首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SPECT study of visual fixation in schizophrenia and comparison subjects.   总被引:2,自引:0,他引:2  
BACKGROUND: The consistent association of impaired eye movements and schizophrenia suggests a relationship between the neurobiology of the illness and visual pursuit systems. Visual fixation (VF), an eye "movement" task at zero velocity, is the simplest such abnormality in schizophrenia patients and their relatives. METHODS: We used a VF task for a functional imaging study. Six neuroleptic-free schizophrenia patients and eight gender and mean age matched comparison subjects had SPECT scans with 20 mCi of Tc99-HMPAO, during VF on a simple blue line intersection. MEDX data saved in ANALYZE format for SPM 95 was used to generate paired t-test statistical data for display in Talairach space, with rCBF changes given as Z-scores. RESULTS: Patients, compared to controls, had increased rCBF in both the parahippocampal gyrus (bilaterally) and in the right fusiform gyrus. They had decreased rCBF in the left frontal cortex, including medial and superior frontal gyri and anterior cingulate. Overall, compared to controls, patients had medial temporal lobe hyperperfusion along with left prefrontal hypoperfusion. CONCLUSIONS: These findings are consistent with the hypothesized imbalance between the medial temporal and frontal lobes that is postulated for schizophrenia. It was of interest that the relative rCBF differences between schizophrenia patients and controls in this small sample were observable with this cognitively non-demanding visual fixation task.  相似文献   

2.
Blurred vision and cognitive difficulties are prominent symptoms during acute insulin‐induced hypoglycemia. Our hypothesis was that changes in cerebral activity reflect these symptoms. Positron emission tomography (PET) with oxygen‐15‐labelled water was used to measure relative changes in regional cerebral blood flow (rCBF) as a marker of cerebral activity. Hypoglycemia was induced by intravenous insulin infusion in 19 healthy men performing two different cognitive tasks of varying complexity. The hypoglycemic stimulus [plasma glucose 2.2 mmol/liter (0.4)] produced a significant hormonal counterregulatory response. During the low cognitive load, rCBF decreased in response to hypoglycemia in a large bilateral area in the posterior part of the temporal lobe, and rCBF increased bilaterally in the anterior cingulate gyrus, the right frontal gyrus, the fusiform gyrus, thalamus, and the left inferior part of the frontal gyrus. During the high cognitive load, rCBF decreased bilaterally in a large region in the posterior part of the temporal gyrus and increased in the left and right anterior cingulate gyrus, left and right frontal gyrus, right parahippocampal and lingual gyrus, and left superior temporal gyrus. Visual impairment during hypoglycemia was associated with deactivation in the ventral visual stream. The anterior cingulate gyrus was activated during hypoglycemia in a load‐dependent manner. Areas on the frontal convexity were differentially activated in response to the cognitive load during hypoglycemia. Our findings suggest that hypoglycemia induces changes in sensory processing in a cognition‐independent manner, whereas activation of areas of higher order functions is influenced by cognitive load as well as hypoglycemia. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Biased recruitment and sample selection may cause variability in neuroimaging studies. Epidemiologically principled population-based magnetic resonance imaging (MRI) studies of schizophrenia are very rare. We gathered structural MRI data on 154 subjects from the Northern Finland 1966 Birth Cohort, aged 33–35 (100 controls, 54 schizophrenia patients). Regional differences in density of gray matter, white matter, and cerebrospinal fluid (CSF) were identified between groups using nonparametric statistical analysis, and the relationship of the regional differences to duration of illness was explored. Gray matter reductions were found bilaterally in the cerebellum, thalamus, basal ganglia, middle frontal gyrus, inferior frontal gyrus, precentral gyrus, insula, superior temporal gyrus, fusiform gyrus, parahippocampal gyrus, cuneus, and lingual gyrus; in the left posterior cingulate, superior frontal gyrus, transverse temporal gyrus, and precuneus; and in the right postcentral gyrus. Gray matter excesses were observed bilaterally in the basal ganglia, anterior cingulate, and medial orbitofrontal cortices. There were white matter deficits in an extensive network including inter- and intrahemispheric tracts bilaterally in the frontal, temporal, parietal, and occipital lobes, subcortical structures, cerebellum, and brain stem. CSF excesses were found bilaterally in the lateral ventricles, third ventricle, interhemispheric, and left Sylvian fissure. We replicated the previous findings of structural brain abnormalities in schizophrenia on a general population level. Gray and white matter deficits were associated with duration of illness suggesting either that developmental brain deficits relate to an earlier age of onset or that brain abnormalities in schizophrenia are progressive in nature.  相似文献   

4.
This study investigated the processing of increasing monetary reward in nonsmoking and smoking subjects. The choice of the subject populations has been motivated by the observation of differences between nonsmokers and smokers in response to rewarding stimuli in a previous study. Subjects performed a pattern recognition task with delayed response, while rCBF was measured with [H215O] PET. Correct responses to the task were reinforced with three different amounts of monetary reward. The subjects received the sum of the rewards at the end of the experiment. The results show that a cortico-subcortical loop, including the dorsolateral prefrontal cortex, the orbitofrontal cortex, the cingulate gyrus and the thalamus is involved in processing increasing monetary reward. Furthermore, the striatal response differentiates nonsmokers from smokers. Thus, we found significant correlations between rCBF increases in striatum and increasing monetary reward and between striatal rCBF increases and mood in nonsmokers, but not in smokers. Moreover, no significant mood changes among the different monetary rewards could be observed in smokers. We infer that the response of the striatum to reward is related to changes in subjective feelings. The differences between smokers and nonsmokers confirm our previous conclusions that the association between blood flow, performance, mood and amount of reward is more direct in nonsmokers.  相似文献   

5.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.  相似文献   

6.
In humans, food is considered a powerful primary reinforcer, whereas money is a secondary reinforcer, as it gains a value through learning experience. Here, we aimed to identify the neural regions supporting the processing of food-related reinforcers, relate it to the neural underpinnings of monetary reinforcers, and explore their modulation by metabolic state (hunger vs satiety). Twenty healthy male participants were tested in two experimental sessions, once hungry and once satiated, using functional magnetic resonance imaging. Participants performed an associative learning task, receiving food or monetary rewards (in the form of images) on separate blocks. Irrespective of incentive type, both food and monetary rewards engaged ventral striatum, medial orbitofrontal cortex and amygdala, regions that have been previously associated with reward processing. Food incentives additionally engaged the opercular part of the inferior frontal gyrus and the insula, collectively known as a primary gustatory cortex. Moreover, in response to negative feedback (here, reward omission), robust activation was observed in anterior insula, supplementary motor area and lateral parts of the prefrontal cortex, including middle and inferior frontal gyrus. Furthermore, the interaction between metabolic state and incentive type resulted in supramarginal gyrus (SMG) activity, among other motor and sensory-related regions. Finally, functional connectivity analysis showed correlation in the hungry state between the SMG and mesolimbic regions, including the hippocampus, midbrain and cingulate areas. Also, the interaction between metabolic state and incentive type revealed coupling between SMG and ventral striatum. Whereas general purpose reward-related regions process incentives of different kinds, the current results suggest that the SMG might play a key role in integrating the information related to current metabolic state and available incentive type.  相似文献   

7.
The aim of this study was to investigate differences in the brain's haemodynamic response to semantically incongruent and congruent sentences in adults with an autistic spectrum condition (ASC) and a typically developing Control group. We used functional magnetic resonance imaging to measure regional variations in neural activity during detection of semantic incongruities within written sentences. Whilst the 12 controls showed a pattern of activity extending from posterior cingulate cortices bilaterally and the left occipitotemporal region to the left superior and inferior temporal lobes, right anterior cingulate and right inferior frontal gyrus, the 12 participants with an ASC presented a more spatially restricted activation pattern, including the left inferior frontal gyrus, left anterior cingulate cortex and right middle frontal gyrus. These results are coherent with the hypothesis that impaired integration of multiple neural networks in people with an ASC is related to previous observations that this group have difficulties in the use of context to predict the final word of sentences.  相似文献   

8.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neuropsychiatric diseases, but rarely in low-grade hepatic encephalopathy (HE), a common neuropsychiatric complication of liver cirrhosis. We conducted a resting-state fMRI in 19 healthy controls, 18 cirrhotic patients without HE, and 22 cirrhotic patients with low-grade HE. The amplitude of low-frequency fluctuations (ALFF) of fMRI signal was computed to measure the spontaneous neuronal activity. Several regions showing significant ALFF differences among three groups were the precuneus, occipital lobe, left frontal lobe and anterior/middle cingulate cortex, and left cerebellum posterior lobe. Compared to controls or patients without HE, patients with low-grade HE showed decreased ALFF in the precuneus and adjacent cuneus, visual cortex, and left cerebellum posterior lobe. Compared to controls, patients with low-grade HE showed higher ALFF in both cortical and subcortical regions, including the right middle cingulate gyrus, and left anterior/middle cingulate gyrus, inferior frontal gyrus, insula lobe, parahippocampal gyrus, middle temporal gyrus and lentiform nucleus; compared to patients without HE, patients with low-grade HE showed higher ALFF in the left medial frontal gyrus and anterior cingulate gyrus, bilateral superior frontal gyrus, and right middle frontal gyrus. Moreover, correlations between ALFF changes and poor neurocognitive performances were found in patients with low-grade HE. These results suggested the existence of aberrant brain activity at the baseline state in low-grade HE, which may be implicated in the neurological pathophysiology underlying HE.  相似文献   

9.
Theoretical models for lexical access to visual objects have been based mainly on adult data. To investigate the developmental aspects of object recognition and lexical access in children, a large-scale functional MRI (fMRI) study was performed in 283 normal children ages 5-18 using a word-picture matching paradigm in which children would match an aurally presented noun to one of two pictures (line drawings). Using group Independent Component Analysis (ICA), six task-related components were detected, including (a) the posterior superior temporal gyrus bilaterally; (b) the fusiform, inferior temporal, and middle occipital gyri bilaterally; (c) the dorsal aspect of the inferior frontal gyrus bilaterally, the left precuneus, the left superior/middle temporal gyrus, and the anterior cingulate; (d) the right medial fusiform gyrus; (e) a left-lateralized component including the inferior/middle frontal, middle temporal, medial frontal, and angular gyri, as well as the thalamus and the posterior cingulate; and (f) the ventral/anterior aspect of the inferior frontal gyrus bilaterally. Increased activation associated with age was seen in the components (b) and (d) (ventral visual pathway) for object recognition, and (c) and (f) likely associated with semantic maintenance and response selection. Increased activation associated with task performance was seen in components (b) and (d) (ventral visual pathway) while decreased activation associated with task performance was seen in component (f) (ventral/anterior inferior frontal gyrus). The results corroborate the continued development of the ventral visual pathway throughout the developmental period.  相似文献   

10.
The eZIS allows computer-assisted statistical analysis of brain perfusion SPECT images. We evaluated the diagnostic value of brain perfusion SPECT using eZIS in patients with various neurodegenerative diseases at a very early stage, within one year from onset.

Methods

SPECT using eZIS was performed for patients with Alzheimer disease (AD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD,), idiopathic Parkinson disease (PD) and vascular Parkinsonism (VP), multiple systemic atrophy of the cerebellar type (MSA-C), cortical cerebellar atrophy (CCA) and amyotrophic lateral sclerosis (ALS).

Results

Decreased rCBF was observed in the posterior cingulate cortex, precuneus and parietal cortex in AD; in the frontal gyrus and insula in FTD; in the occipital lobe, precuneus gyrus and posterior cingulate cortex in DLB; in the striatum and the thalamus in VP; in the cerebellum in CCA; in the cerebellum and pons in MSA-C and in the frontal cortex including the central sulcus in ALS. Increased rCBF in the striatum, thalamus and cerebellar dentate nuclei were observed in PD.

Conclusions

A specific rCBF pattern was observed for each disease using eZIS analysis, consistent with previous reports. Our results showed eZIS can be easily used as an adjunct to early-diagnosis of neurodegenerative diseases in any hospital.  相似文献   


11.
Spinal cord stimulation applied at thoracic level 1 (T1) has a neurally mediated anti-anginal effect based on anti-ischaemic action in the myocardium. Positron emission tomography was used to study which higher brain centres are influenced by spinal cord stimulation. Nine patients with a spinal cord stimulator for angina pectoris were studied using H215O as a flow tracer. Relative changes in regional cerebral blood flow related to stimulation compared with non-stimulation were assessed and analysed using the method of statistical parametric mapping. Increased regional cerebral blood flow was observed in the left ventrolateral periaqueductal grey, the medial prefrontal cortex [Brodmann area (BA) 9/10], the dorsomedial thalamus bilaterally, the left medial temporal gyrus (BA 21), the left pulvinar of the thalamus, bilaterally in the posterior caudate nucleus, and the posterior cingulate cortex (BA 30). Relative decreases in rCBF were noticed bilaterally in the insular cortex (BA 20/21 and BA 38), the right inferior temporal gyrus (BA 19/37), the right inferior frontal gyrus (BA 45), the left inferior parietal lobulus (BA 40), the medial temporal gyrus (BA 39) and the right anterior cingulate cortex (BA 24). It is concluded that spinal cord stimulation used as an additional treatment for angina applied at TI modulates regional cerebral blood flow in brain areas known to be associated with nociception and in areas associated with cardiovascular control.  相似文献   

12.
Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.  相似文献   

13.
We assessed the presence and the degree of alteration of the regional blood flow (rCBF) as visualized by Tc-99m HMPAO brain rest SPECT in the sensory motor cortex and subcortical structure in spinal cord injury (SCI) patients, who suffered from various levels of motor and sensory function loss. Twenty-two patients (mean age: 42.1+/-13.4 years, 18 M, 4 F) and 11 control subjects (mean age: 32.2+/-6.4 years, 8 M, 3 F) participated in this study. The spinal cord injury group was consisted of 2 groups (14 paraplegic and 8 tetraplegic patients). The corticocortical rCBF ratios were calculated by using region of interests obtained from 34 cortical areas on coronal slices. Significantly reduced rCBF were measured from 11 cortical areas in tetraplegic patients and 11 cortical areas in paraplegic patients. Some of these areas were different in each group. In the tetraplegic group, significant reduction was observed in the following rCBF areas: left anterior cingulate gyrus, left medial supplementary motor area, bilateral front and back aspects of posterior cingulate gyrus, right lateral primary motor area, right medial primary sensory area, bilateral putamen, and right cerebellum. In the paraplegic group, reduced rCBF areas were as follows: bilateral anterior cingulate gyrus, right lateral supplementary motor area, left front aspect of posterior cingulate gyrus, left lateral primary motor area, bilateral back aspects of posterior cingulate gyrus, right medial primary sensory area, left lateral primary sensory area and bilateral putamen. In conclusion, in some of the movement-cortical and subcortical areas having significantly reduced blood flow in SCI may be helpful to demonstrate the disrupted areas of rCBF by SPECT. We believe that it may be useful if these findings should be considered during the evaluations related to the reorganization in SCI cases.  相似文献   

14.
Essential tremor (ET) is a neurological disease with both motor and nonmotor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting‐state functional magnetic resonance imaging (MRI) data, in 23 ET patients versus 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small‐worldness values than healthy controls—less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo‐occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus (posterior part). In addition, ET patients showed significant higher local efficiency and clustering coefficient values in frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate cortex, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. Finally, the right intracalcarine cortex and the left orbitofrontal cortex showed a shorter average path length in ET patients, while the left frontal operculum and the right planum polare showed a higher betweenness centrality in ET patients. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.  相似文献   

15.
Ha TH  Youn T  Ha KS  Rho KS  Lee JM  Kim IY  Kim SI  Kwon JS 《Psychiatry research》2004,132(3):251-260
Numerous imaging studies have shown structural brain abnormalities in schizophrenia. Recently, voxel-based morphometry enabled whole brain analysis beyond the regions of interest (ROI). Regional gray matter concentrations of magnetic resonance (MR) images from 35 patients with paranoid schizophrenia were compared with those from 35 age- and sex-matched controls, and their clinical correlations were explored using voxel-based morphometry. Gray matter concentrations in the patients were significantly reduced in the left insular and dorsolateral prefrontal regions, and bilaterally in the medial frontal, anterior cingulate, inferior frontal and superior temporal regions. On the other hand, gray matter concentrations in the bilateral cerebellum and right striatum were significantly increased in the patients compared with controls. A negative correlation between the score for the severity of 'lack of insight and judgment' and gray matter concentrations in the left posterior and right anterior cingulate and bilateral inferior temporal regions including the lateral fusiform gyri was found. These results suggest the important roles of the paralimbic structures in the pathophysiology of schizophrenia and the involvement of the perceptual and monitoring systems in the mechanism of insight.  相似文献   

16.
Reward-based decision-making has been found to activate several brain areas, including the ven- trolateral prefronta~ lobe, orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mesolimbic dopaminergic system. In this study, we observed brain areas activated under three de- grees of uncertainty in a reward-based decision-making task (certain, risky, and ambiguous). The tasks were presented using a brain function audiovisual stimulation system. We conducted brain scans of 15 healthy volunteers using a 3.0T magnetic resonance scanner. We used SPM8 to ana- lyze the location and intensity of activation during the reward-based decision-making task, with re- spect to the three conditions. We found that the orbitofrontal cortex was activated in the certain reward condition, while the prefrontal cortex, precentral gyrus, occipital visual cortex, inferior parietal lobe, cerebellar posterior lobe, middle temporal gyrus, inferior temporal gyrus, limbic lobe, and midbrain were activated during the 'risk' condition. The prefrontal cortex, temporal pole, inferior temporal gyrus, occipital visual cortex, and cerebellar posterior lobe were activated during am- biguous decision-making. The ventrolateral prefrontal lobe, frontal pole of the prefrontal lobe, orbi- tofrontal cortex, precentral gyrus, inferior temporal gyrus, fusiform gyrus, supramarginal gyrus, infe- rior parietal Iobule, and cerebellar posterior lobe exhibited greater activation in the 'risk' than in the 'certain' condition (P 〈 0.05). The frontal pole and dorsolateral region of the prefrontal lobe, as well as the cerebellar posterior lobe, showed significantly greater activation in the 'ambiguous' condition compared to the 'risk' condition (P 〈 0.05). The prefrontal lobe, occipital lobe, parietal lobe, temporal lobe, limbic lobe, midbrain, and posterior lobe of the cerebellum were activated during deci- sion-making about uncertain rewards. Thus, we observed different levels and regions of activation for different types of reward processing during decision-making. Specifically, when the degree of reward uncertainty increased, the number of activated brain areas increased, including greater ac- tivation of brain areas associated with loss.  相似文献   

17.
Cognitive deficits in Huntington's disease (HD) have been attributed to neuronal degeneration within the striatum; however, postmortem and structural imaging studies have revealed more widespread morphological changes. To examine the impact of HD-related changes in regions outside the striatum, we used functional magnetic resonance imaging (fMRI) in HD to examine brain activation patterns using a Simon task that required a button press response to either congruent or incongruent arrow stimuli. Twenty mild to moderate stage HD patients and 17 healthy controls were scanned using a 3T GE scanner. Data analysis involved the use of statistical parametric mapping software with a random effects analysis model to investigate group differences brain activation patterns compared to baseline. HD patients recruited frontal and parietal cortical regions to perform the task, and also showed significantly greater activation, compared to controls, in the caudal anterior cingulate, insula, inferior parietal lobules, superior temporal gyrus bilaterally, right inferior frontal gyrus, right precuneus/superior parietal lobule, left precentral gyrus, and left dorsal premotor cortex. The significantly increased activation in anterior cingulate-frontal-motor-parietal cortex in HD may represent a primary dysfunction due to direct cell loss or damage in cortical regions, and/or a secondary compensatory mechanism of increased cortical recruitment due to primary striatal deficits.  相似文献   

18.
Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.  相似文献   

19.
Procedural learning (PL) is a type of rule-based learning in which performance facilitation occurs with practice on task without the need for conscious awareness. Schizophrenic patients have often (though not invariably) been found to show impaired PL. We performed functional magnetic resonance imaging (fMRI) during a blocked, periodic sequence-learning task with groups of: (i) healthy subjects, and (ii) schizophrenic patients on conventional antipsychotics. Healthy subjects showed significant PL, but patients did not. In healthy subjects, PL was associated with increased activation in the striatum, thalamus, cerebellum, precuneus, medial frontal lobe, and cingulate gyrus. The power of activation in the thalamus, striatum, precuneus, cingulate gyrus and BA 6 was related to the magnitude of PL in these subjects. No regions, except the anterior inferior gyrus, were significantly activated in patients. The caudate nucleus, thalamus, precuneus, and sensorimotor regions were activated significantly differently between the two groups. The findings demonstrate the involvement of the striatum, cerebellum, thalamus, cingulate gyrus, precuneus, and sensorimotor regions in PL. Further fMRI studies of PL in normal subjects treated with conventional antipsychotics, drug na?ve patients, and patients given atypical antipsychotics would help to clarify the roles of schizophrenic disease processes and antipsychotic medication in impaired PL and associated brain abnormalities in schizophrenia.  相似文献   

20.
Disturbances in selective attention represent a core characteristic of schizophrenia, whose neural underpinnings have yet to be fully elucidated. Consequently, we recorded brain activation using functional magnetic resonance imaging (fMRI) while 15 patients with schizophrenia and 15 age-matched controls performed a well-established measure of selective attention—the color Stroop negative priming task. We focused on two aspects of performance: overriding pre-potent responses (Stroop effect) and inhibition of prior negatively primed trials (negative priming effect). Behaviorally, controls demonstrated both significant Stroop and negative priming effects, while schizophrenic subjects only showed the Stroop effect. For the Stroop effect, fMRI indicated significantly greater activation in frontal regions–medial frontal gyrus/anterior cingulate gyrus and middle frontal gyrus for controls–but greater activation in medial parietal regions (posterior cingulate gyrus/precuneus) for patients. Negative priming elicited significant activation in right dorsolateral prefrontal cortex for both groups, but also in left dorsolateral prefrontal cortex for patients. These different patterns of fMRI activation may reflect faulty interaction in schizophrenia within networks of brain regions that are vital to selective attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号