首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypoxic–ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic–ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic–hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic–hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic–hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic–ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic–ischemic brain injury.  相似文献   

2.
The current study determined whether short durations of ischemia that produce ischemia-induced tolerance stimulate glial proliferation in brain. Adult male gerbils were injected with BrdU (50 mg/kg) and dividing cells were detected using immunocytochemistry after sham operations, 2.5 or 5 minutes of global ischemia, or ischemia-induced tolerance. The 2.5-minute ischemia and the ischemia-induced tolerance did not kill hippocampal CA1 pyramidal neurons, whereas the 5-minute ischemia did kill the neurons. At 4 days after 2.5-minute global ischemia, when cell proliferation was maximal, BrdU-labeled cells increased in striatum and in neocortex, but not in hippocampus. The majority of the BrdU-labeled cells were double-labeled with isolectin B4, showing that these dividing cells were primarily microglia or macrophages, or both. Similarly, BrdU-labeled microglia/macrophages were found in striatum and neocortex but not in hippocampus of most animals 4 days after ischemia-induced tolerance (2.5 minutes of global ischemia followed 3 days later by 5 minutes of global ischemia). No detectable neuronal cell death existed in striatal and cortical regions where the microglia/macrophage proliferation occurred. Though 3 of 7 animals subjected to 2.5 minutes of ischemia showed decreased myelin-associated glycoprotein (MAG) immunostaining and increased numbers of adenomatous polyposis coli-stained oligodendrocytes in lateral striatum, this did not explain the microglia/macrophage proliferation. Data show that ischemia-induced tolerance in the gerbil is associated with proliferation of microglia/macrophages in striatum and cortex but not in hippocampus. Because there is no apparent neuronal death, it is postulated that the microglia/macrophage proliferation occurs in response to an unknown nonlethal injury to neurons or glia and may be beneficial.  相似文献   

3.
We observed the neuroprotective effects of ECLs treatment on ischemic damage in the gerbil hippocampal CA1 region four days after an ischemic insult. Among the 10 ECLs, EERCL and EESCL showed significant neuroprotection: the percentage of neurons remaining after treatment with EERCL and EESCL was 72.7% and 68.4% of that seen in the sham-ischemia group, respectively. The administration of EERCL and EESCL significantly decreased the reactive gliosis of microglia compared with that seen in the vehicle-treated ischemia group. In addition, SOD1 and BDNF immunoreactivity in the EERCL- and EESCL-ischemia groups were markedly increased compared with that in the vehicle-treated ischemia group. These results suggest that the administration of EERCL and EESCL can reduce ischemic neuronal loss potentially by maintaining SOD1 and BDNF immunoreactivity in the ischemic hippocampal CA1 region.  相似文献   

4.
Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.  相似文献   

5.
There is a major unmet need for development of innovative strategies for neuroprotection against ischemic brain injury. Here we show that FGL, a neural cell adhesion molecule (NCAM)-derived peptide binding to and inducing phosphorylation of the fibroblast growth factor receptor (FGFR), acts neuroprotectively after an ischemic insult both in vitro and in vivo. The neuroprotective activity of FGL was tested in vitro on dissociated rat hippocampal neurons and hippocampal slice cultures, using a protocol of oxygen-glucose deprivation (OGD). FGL protected hippocampal neurons from damage and maintained or restored their metabolic and presynaptic activity, both if employed as a pretreatment alone to OGD, and if only applied after the insult. In vivo 24 h pretreatment with a single suboccipital injection of FGL significantly protected hippocampal CA1 neurons from death in a transient global ischemia model in the gerbil. We conclude that FGL promotes neuronal survival after ischemic brain injury.  相似文献   

6.
Fibroblast growth factors (FGFs) are polypeptides with various biological activities in vivo and in vitro, and their receptors are expressed in the widespread and specific neuronal populations of the brain. In this study, we asked whether keratinocyte growth factor (KGF), one of the FGF superfamily, would express in the brain, and have neuroprotective against ischemic brain injury. In situ hybridization analysis revealed that intense silver grains for KGF mRNA are observed in the neuronal cells of the cerebral cortex, hippocampus and amygdala in gerbil brain. Continuous cerebroventricular infusion of KGF (20 microg) for a 7 day period to gerbils starting 2 days before temporary right carotid artery occlusion (20 min) resulted in a higher survival rate than seen in vehicle-treated ischemic animals. Subsequent histological examinations showed that KGF effectively prevented delayed neuronal death of the hippocampal CA1 region. In situ detection of DNA fragmentation (TUNEL staining) revealed that ischemic animals infused with KGF contained fewer TUNEL-positive neurons in the hippocampal CA1 field than those infused with vehicle alone at the forth and seventh day after ischemia. KGF-treated brain showed over-expression of KGF mRNA in the neuronal cells of the cerebral cortex, hippocampus only in the right hemisphere, which was the side of carotid artery occlusion, 8-10 h after ischemia. These findings suggest that KGF has a protective effect against ischemic hippocampal neuronal damage in vivo, which may provide a new therapeutic strategy in the survival and reconstruction of neurons in response to cerebral injury.  相似文献   

7.
Delayed neuronal death induced by transient forebrain ischemia in the rat hippocampus is preceded by a prominent microglial reaction which begins within minutes after the ischemic injury. In the present study we have examined the effect of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 on microglial activation and neuronal survival. Using lectin histochemistry to detect microglia, we show that the systemic administration of MK-801 prior to ischemia prevents microglial activation, as well as delayed death of CA1 pyramidal neurons. The results demonstrate that early blockage of the glutamate cascade prevents microglial activation, and could suggest a role for microglia in mediating ischemic injury.  相似文献   

8.
This study focuses on the function of NSSR1, a splicing factor, in neuronal injury in the ischemic mouse brain using the transient global cerebral ischemic mouse model and the cultured cells treated with oxygen‐glucose deprivation (OGD). The results showed that the cerebral ischemia triggers the expression of NSSR1 in hippocampal astrocytes, predominantly the dephosphorylated NSSR1 proteins, and the Exon3 inclusive NCAM‐L1 variant and the Exon4 inclusive CREB variant. While in the hippocampus of astrocyte‐specific NSSR1 conditional knockdown (cKD) mice, where cerebral ischemia no longer triggers NSSR1 expression in astrocytes, the expression of Exon3 inclusive NCAM‐L1 variant and Exon4 inclusive CREB variant were no longer triggered as well. In addition, the injury of hippocampal neurons was more severe in astrocyte‐specific NSSR1 cKD mice compared with in wild‐type mice after brain ischemia. Of note, the culture media harvested from the astrocytes with overexpression of NSSR1 or the Exon3 inclusive NCAM‐L1 variant, or Exon4 inclusive CREB variant were all able to reduce the neuronal injury induced by OGD. The results provide the evidence demonstrating that: (1) Splicing factor NSSR1 is a new factor involved in reducing ischemic injury. (2) Ischemia induces NSSR1 expression in astrocytes, not in neurons. (3) NSSR1‐mediated pathway in astrocytes is required for reducing ischemic neuronal injury. (4) NCAM‐L1 and CREB are probably mediators in NSSR1‐mediated pathway. In conclusion, our results suggest for the first time that NSSR1 may provide a novel mechanism for reducing neuronal injury after ischemia, probably through regulation on alternative splicing of NCAM‐L1 and CREB in astrocytes. GLIA 2015;63:826–845  相似文献   

9.
Role and mechanisms of interleukin-1 in the modulation of neurotoxicity   总被引:10,自引:0,他引:10  
OBJECTIVE: Recent studies on cerebral ischemia in the rat have demonstrated that administration of interleukin-1 receptor antagonist (IL-1ra) markedly reduces the volumes of infarcts which are associated with N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. These observations suggested that endogenous interleukin-1 (IL-1) may be involved in the mediation of excitotoxic neuronal injury following ischemia. METHOD: In the present studies, we examined the role of interleukin-1beta (IL-1beta) in NMDA-related and microglia-induced excitotoxicity in cocultures of mixed neurons and microglia. RESULTS: Our observations in these mixed cultures indicated that addition of IL-1beta exaggerated NMDA and glutamate-evoked hippocampal neuron death. Addition of microglia, activated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), to cocultures of cortical neurons and glia induced significantly greater neurotoxicity when compared with cocultures of cortical neurons and untreated microglia. This neurotoxicity did not require that activated glia be in cell-to-cell contact with neurons. Addition of either IL-1ra or the NMDA receptor antagonist MK-801 to cocultures of cortical neurons and activated glia partially reversed the neuronal damage mediated by activated microglia. Finally, IL-1beta concentrations in the supernatant of cocultures of cortical neurons and microglia treated by LPS and IFN-gamma were markedly increased when compared with coculture of neurons with untreated microglia. CONCLUSION: These results suggest that both the NMDA receptor and the IL-1 receptor are involved in microglia-mediated neurotoxicity.  相似文献   

10.
11.
The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.  相似文献   

12.
Guan QH  Pei DS  Zhang QG  Hao ZB  Xu TL  Zhang GY 《Brain research》2005,1035(1):51-59
Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal apoptosis in brain ischemia. To further study the roles of JNK activation in hippocampal CA1 neurons in a rat model of transient global ischemia, we assessed the effect of JNK inhibition by SP600125 on the degree of brain injury. Our results demonstrated that SP600125 significantly increased the number of surviving cells in hippocampal CA1 subfield and decreased the activation of p-JNK1/2 and p-JNK3 at 30 min and 3 days after brain ischemia. Moreover, SP600125 significantly diminished the increased levels of phosphorylated-c-Jun (Ser63/73) and phosphorylated-Bcl-2 (Ser87) at 3 h after brain ischemia. These results indicate that SP600125, a new inhibitor of JNK, protected transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region at least via suppressing the activation of nuclear substrate (c-Jun) and inactivating non-nuclear substrate (Bcl-2) induced by ischemic insult. Thus, inhibiting JNK activity by SP600125 may represent a new and effective strategy to treat ischemic stoke.  相似文献   

13.
目的 :观察脑缺血再灌注损伤后脑皮层、梗塞区和海马神经元脑源性神经营养因子 (BDNF)水平的变化 ,及与脑病理变化的关联性 ;探讨 BDNF在脑缺血再灌注损伤中的可能作用机理。方法 :线栓法复制大鼠大脑中动脉脑缺血再灌注模型 ,原位核酸分子杂交检测脑不同区域 BDNFm RNA,图象分析间接定量其水平。结果 :1.脑缺血及缺血再灌注均能诱导双侧脑皮层、海马和梗塞区及其对侧相应区神经元 BDNFm RNA水平增高。2 .梗塞区因缺血损伤过重 ,神经元 BDNFm RNA水平增高的幅度小。 3.再灌注后神经元 BDNFm RNA的水平继续升高 ;其变化规律在不同脑区大致相似。 4.神经元 BDNFm RNA基础水平与神经元抗损伤力呈正相关。结论 :脑缺血及缺血再灌注损伤均导致双侧大脑 BD-NFm RNA表达的变化 ,BDNFm RNA水平的提高能增强神经元的抗损伤能力。  相似文献   

14.
Microglia, the resident immune cells of the CNS, have emerged as key regulators of neural precursor cell activity in the adult brain. However, the microglia-derived factors that mediate these effects remain largely unknown. In the present study, we investigated a role for microglial brain-derived neurotrophic factor (BDNF), a neurotrophic factor with well known effects on neuronal survival and plasticity. Surprisingly, we found that selective genetic ablation of BDNF from microglia increased the production of newborn neurons under both physiological and inflammatory conditions (e.g., LPS-induced infection and traumatic brain injury). Genetic ablation of BDNF from microglia otherwise also interfered with self-renewal/proliferation, reducing their overall density. In conclusion, we identify microglial BDNF as an important factor regulating microglia population dynamics and states, which in turn influences neurogenesis under both homeostatic and pathologic conditions.SIGNIFICANCE STATEMENT (1) Microglial BDNF contributes to self-renewal and density of microglia in the brain. (2) Selective ablation of BDNF in microglia stimulates neural precursor proliferation. (3) Loss of microglial BDNF augments working memory following traumatic brain injury. (4) Benefits of repopulating microglia on brain injury are not mediated via microglial BDNF.  相似文献   

15.
BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia. OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury. DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003. MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemia group and a sham operation group, with 20 rats per group. METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture, threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10mm. MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30. RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CA1 CA4 regions and dentate gyms. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P 〈 0.05). Furthermore, irnmunologically reactive products were darkly stained, and neurons had long axons. BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyms. CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyms.  相似文献   

16.
Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.  相似文献   

17.
Several studies suggest that cyclooxygenase-2 contributes to the delayed progression of ischemic brain damage. In this study we examined whether the highly selective cyclooxygenase-2 inhibitor DFU reduces neuronal damage when administered several hours after 5 min of transient forebrain ischemia in gerbils. The extent of ischemic injury was assessed behaviorally by measuring the increases in locomotor activity and by histopathological evaluation of the extent of CA1 hippocampal pyramidal cell injury 7 days after ischemia. DFU treatment (10 mg/kg, p.o.) significantly reduced hippocampal neuronal damage even if the treatment is delayed until 12 h after ischemia. These results suggest that selective cyclooxygenase-2 inhibitors may be a valuable therapeutic strategy for ischemic brain injury.  相似文献   

18.
Glutamate released by activated microglia induces excito-neurotoxicity and may contribute to neurodegeneration in numerous neurological diseases including ischemia, inflammation, epilepsy, and neurodegenerative diseases. We observed that the gap junction blocker carbenoxolone (CBX) or the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON) decreased glutamate release from activated microglia and rescued neuronal death in a dose-dependent manner in vitro. In gerbils, treatment with CBX or DON also prevented the delayed death of hippocampal neurons following transient global ischemia. Thus, blockade of microglial glutamate release may be an effective therapeutic strategy against neurodegeneration after ischemic injury.  相似文献   

19.
Evidence for the involvement of Par-4 in ischemic neuron cell death.   总被引:16,自引:0,他引:16  
After a stroke many neurons in the ischemic brain tissue die by a process called apoptosis, a form of cell death that may be preventable. The specific molecular cascades that mediate ischemic neuronal death are not well understood. The authors recently identified prostate apoptosis response-4 (Par-4) as a protein that participates in the death of cultured hippocampal neurons induced by trophic factor withdrawal and exposure to glutamate. Here, the authors show that Par-4 levels increase in vulnerable populations of hippocampal and striatal neurons in rats after transient forebrain ischemia; Par-4 levels increased within 6 hours of reperfusion and remained elevated in neurons undergoing apoptosis 3 days later. After transient focal ischemia in mice, Par-4 levels were increased 6 to 12 hours after reperfusion in the infarcted cortex and the striatum, and activation of caspase-8 occurred with a similar time course. Par-4 immunoreactivity was localized predominantly in cortical neurons at the border of the infarct area. A Par-4 antisense oligonucleotide protected cultured hippocampal neurons against apoptosis induced by chemical hypoxia and significantly reduced focal ischemic damage in mice. The current data suggest that early up-regulation of Par-4 plays a pivotal role in ischemic neuronal death in animal models of stroke and cardiac arrest.  相似文献   

20.
Selective serotonin re-uptake inhibitors (SSRI) have been widely used in treatment of major depression because of their efficacy, safety, and tolerability. Escitalopram, an SSRI, is known to decrease oxidative stress in chronic stress animal models. In the present study, we examined the neuroprotective effects of pre- and post-treatments with 20 mg/kg and 30 mg/kg escitalopram in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia. Pre-treatment with escitalopram protected against ischemia-induced neuronal death in the CA1 after ischemia/reperfusion (I/R). Post-treatment with 30 mg/kg, not 20 mg/kg, escitalopram had a neuroprotective effect against ischemic damage. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram increased brain-derived neurotrophic factor (BDNF) protein levels in the ischemic CA1 compared to vehicle-treated ischemia animals. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram reduced microglia activation and decreased 4-hydroxy-2-nonenal and Cu,Zn-superoxide dismutase immunoreactivity and their levels in the ischemic CA1 compared to vehicle-treated ischemia animals after transient cerebral ischemia. In conclusion, these results indicated that pre- and post-treatments with escitalopram can protect against ischemia-induced neuronal death in the CA1 induced by transient cerebral ischemic damage by increase of BDNF as well as decrease of microglia activation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号