhibition of phosphodiesterase I and xanthine oxidase. The triterpenes (3-9) exhibited prolyl endopeptidase inhibitory activities.  相似文献   

12.
Four new steroidal saponins, named neosibiricosides A-D (1-4), were isolated from the rhizomes of Polygonatum sibiricum, along with two known spirostanol glycosides. The structures of the new glycosides were elucidated by spectroscopic methods and acid hydrolysis as (23S,24R,25R)-1-O-acetylspirost-5-ene-1beta,3beta,23,24-tetrol 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->4)-beta-D-fucopyranoside (1), (25S)-1-O-acetylspirost-5-ene-1beta,3beta-diol 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside (2), (25S)-spirost-5-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-2-O-acetyl-beta-D-galactopyranoside (3), and (25R,S)-spirost-5-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside (4). The cytotoxic activity of the isolated compounds was evaluated with human MCF-7 breast cancer cells.  相似文献   

13.
Four new isoflavone triglycosides from Sophora japonica   总被引:2,自引:0,他引:2  
Four new isoflavone triglycosides, genistein 7-O-beta-D-glucopyranoside-4'-O-[(alpha-L-rhamnopyranosyl)-(1-->2)-beta-D-glucopyranoside] (1), genistein 7-O-beta-D-glucopyranoside-4'-O-[(beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside] (2), genistein 7-O-alpha-L-rhamnopyranoside-4'-O-[(alpha-L-rhamnopyranosyl)-(1-->2)-beta-D-glucopyranoside] (3), and genistein 7-O-alpha-L-rhamnopyranoside-4'-O-[(beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside] (4), together with nine known compounds, namely, genistein 7-O-beta-D-glucopyranoside-4'-O-beta-D-glucopyranoside, sophorabioside, prunetin 4'-O-beta-D-glucopyranoside, sophororicoside, genistin, rutin, kaempferol 3-O-beta-rutinoside, quercetin 3-O-beta-D-glucopyranoside, and kaempferol 3-O-beta-D-glucopyranoside, were isolated from the pericarps of Sophora japonica. The structures of 1-4 were determined by spectroscopic methods.  相似文献   

14.
Triterpenoid saponins from the roots of Pulsatilla koreana   总被引:5,自引:0,他引:5  
Six new saponins, five lupanes (1-5) and one oleanane (6), along with 11 known saponins, were isolated from the roots of Pulsatilla koreana. The structures of the new saponins were found to be 23-hydroxy-3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (1), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (2), 3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (4), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->4)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (5), and hederagenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside (6). Their structures were determined on the basis of 1D and 2D NMR ((13)C NMR, (1)H NMR, (1)H-(1)H COSY, HMQC, and HMBC) methods, FABMS, and hydrolysis. All isolated compounds were evaluated for their cytotoxic activity against A-549 human lung carcinoma cells.  相似文献   

15.
(3R)-O-beta-D-Glucopyranosyloxy-5-phenylvaleric acid (1), (3R)-O-beta-D-glucopyranosyloxy-5-phenylvaleric acid n-butyl ester (2), and a new dihydrochalcone diglycoside 4'-O-[beta-D-glucopyranosyl-(1-->6)-glucopyranosyl]oxy-2'-hydroxy-3', 6'-dimethoxydihydrochalcone (3), together with six known flavonoid glycosides [kaempferol-3-O-beta-D-glucopyranoside (= astragalin) (4), kaempferol-3-O-beta-D-galactopyranoside (5), quercetin-3-O-beta-D-glucopyranoside (= isoquercitrin) (6), quercetin-3-O-beta-D-galactopyranoside (= hyperoside) (7), quercetin-3-O-(2'-O-galloyl)-beta-D-glucopyranoside (8), and quercetin-3-O-beta-D-glucuronopyranoside (9)] were isolated from the aerial parts of Polygonum salicifolium. The structure elucidation of the isolated compounds was performed by spectroscopic (UV, IR, ESI-MS, 1D- and 2D-NMR), chemical (methylation, enzymatic hydrolysis, partial synthesis), and chromatographic methods (HPLC, Chiralcel OD). The flavonoid glycosides (4-9) demonstrated scavenging properties toward the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in TLC autographic assays.  相似文献   

16.
Bioassay-directed fractionation of an anti-inflammatory CHCl(3)-MeOH (9:1) extract of leaves of Vernonia colorata, using a carrageenan-induced rat paw model, led to the isolation of six new compounds (1-6).These were assigned as two new androst-8-en glycosides, 3-O-[beta-d-galactopyranosyl-(1-2)-[beta-d-glucopyranosyl-(1-->6)]-beta-d-glucopyranoside]-5alpha,14alpha-androst-8-ene (1) and 3-O-[beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside]-5alpha,14alpha-androst-8-ene (2), two new stigmastane-type glycosides, 3beta,21,24-trihydroxy-21,23;22,28;26,28-triepoxy-5alpha-stigmasta-8(9),14(15)-dien-3-O-beta-d-galactopyranosyl-(1-->2)-beta-d-glucopyranoside (3) and 3beta,21,24-trihydroxy-21,23;22,28;26,28-triepoxy-5alpha-stigmasta-8(9),14(15)-dien-3-O-beta-d-galactopyranosyl-(1-->2)-beta-d-(6-acetyl)glucopyranoside (4), and two new stigmastane-type steroids, 3beta,25,29-trihydroxy-5alpha-stigmasta-8(9),14(15),24Z(28)-triene (5) and 3beta,23,25-trihydroxy-24,28-epoxy-5alpha-stigmasta-8(9),14(15)-diene (6). The structures of 1-6 were elucidated by spectral and chemical studies. Compounds 1-6 were tested for the anti-inflammatory activity, but all were inactive or weakly inactive as anti-inflammatory agents.  相似文献   

17.
Five new oleanane-type glycosides (1-5), along with two known triterpene saponins, were isolated from the roots of Pulsatilla patens var. multifida (Ranunculaceae). The structures of the new triterpene saponins were elucidated as 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester (1), hederagenin 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranoside (2), 3-O-beta-D-glucopyranosyl bayogenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (4), and 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranosyl hederagenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (5). Structure elucidation was accomplished by 1D and 2D NMR (HMQC, HMBC, and ROESY) methods, FABMS, and hydrolysis.  相似文献   

18.
Three genuine saponins, named kinmoonosides A-C (1-3), have been isolated, together with a new monoterpenoid (4), from a methanolic extract of the fruits of Acacia concinna. The structures of kinmoonosides A-C were elucidated on the basis of spectral analysis as 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6R, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinovopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (1); 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6S, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinobopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (2); and 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl- 2,7-octadienoyl]acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (3), respectively. The new monoterpenoid 4 was determined as 4-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl-2, 7-octadienoyl]-D-quinovopyranose. Compounds 1-3 showed significant cytotoxicity against human HT-1080 fibrosarcoma cells.  相似文献   

19.
Three new glycosides, pinocembrin 7-O-apiosyl(1-->5)apiosyl(1-->2)-beta-D-glucopyranoside (1), 2',3',4',3' '-tetramethoxy-1,3-diphenylpropane 5',4' '-di-O-beta-D-glucopyranoside (2), and rhamnocitrin 3-O-apiosyl(1-->5)apiosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->6)]-beta-D-glucopyranoside (3), were isolated from Viscum angulatumalong with viscumneoside V, naringenin, and homoeriodictyol. Their structures were established by spectral and chemical methods.  相似文献   

20.
Two new hepatoprotective stilbene glycosides from Acer mono leaves   总被引:1,自引:0,他引:1  
Two new stilbene glycosides, 5-O-methyl-(E)-resveratrol 3-O-beta-d-glucopyranoside (1) and 5-O-methyl-(E)-resveratrol 3-O-beta-D-apiofuranosyl-(1-->6)-beta-d-glucopyranoside (2), were isolated from the leaves of Acer mono, along with seven known compounds. Among these compounds, 1, 2, and quercetin (3) showed significant hepatoprotective activities against H(2)O(2)-induced toxicity in primary cultures of rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号