首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mounting evidence supports the hypothesis that spinal microglia modulate the development and maintenance of some chronic pain states. Here we examined the role of spinal microglia following both peripheral inflammatory insult and peripheral nerve injury. We observed significant ipsilateral dorsal horn microglia activation 2 weeks after injury and bilateral activation 50 days following nerve injury as well as 24 h following intraplantar zymosan but not intraplantar complete Freund's adjuvant (CFA). Ipsilateral but not contralateral microglia activation was associated with hind paw mechanical hyperalgesia. Spinal injection of the glial metabolic inactivator fluorocitrate attenuated ipsilateral hyperalgesia and bilateral spinal microglia activation after peripheral nerve injury. Intrathecal fluorocitrate reversed hyperalgesia after intraplantar zymosan and produced no reversal of CFA-induced hyperalgesia. These data suggest a role for spinal glia in the persistence of mechanical hyperalgesia following peripheral nerve injury. However, activation of spinal microglia contralaterally did not correlate to nociception. Furthermore, it would appear that the time course of microglia activation and their contribution to inflammatory pain is dependent on the inflammatory stimulus administered.  相似文献   

2.
Neuropeptide-expressing small diameter sensory neurones are thought to be vital in generating inflammatory hyperalgesic responses. Within the dorsal root ganglion (DRG), both the levels of the neuropeptide calcitonin gene-related peptide (CGRP) and the numbers of CGRP-immunoreactive (CGRP-IR) DRG neurones have been shown to increase in a number of acute adjuvant-induced inflammatory pain models. The aim of this study was to look specifically at changes in numbers of CGRP-IR DRG neurones in a chronic model of inflammatory joint pain following complete Freund's adjuvant (CFA) injection into the rat knee. In this model, there were significant increases in the number of ipsilateral CGRP-IR small DRG neurones at days 1, 16 and 35 following intra-articular CFA, compared to saline-injected sham animals. This correlated with the behavioural readouts of hypersensitivity and knee joint inflammation at the same time points. There was also a significant increase in the number of ipsilateral CGRP-IR medium DRG neurones and contralateral CGRP-IR small DRG neurones at day 1. Following dosing of CFA-injected rats with rofecoxib (Vioxx) or paracetamol, there was a significant decrease in the number of ipsilateral CGRP-IR small and medium DRG neurones in rofecoxib- but not paracetamol-treated rats. These data also correlated with behavioural readouts where hypersensitivity and knee joint inflammation were significantly reduced by rofecoxib but not paracetamol treatment. In conclusion, these data show that changes in ipsilateral CGRP expression within small DRG neurones are consistent with behavioural readouts in both time course, rofecoxib and paracetamol studies in this model of chronic inflammatory pain.  相似文献   

3.
Lacosamide is a functionalized amino acid which was initially synthesized as an antiepileptic drug. In addition to its broad anti-seizure activity, lacosamide was shown to display efficacy in animal models for neuropathic pain and is currently in phase III clinical development for the treatment of epilepsy and neuropathic pain. In order to further profile its antinociceptive properties, the effects of lacosamide on inflammatory pain in the formalin test, the carrageenan model and the adjuvant-induced arthritis model were investigated. For the formalin test, mice received an intraplantar injection of formalin and the subsequent licking response was measured over 45 min. Lacosamide was administered 30 min before formalin. For the carrageenan model, mechanical and thermal hyperalgesia were assessed 3 h following an intraplantar injection of carrageenan. Lacosamide was administered to rats 30 min before pain threshold measurements. For the adjuvant-induced arthritis test rats received intraplantar injections of Freund's complete adjuvant into the right hindpaw which lead to the development of arthritic symptoms in all animals tested for antinociception. On day 11 after arthritis induction, mechanical hyperalgesia was assessed by the modified Randall Selitto paw pressure test following acute treatment with lacosamide. Lacosamide dose-dependently attenuated mechanical hyperalgesia following carrageenan injection and in rats suffering from Freund's complete adjuvant-induced arthritis. Moreover, thermal hyperalgesia induced by carrageenan as well as the formalin-induced licking response were dose-dependently attenuated by lacosamide. These results suggest lacosamide may be active against various forms of acute and chronic inflammatory pain in humans.  相似文献   

4.
To assess the relative importance of the isoforms of nitric oxide synthase (NOS) in inflammatory pain, we directly compared pain behaviour and paw thickness after intraplantar injection of complete Freund's adjuvant (CFA) in wild-type (WT) mice and in mice lacking either inducible (iNOS), endothelial (eNOS) or neuronal NOS (nNOS). In mice deficient for nNOS, thermal hyperalgesia was reduced by approximately 50% compared to wild type mice at 4 and 8h after CFA injection, and mechanical hypersensitivity was absent. The only change in pain behaviour in iNOS and eNOS deficient mice compared to WT mice was a more rapid recovery from thermal hyperalgesia. A compensatory up-regulation of nNOS in dorsal root ganglia (DRG) and spinal cords of iNOS and eNOS knockout mice was excluded using RT-PCR. However, an increase of iNOS gene expression was found in spinal cords of eNOS and nNOS deficient mice. To study the downstream effects of nNOS deficiency on DRG neurones, we assessed their immunoreactivity for calcitonin gene-related peptide (CGRP) and cytokines. We found a significant reduction in the CFA induced increase in CGRP immunoreactive neurones as well as in CGRP gene expression in nNOS deficient mice, whereas the percentage of cells immunopositive for tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was unchanged. These results support the proposed role of nNOS in sensitization of DRG neurones, and might indicate that CGRP is involved in this process.  相似文献   

5.
Extracellular adenosine triphosphate (ATP), acting at P2X ionotropic receptors, is implicated in numerous sensory processes. Exogenous ATP has been shown to be algogenic in both animals and humans. Research focus has been directed towards the P2X(3) receptor, as it is preferentially expressed on nociceptive C-fibers and its implication in pain processing is supported by an altered nociceptive phenotype in P2X(3) knock-out mice. In order to further characterize the role of P2X(3) receptor activation in nociception, we evaluated the effects of continuous intrathecal administration of P2X(3) antisense oligonucleotides for 7 days in the rat. P2X(3) receptor antisense oligonucleotide treatment significantly decreased nociceptive behaviors observed after injection of complete Freund's adjuvant (CFA), formalin or alphabeta-methylene ATP into the rat's hind paw. The anti-hyperalgesic effects of the antisense treatment in the CFA model of inflammatory pain were dose related. Similar effects were observed with two distinct P2X(3) antisense oligonucleotides. These behavioral effects were significantly correlated with a decrease in P2X(3) receptor protein expression in the dorsal root ganglia (DRG). In contrast, a decrease in P2X(3) receptor protein expression in the DRG did not affect nociceptive behavior in the carrageenan model of acute thermal hyperalgesia. P2X(3) receptor antisense oligonucleotide treatment also significantly reduced mechanical allodynia observed after spinal nerve ligation. Overall, the present data demonstrate that activation of P2X(3) receptors contribute to the expression of chronic inflammatory and neuropathic pain states and that relief form these forms of chronic pain might be achieved by selective blockade of P2X(3 )receptor expression or activation.  相似文献   

6.
Sasaki M  Obata H  Kawahara K  Saito S  Goto F 《Pain》2006,122(1-2):130-136
Inflammation or injury of peripheral tissue causes release of chemical mediators, including 5-hydroxytryptamine (5-HT), which is involved in the facilitation of nociceptive transmission and the induction of hyperalgesia. The present study examined the effect of a selective 5-HT2A receptor antagonist, sarpogrelate, on hyperalgesia and allodynia induced by thermal injury in rats. Mild thermal injury to the hindpaw produces thermal hyperalgesia in the injured area (primary thermal hyperalgesia) and mechanical allodynia in sites adjacent to the primary area (secondary mechanical allodynia). Mechanical allodynia was assessed by paw withdrawal thresholds using von Frey filaments, and thermal hyperalgesia was assessed by paw withdrawal latencies upon exposure to a radiant heat source. Intraperitoneal administration (30-100 mg/kg) or local injection (30-300 microg) of sarpogrelate 10 min prior to thermal injury attenuated secondary mechanical allodynia in a dose-dependent manner. Intraperitoneal administration (3-100 mg/kg) or local injection (30-300 microg) of sarpogrelate 10 min prior to thermal injury attenuated primary thermal hyperalgesia in a dose-dependent manner. Intraplantar injection of sarpogrelate (300 microg) to the contralateral hindpaw had no effect on primary thermal hyperalgesia or secondary mechanical allodynia in the ipsilateral paw. The tissue concentration of 5-HT was measured using microdialysis. Concentrations of 5-HT increased after thermal injury in both primary and secondary areas, and the increase was not attenuated by pretreatment with sarpogrelate (100 mg/kg, i.p.). These data suggest that 5-HT released in peripheral tissues after thermal injury sensitizes primary afferent neurons and produces mechanical allodynia and thermal hyperalgesia via peripheral 5-HT2A receptors.  相似文献   

7.
8.
Rahman W  Suzuki R  Webber M  Hunt SP  Dickenson AH 《Pain》2006,123(3):264-274
There is compelling evidence for a strong facilitatory drive modulating spinal nociceptive transmission. This is in part via serotonergic pathways and originates from the rostroventral medulla. We previously demonstrated that neuropathic pain is associated with an enhanced descending facilitatory drive onto the mechanical evoked responses of dorsal horn neurones, mediated by 5-HT acting at spinal 5-HT3 receptors. Furthermore, depletion of spinal 5-HT has been shown to reduce the at-level mechanical allodynia that follows spinal cord injury. To further clarify the role and direction of effect of endogenous 5-HT, we investigated the effects of depleting spinal 5-HT, via intrathecal injection of 5,7di-hydroxytryptamine (5,7DHT), on pain behaviours after spinal nerve ligation (SNL). Depletion of spinal 5-HT in normal animals leads to reductions in mechanical and thermal evoked responses of deep dorsal horn neurones implying that spinal 5-HT has a predominant facilitatory function. After nerve injury, the frequency of paw withdrawals to low intensity mechanical and cooling stimulation of the ipsilateral hindpaw in the SNL-5,7DHT group was significantly attenuated when compared with the SNL-saline group from day seven post-nerve injury. Sham-5,7DHT and sham-saline animals showed very little response sensitivity on either hindpaw. This 5-HT-mediated difference in behaviour was independent of both the up-regulation of the NK1 receptor and spinal microglial activation produced by nerve injury. These data suggest that supraspinal serotonergic influences under these conditions are facilitatory and are implicated in the maintenance of spinal cord neuronal events leading to the behavioural hypersensitivity manifested after peripheral nerve damage.  相似文献   

9.
Pretreatment with intraperitoneal (i.p.) indomethacin was used to determine whether indomethacin preferentially affected the development of edema and hyperalgesia to thermal and mechanical stimuli produced by injection of zymosan in the ispsilateral hindpaw of the rat. Indomethacin also was delivered intrathecally (i.t.) either 30 minutes before or 4 hours after intraplantar zymosan to determine whether spinal prostaglandin production was important for the induction and/or maintenance of hyperalgesia. Zymosan alone produced a robust edema, a monophasic mechanical hyperalgesia, and a biphasic thermal hyperalgesia in the ipsilateral hindpaw. Systemic administration of indomethacin reduced zymosan-induced edema and increased thermal and mechanical response thresholds in the zymosan-injected paw. Systemic indomethacin did not affect thermal withdrawal response thresholds in the uninjected contralateral hindpaw of zymosan-treated rats, but significantly increased mechanical withdrawal thresholds of the uninjected contralateral paw of zymosan-treated rats. i.t. administration of indomethacin before the induction of hyperalgesia attenuated the development of zymosan-induced mechanical hyperalgesia, but did not affect the development of either zymosan-induced edema or thermal hyperalgesia. Once hyperalgesia was established, i.t. indomethacin also attenuated the mechanical hyperalgesia whereas it had no effect on thermal hyperalgesia or edema. These data suggest that peripheral, but not spinal prostaglandins contribute to the edema and development of thermal hyperalgesia produced by zymosan. In contrast, spinal prostaglandins contribute to the development and maintenance of mechanical hyperalgesia.  相似文献   

10.
The complete Freund's adjuvant (CFA)-induced arthritic rat model has extensively served as a laboratory model in the study of arthritic pain. However, the time courses of allodynia and hyperalgesia and the efficacies of different analgesics have not fully been analyzed in this model. Mechanical allodynia, thermal and joint hyperalgesia, and other disease development parameters (body weight, mobility, paw volume, and joint stiffness) were measured on postinoculation days (PIDs) 0 to 28 in rats. Acute analgesic efficacies of drugs were evaluated on PID 9 when degrees of allodynia, hyperalgesia, and joint stiffness in the ipsilateral paw reached almost the maximum, although those in the contralateral paw changed only slightly. In the ipsilateral paw, thermal hyperalgesia reached the maximum on PID 1, whereas mechanical allodynia and joint hyperalgesia progressively developed during the first 7 or 8 days, being tuned in to arthritis development. In the contralateral paw, thermal hyperalgesia never occurred, whereas mechanical allodynia and joint hyperalgesia developed after PID 11. Morphine and tramadol had full efficacies for all the pain parameters tested at sedation-inducing doses. Indomethacin and diclofenac significantly but partially improved thermal and joint hyperalgesia. Amitriptyline significantly reduced thermal and joint hyperalgesia only at sedation-inducing dose. Acetaminophen, carbamazepine, and gabapentin had, at the most, very small efficacies. In conclusion, the present study provided integrated information about the time course of pain and other disease development parameters in the CFA-induced arthritic rats, and clarified acute efficacies of different categories of analgesics for the allodynia and hyperalgesia.  相似文献   

11.
Cahill CM  Morinville A  Hoffert C  O'Donnell D  Beaudet A 《Pain》2003,101(1-2):199-208
Pharmacological and physiological evidence supports a role for delta (delta) opioid receptors in the nociceptive mechanisms of inflammation. However, few data exist regarding delta opioid receptor expression and localization in such conditions. In this study, we have assessed the distribution and function of delta opioid receptors in the rat spinal cord following induction of chronic inflammation by intraplantar injection of complete Freund's adjuvant (CFA). Intrathecal administration of the selective delta opioid receptor agonist, D-[Ala(2), Glu(4)] deltorphin, dose-dependently reversed thermal hyperalgesia induced by CFA. In situ hybridization and Western blotting experiments revealed an increase in delta opioid receptor mRNA and protein levels, respectively, in the dorsal lumbar spinal cord ipsilateral to the CFA injection site compared to the contralateral side and sham-injected controls. By electron microscopy, immunopositive delta opioid receptors were evident in neuronal perikarya, dendrites, unmyelinated axons and axon terminals. Quantification of immunopositive signal in dendrites revealed a twofold increase in the number of immunogold particles in the ipsilateral dorsal spinal cord of CFA-injected rats compared to the contralateral side and to sham-injected rats. Moreover, the relative frequency of immunogold particles associated with or in close proximity to the plasma membrane was increased in the ipsilateral dorsal spinal cord, indicating a more efficient targeting of delta opioid receptors to neuronal plasma membranes. These data demonstrate that CFA induces an up-regulation and increased membrane targeting of delta opioid receptors in the dorsal spinal cord which may account for the enhanced antinociceptive effects of delta opioid receptor agonists in chronic inflammatory pain models.  相似文献   

12.
The aim of the present study was to investigate the effects of cannabinoid agonists on established inflammatory hyperalgesia. We have compared the effects of pre-administration versus post-administration of a potent non-selective cannabinoid agonist HU210 and a selective CB2 receptor agonist JWH-133 on hindpaw weight bearing and paw oedema in the carrageenan model of inflammatory hyperalgesia. For comparative purposes we also determined the effects of the mu-opioid receptor agonist morphine and the COX2 inhibitor rofecoxib in this model. At 3 h following intraplantar injection of carrageenan (2%, 100 microl) there was a significant (P < 0.001) reduction in weight bearing on the ipsilateral hindpaw, compared to vehicle treated rats and a concomitant increase in ipsilateral hindpaw volume (P < 0.001), compared to vehicle treated rats. Systemic administration of HU210 (10 microg/kg) and JWH-133 (10 mg/kg) at 3 h following injection of carrageenan, significantly attenuated decreases in ipsilateral hindpaw weight bearing (P < 0.05 for both) and paw volume (P < 0.001 for both). Pre-administration of HU210 and JWH-133 had similar effects on weight bearing in this model. Pre-administered HU210 also significantly decreased carrageenan-induced changes in paw volume (P < 0.001), this was not the case for JWH-133. Effects of post-administered HU210 and JWH-133 on ipsilateral hindpaw weight bearing and paw volume were comparable to the effect of systemic post-administration of morphine and rofecoxib (3 mg/kg for both). In summary, both HU210 and JWH-133 attenuated established inflammatory hypersensitivity and swelling, suggesting that cannabinoid-based drugs have clinical potential for the treatment of established inflammatory pain responses.  相似文献   

13.
Asai H  Ozaki N  Shinoda M  Nagamine K  Tohnai I  Ueda M  Sugiura Y 《Pain》2005,117(1-2):19-29
We developed a mouse model of cancer pain to investigate its underlying mechanisms. SCC-7, squamous cell carcinoma (SCC) derived from C3H mice, was inoculated subcutaneously into either the plantar region or thigh in male C3H/Hej mice. Heat and mechanical sensitivity as well as spontaneous behavior were measured at the plantar surface of the ipsilateral hind paw after the inoculation. Inoculated sites were histologically examined, and the expression of capsaicin receptors (TRPV1) was examined in the dorsal root ganglia (DRG) to clarify their potential contribution to pain sensitivity. Inoculation of cancer cells induced marked heat hyperalgesia and mechanical allodynia in the ipsilateral hind paw for two weeks in both plantar- and thigh-inoculation models. Signs of spontaneous pain, such as lifting, licking and flinching of the paw were also observed. However, further growth of the tumor reversed the mechanical allodynia in both plantar- and thigh-inoculation models, and heat hyperalgesia in thigh-inoculation models. Histologically, no infiltration of the tumor cells into the nerve was observed. TRPV1 immunoreactive cells increased in the L5 DRG on day 7, but returned to the control level on day 15 post-inoculation. Intraperitoneal administration of the competitive TRPV1 antagonist capsazepine inhibited hyperalgesia induced by tumor cell-inoculation in either plantar- or thigh-inoculated animals. This study indicated that inoculation of SCC resulted in spontaneous pain, heat hyperalgesia and mechanical allodynia. The altered expression of TRPV1 in the DRG may be involved in behavioral changes in this model.  相似文献   

14.
Peripheral inflammation evokes functional and biochemical changes in the periphery and spinal cord which result in central sensitization and hypersensitivity. Inhibitory control systems from the rostral ventromedial medulla (RVM) are also activated. The present study investigates whether endogenous kappa-opioid receptor (KOPr) systems contribute to these neuroadaptations. Inflammation was induced by intraplantar injection of complete Freund’s adjuvant (CFA) into one hindpaw. Mechanical and thermal thresholds were determined using the Von Frey and radiant heat tests, respectively. KOPr gene deletion in mice or systemic administration of the long-acting KOPr antagonist, norbinaltorphimine (norBNI) significantly exacerbated mechanical and thermal hypersensitivity of the ipsilateral, inflamed paw. Thermal and mechanical thresholds of the non-inflamed, contralateral hindpaw were unaffected by CFA treatment. However, gene deletion as well as norBNI treatment resulted in mechanical, but not thermal hypersensitivity of the non-inflamed paw. Similar results were obtained when norBNI was administered intrathecally or into the RVM in rats. These data demonstrate a previously unrecognized role of endogenous KOPr systems in inhibiting hyperalgesia during inflammation. Furthermore, they demonstrate that decreased KOPr activity in either the spinal cord or RVM not only enhances mechanical and thermal hyperalgesia of the inflamed limb but also leads to an unmasking of mechanical hyperalgesia at a site remote from inflammation. The differential effects of KOPr antagonism on mechanical versus thermal thresholds for the non-inflamed paw support the notion that distinct neuroanatomical or neurochemical mechanisms modulate the processing of thermal versus mechanical stimuli.  相似文献   

15.
Previous work has demonstrated that persistent nociception evokes increased neurokinin-1 receptor (NK-1) gene expression in the spinal cord dorsal horn of the rat within 2 h but has failed to elucidate the relationship between increased NK-1 gene expression at later time points and functional regulation of NK-1 receptor signaling. This study was undertaken to assess changes in NK-1 receptor mRNA levels in models of persistent inflammatory hyperalgesia and to relate them to changes in the functional coupling of NK-1 receptors to G-protein activity in the dorsal horn of the rat. Thus, unilateral intraplantar formalin or complete Freund's adjuvant was used to alter mechanical and thermal withdrawal thresholds in the inflamed paw. One to 96 h later, NK-1 receptor mRNA levels were quantified using solution hybridization-nuclease protection assays. Formalin-evoked inflammation produced a 2-fold unilateral increase in NK-1 receptor mRNA levels apparent from 2 to 96 h postinjection. Histological sections of the lumbar cord from similarly treated rats were used to generate concentration-response curves using GTPgammaS35 functional binding assays stimulated by an NK-1 selective agonist. Results showed that formalin evoked a transient, bilateral decrease in the maximal functional response to 35% of control in the treated side at 24 h postinjection and as much as a 10-fold leftward shift in the EC50 of the agonist at 12 to 96 h postinjection. These results provide novel evidence that peripheral nociceptive activation promotes a central mechanism of hyperalgesia through increased functional sensitivity of NK-1 receptors in the spinal cord dorsal horn.  相似文献   

16.
Johanek LM  Simone DA 《Pain》2004,109(3):432-442
Accumulating evidence suggests that cannabinoids can produce antinociception through peripheral mechanisms. In the present study, we determined whether cannabinoids attenuated existing hyperalgesia produced by a mild heat injury to the glabrous hindpaw and whether the antihyperalgesia was receptor-mediated. Anesthetized rats received a mild heat injury (55 degrees C for 30 s) to one hindpaw. Fifteen minutes after injury, animals exhibited hyperalgesia as evidenced by lowered withdrawal latency to radiant heat and increased withdrawal frequency to a von Frey monofilament (200 mN force) delivered to the injured hindpaw. Separate groups of animals were then treated with an intraplantar (i.pl.) injection of vehicle or the cannabinoid receptor agonist WIN 55,212-2 at doses of 1, 10, or 30 microg in 100 microl. WIN 55,212-2 attenuated both heat and mechanical hyperalgesia dose-dependently. The inactive enantiomer WIN 55,212-3 did not alter mechanical or heat hyperalgesia, suggesting the effects of WIN 55,212-2 were receptor-mediated. The CB1 receptor antagonist AM 251 (30 microg) co-injected with WIN 55,212-2 (30 microg) attenuated the antihyperalgesic effects of WIN 55,212-2. The CB2 receptor antagonist AM 630 (30 microg) co-injected with WIN 55,212-2 attenuated only the early antihyperalgesic effects of WIN 55,212-2. I.pl. injection of WIN 55,212-2 into the contralateral paw did not alter the heat-injury induced hyperalgesia, suggesting that the antihyperalgesia occurred through a peripheral mechanism. These data demonstrate that cannabinoids primarily activate peripheral CB1 receptors to attenuate hyperalgesia. Activation of this receptor in the periphery may attenuate pain without causing unwanted side effects mediated by central CB1 receptors.  相似文献   

17.
The anti‐inflammatory and analgesic properties of different bisphosphonates have been demonstrated in both animal and human studies. Ibandronate is a third‐generation bisphosphonate effective in managing different types of bone pain. In this study we investigated its effects in a standard pre‐clinical model of inflammatory pain. We evaluated the effects of a single injection of different doses (0.5, 1.0, and 2.0mg/kg i.p.) of ibandronate on inflammatory oedema and cutaneous hyperalgesia produced by the intraplantar injection of complete Freund's adjuvant (CFA) in the rat hind‐paw. In addition, we measured the effects of this drug (1.0mg/kg i.p.) on hind‐paw levels of different pro‐inflammatory mediators (PGE‐2, SP, TNF‐α, and IL‐1β). We also measured the levels of SP protein and of its mRNA in the ipsilateral dorsal root ganglia (DRG). Ibandronate proved able to reduce the inflammatory oedema, the hyperalgesia to mechanical stimulation, and the levels of SP in the inflamed tissue as measured 3 and 7 days following CFA‐injection. This drug significantly reduced the levels of TNF‐α and IL‐1β only on day 7. On the other hand, the levels of PGE‐2 in the inflamed hind‐paw were unaffected by the administration of this bisphosphonate. Finally, ibandronate blocked the overexpression of SP mRNA in DRG induced by CFA‐injection in the hind‐paw. These data help to complete the pharmacodynamic profile of ibandronate, while also suggesting an involvement of several inflammatory mediators, with special reference to substance P, in the analgesic action of this bisphosphonate.  相似文献   

18.
Perfusion of the mechanically compressed lumbar ganglion with lidocaine reduces mechanical hyperalgesia and allodynia in the rat. (University of Arkansas for Medical Sciences, Little Rock, AR) J Neurophysiol 2000;84:798–805. This study used an animal model of lumbar radiculopathy to investigate the neurological mechanisms of cutaneous hyperalgesia and tactile allodynia. The rat L5 dorsal root ganglion (DRG) was chronically compressed by inserting a hollow perforated rod into the intervertebral foramen. The DRG was constantly perfused through the hollow rod with either lidocaine or normal saline delivered by a subcutaneous osmotic pump. Behavioral evidence for neuropathic pain after DRG compression involved measuring the incidence of hindlimb withdrawals to both punctate indentations of the hind paw with mechanical probes exerting different bending forces and to light stroking of the hind paw with a cotton wisp. Behavioral results showed that for saline‐treated control rats: the withdrawal thresholds for the ipsilateral and contralateral paws to mechanical stimuli decreased significantly after surgery and the incidence of foot withdrawal to light stroking significantly increased on both ipsilateral and contralateral hind paws. Local perfusion of the compressed DRG with 2% lidocaine for 7 days at a low flow‐rate (1 μl/h), or for 1 day at a high flow‐rate (8 μl/h) partially reduced the decrease in the withdrawal thresholds on the ipsilateral foot, but did not affect the contralateral foot. The incidence of foot withdrawal in response to light stroking with a cotton wisp decreased significantly on the ipsilateral foot and was completely abolished on the contralateral foot in the lidocaine treatment groups. Conclude that compression of the L5 DRG induced central pain syndrome that included bilateral mechanical hyperalgesia and tactile allodynia. Results also suggest that a lidocaine block, or a reduction in abnormal activity from the compressed ganglia to the spinal cord, could partially reduce mechanical hyperalgesia and tactile allodynia. Comments by Marshall Devor, PhD. Tonic compression of the dorsal root ganglion (DRG) in animal preparations, and presumably also in man, causes sensory cells to become electrically hyperexcitable. The resulting spontaneous discharge is a cause of ongoing paresthesias and pain. Many believe that in addition, this ectopic activity can trigger and maintain central sensitization in the spinal cord, resulting in tactile hypersensitivity (allodynia and hyperalgesia) in the body parts innervated by the ganglion. This second effect of ectopic DRG activity, however, is controversial. Zhang and collaborators now provide strong new support for this idea by showing that lidocaine infusion into the DRG, with consequent block of the ectopic DRG firing, considerably reduces allodynia and hyperalgesia for the duration of the infusion (weeks). Here is a novel therapeutic approach that deserves a try.  相似文献   

19.
Levy D  Zochodne DW 《Pain》2000,86(3):265-271
We examined the role of B1 and B2 bradykinin receptors in promoting neuropathic hypersensitivity following peripheral nerve injury. Forty eight-hours following chronic constriction injury to a rat sciatic nerve there was an increased expression of B2 receptor mRNA in the lumbar dorsal root ganglia ipsilateral to the site of nerve injury. At 14 days following surgery there was also an ipsilateral increase of B1 receptor mRNA as well as a contralateral increased expression of B2 receptor mRNA. Increased expression of both receptors also coincided with analgesic effects of their antagonists. While HOE-140, a potent B2 receptor antagonist was analgesic at both time points tested, the B1 receptor antagonist des-Arg(9), [Leu(8)]-BK had an analgesic effect only at 14 days. The results support the concept that peripheral nerve injury is associated with local inflammation and that bradykinin, acting on both of its receptors promotes pain hypersensitivity.  相似文献   

20.
The involvement of NMDA receptors in rats with peripheral inflammation and hyperalgesia was evaluated by administration of the non-competitive NMDA receptor antagonist, MK-801. Inflammation and hyperalgesia was induced by intradermal injection of complete Freund's adjuvant (CFA) or carrageenan into the left hind paw. The latency of paw withdrawal from a thermal stimulus was used as a measure of hyperalgesia in awake rats. MK-801 (1.6 mg/kg, i.p., or 31.5 μg, intrathecal) significantly attenuated thermal hyperalgesia and reduced its duration in comparison to saline-injected rats (P < 0.05). The receptive field size of nociceptive-specific and wide-dynamic-range neurons in the superficial and deep spinal dorsal horn recorded 24 h after injection of CFA was significantly reduced to 73 ± 6% (P < 0.05, n = 8) and 74 ± 4% (P < 0.05, n = 8) of control values, respectively, by a cumulative dose of 3 mg/kg of MK-801 (i.v.). MK-801 (2 mg/kg) prevented the expansion of the receptive fields of dorsal horn neurons recorded 5 ± 0.4 h (n = 5) after intradermal injection of CFA as compared to saline-injected rats (P < 0.05). MK-801 had no significant effect on receptive field size of dorsal horn neurons in rats without CFA-induced inflammation but blocked a transient expansion of the receptive fields induced by 1 Hz, C-fiber intensity electrical stimulation of the sciatic nerve. The background activity and noxious heat-evoked response of dorsal horn neurons in rats with CFA-induced inflammation were primarily inhibited and noxious pinch-evoked activity was both facilitated and inhibited by the administration of MK-801. These results support the hypothesis that NMDA receptors are involved in the dorsal horn neuronal plasticity and behavioral hyperalgesia that follows peripheral tissue inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号