首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autoradiographic analysis of receptors on vascular endothelium   总被引:6,自引:0,他引:6  
Receptor autoradiography was used to examine the distribution of muscarinic cholinoceptors ([3H]QNB), alpha 2-adrenoceptors ([3H]rauwolscine), beta-adrenoceptors ([125I]CYP) and substance P receptors ([125I]BHSP) in rabbit aorta, pulmonary artery, rat aorta, dog aorta, splenic, renal and coronary arteries, bovine aorta and coronary arteries. Muscarinic cholinoceptors and alpha 2-adrenoceptors were not associated with endothelium in any of the blood vessels examined. Substance P receptors were found on endothelium in dog renal but not bovine coronary arteries, and beta-adrenoceptors were found on endothelium in dog coronary arteries but not bovine aorta. The results suggest that endothelium-dependent relaxation can result either from activation of receptors located directly on the endothelial cells or, as is the case for ACh, by an indirect mechanism via activation of receptors located on the vascular smooth muscle.  相似文献   

2.
1 Ring segments of bovine left circumflex coronary artery were pre-contracted with 5-hydroxytryptamine or phenylephrine and then exposed to increasing concentrations of calcitonin gene-related peptide (CGRP) and other drugs. 2 CGRP administration resulted in dose-dependent inhibition of induced tone. Maximal relaxation to CGRP was 89 +/- 5% and the concentration required to achieve 50% maximal relaxation (EC50) was 2.11 +/- 1.35 X 10(-9)M. 3 CGRP-induced relaxation was not affected by removal of endothelial cells nor was it significantly altered by incubation of coronary vessels with atropine, propranolol, phentolamine (all 10(-6)M) or indomethacin (10(-5)M). 4 From these data we conclude that CGRP is a potent inhibitor of coronary artery vasomotor tone which appears to act directly on vascular smooth muscle rather than through the release of a secondary mediator. These data support the possibility that CGRP may play a role in non-adrenergic, non-cholinergic regulation of coronary artery tone.  相似文献   

3.
OBJECTIVE: We compared the basal and bradykinin (BK)-induced NO release and endothelium-derived hyperpolarizing factor-mediated function between coronary arteries and cardiac veins. METHODS AND RESULTS: Isolated coronary vessels (large arteries, cardiac veins as well as microvessels) were studied. An NO-specific electrode and a conventional intracellular glass microelectrode were used to directly measure NO released from endothelial cells and hyperpolarization of smooth muscle cells in conduit coronary vessels. The basal and BK-induced release of NO was 14.2 +/- 2.0 nmol/L and 237.1 +/- 27.2 nmol/L (n = 8) in the artery, significantly greater than in veins (8.0 +/- 1.1 nmol/L and 135.6 +/- 14.5 nmol/L, n = 8, P < 0.01). The BK-induced hyperpolarization was significantly reduced by N-nitro-L-arginine, indomethacin, and hemoglobin in both arteries and veins and was greater in the arteries. The EDHF-mediated relaxation was significantly higher in the arteries than in veins, greater in microveins than in large veins, and almost abolished by charybdotoxin and apamin. CONCLUSIONS: Both NO and EDHF are involved in the regulation of the vascular tone in the coronary arterial and venous systems but the amount of NO release and the EDHF-mediated relaxation and associated hyperpolarization are less significant in the vein than in the artery in the coronary system.  相似文献   

4.
The interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) was investigated in isolated circular smooth muscle cells and strips of the guinea-pig gastric fundus. VIP induced a concentration-dependent inhibition of carbachol-induced contraction in smooth muscle cells with a maximum at 10(-6) M. The relaxation by 10(-6) M VIP was inhibited for 79.1+/-5.8% (mean+/-s.e. mean) by the NO-synthase (NOS) inhibitor L-N(G)-nitroarginine (L-NOARG; 10(-4) M) in a L-arginine reversible way. Also the inducible NOS (iNOS) selective inhibitor N-(3-(acetaminomethyl)-benzyl)acetamide (1400 W; 10(-6) M) inhibited the VIP-induced relaxation, but its inhibitory effect was not reversed by L-arginine. When cells were incubated with the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 10(-6) M), the protein kinase A-inhibitor (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS, 10(-6) M) and the glucocorticoid dexamethasone (10(-5) M), the relaxant effect of VIP was decreased by respectively 80.9+/-7.6, 77.0+/-11.6 and 87.1+/-4.5%. In circular smooth muscle strips of the guinea-pig gastric fundus, the VIP (10(-9) - 10(-7) M)-induced relaxations were not significantly influenced by 10(-4) M L-NOARG, 10(-6) M 1400 W, 10(-6) M ODQ and 10(-5) M dexamethasone. These results suggest that iNOS, possibly induced by the procedure to prepare the smooth muscle cells, is involved in the relaxant effect of VIP in isolated smooth muscle cells but not in smooth muscle strips of the guinea-pig gastric fundus. This study illustrates the importance of the experimental method when studying the influence of NOS inhibitors on the relaxation induced by VIP in gastrointestinal smooth muscle preparations.  相似文献   

5.
The physiology of smooth muscle and endothelial cells of a particular vascular bed and from different species differs from each other. Acetylcholine causes an endothelium-dependent relaxation of preconstricted pulmonary arteries from the rat. This relaxation is mediated by nitric oxide (NO) plus a yet-unidentified endothelium-derived hyperpolarizing factor, which relaxes the smooth muscles by hyperpolarizing them. Our aim is to test whether these observations could be generalized to the smooth muscle cells from the mouse pulmonary artery. Smooth muscle or endothelial cell membrane potential of strips of murine pulmonary artery were measured simultaneously with the force developed by the strip. Acetylcholine hyperpolarized the endothelial cells. However, acetylcholine did not induce an endothelium-dependent hyperpolarization of the smooth muscle, while it relaxed the strip in an endothelium-dependent manner. This relaxation was abolished by an inhibitor of NO synthesis, nitro-L-arginine. Moreover, nitroglycerin relaxed the strips without changing the membrane potential of the smooth muscle cells. Injection of Lucifer yellow into the endothelial cells and the smooth muscle cells did not show heterocellular dye coupling. Furthermore, electron microscopy did not show gap junction plate at the myoendothelial junctions. We conclude that in the mouse main pulmonary artery, NO alone is responsible for the acetylcholine-induced endothelium-dependent vasodilatation, whereas the phenomenon called endothelium-derived hyperpolizing factor is not present. Therefore, caution should be taken when comparing different animal models to study pulmonary circulation and its reactivity.  相似文献   

6.
BACKGROUND AND PURPOSE: The natriuretic peptides, ANP and BNP, modulate vascular smooth muscle tone in human conduit arteries. Surprisingly, the natriuretic peptide receptor-A (NPR-A) has not been visualized using radioligand binding in these vessels. A new member of this peptide family, Dendroaspis natriuretic peptide (DNP) identified from snake venom, has been proposed to be present in human plasma and endothelial cells. Also, recently a novel radioligand, [(125)I]-DNP, has been characterized as selective for NPR-A in human heart. EXPERIMENTAL APPROACH: Our aims were to investigate expression and function of NPR-A receptors in human mammary artery using [(125)I]-DNP to quantify receptor density, immunocytochemistry to delineate the cellular distribution of the receptor and in vitro pharmacology to compare DNP induced vasodilatation to that of ANP. KEY RESULTS: Saturable, sub-nanomolar affinity [(125)I]-DNP binding was detected to smooth muscle of mammary artery, with receptor density of approximately 2 fmol mg(-1) protein, comparable to that of other vasoactive peptides. NPR-A immunoreactivity was localised to vascular smooth muscle cells and this was confirmed with fluorescence dual labelling. NPR-A expression was not detected in the endothelium. Like ANP, DNP fully reversed the constrictor response to ET-1 in endothelium intact or denuded mammary artery, with comparable nanomolar potencies. CONCLUSIONS AND IMPLICATIONS: This is the first characterization of NPR-A in human mammary artery using [(125)I]-DNP and we provide evidence for the presence of receptor protein on vascular smooth muscle cells, but not endothelial cells. This implies that the observed vasodilatation is predominantly mediated via direct activation of smooth muscle NPR-A.  相似文献   

7.
Vascular smooth muscle is thought to possess an H+-K+ ATPase that contributes to the regulation of intracellular K+ concentration and pH. We have examined the effect of the H+, K+-ATPase inhibitor SCH 28080 on vascular smooth muscle tone in guinea-pig and human isolated arteries, and on 86Rb+ uptake in cultured guinea-pig aortic smooth muscle cells. SCH 28080 (0.1-300 microM) produced relaxation of isolated guinea-pig aorta, guinea-pig pulmonary artery and human pulmonary artery. Relaxation occurred in tissues pre-contracted with phenylephrine, histamine or the thromboxane mimetic U44069. Relaxation. was reversible, and was not affected by tetrodotoxin, indomethacin, nordihydroguiaretic acid (NDGA), 1-aminobenzotriazole (1-ABT), N(G)-nitro-L-arginine methyl ester (L-NAME), removal of the endothelium or removal of extracellular K+. SCH 28080 had no effect on 86Rb+ uptake in cultured guinea-pig aortic smooth muscle cells. In conclusion, SCH 28080 relaxes vascular smooth muscle at concentrations known to inhibit the H+-K+ ATPase. The persistence of relaxation in a K+-free medium and the failure of SCH 28080 to inhibit 86Rb+ uptake suggest that relaxation may be unrelated to H+, K+-ATPase inhibition, and indicate that this agent may not be considered as a selective H+, K+-ATPase inhibitor in vascular preparations.  相似文献   

8.
Vascular smooth muscle relaxation elicited by various endogenous substances results from their interaction with vascular endothelial cells to trigger the formation of endothelium-derived relaxing factor (EDRF). EDRF from pulmonary and peripheral arteries and veins and from cultured and freshly harvested aortic endothelial cells has been identified pharmacologically and chemically as nitric oxide (NO) or a labile nitroso compound. Endothelium-derived NO (EDNO) and authentic NO activate the cytoplasmic form of guanylate cyclase by heme-dependent mechanisms and thereby stimulate intra-cellular cyclic GMP accumulation in cells including vascular smooth muscle and platelets. Cyclic GMP functions as a second messenger to cause vascular smooth muscle relaxation and inhibition of platelet aggregation and adhesion to vascular endothelial surfaces. EDNO is synthesized from L-arginine and perhaps arginine-containing peptides by an unidentified calcium-requiring process coupled to the occupation of extracellular endothelial receptors. The biological actions of EDNO are terminated by spontaneous oxidation to NO2 and NO3 . The biological half-life of the very lipophilic EDNO is only 3–5 sec and this allows EDNO to function locally as an autacoid. Nitroglycerin and other organic nitrate esters elicit endothelium-independent relaxation after entering vascular smooth muscle cells and undergoing denitration and formation of NO. The pharmacological actions of nitroglycerin are therefore essentially the same as those of EDNO, and the endogenous NO receptor is the heme group bound to soluble guanylate cyclase. EDNO may serve a biological role to modulate local blood flow and platelet function.  相似文献   

9.
Ro 25-1553 is a metabolically stable analogue of endogenous vasoactive intestinal polypeptide (VIP). This compound is a potent bronchodilator in vitro as well as in vivo. Moreover, Ro 25-1553 has been shown to be highly selective of the VPAC2 receptor. We assessed the effect of Ro 25-1553 on isolated human bronchi and pulmonary arteries in vitro. Macroscopically normal human airways and pulmonary arteries were obtained from patients undergoing surgery for lung cancer. The relaxing capability of Ro 25-1553 on bronchial and pulmonary artery tone was measured using standard techniques. Bronchial rings were pre-contracted with 0.1 mM histamine, and tone in pulmonary artery rings was induced with 10 microM PGF2alpha. Increasing concentrations of Ro 25-1553 within a range of 1 pM to 10 microM were added and isometric tension changes were recorded. Ro 25-1553 caused a concentration-dependent relaxation of airway and pulmonary artery preparations, with an EC50 of approximately 10 nM and a maximal relaxation of 70%-75% of the induced tone. The presence of VPAC2 receptors in the two tissues, though low in density, was confirmed by in situ hybridization, immunocytochemistry and ligand binding. These findings indicate that the VIP analogue Ro 25-1553 may be useful in the treatment of asthma and/or chronic obstructive pulmonary diseases.  相似文献   

10.
1 Vasoactive intestinal polypeptide (VIP, 0.01- MicroM) produced dose-related relaxations of the mouse anococcygeus muscle. 2 Following incubation with indomethacin (2.8 microM 1 h) adenosine 5'-triphosphate (ATP, 0.5-10 mM) produced dose-related relaxations of the mouse anococcygeus. 3 Haemolysed blood reduced inhibitory responses of the mouse anococcygeus to field stimulation but had no effect on relaxations to VIP or ATP. 4 Apamin (0.5 microM) had no effect on the relaxation of mouse anococcygeus to field stimulation, VIP, or ATP. 5 2-2'-Pyridylisatogen tosylate (PIT, 50 microM) itself reduced muscle tone but it did not abolish inhibitory responses to field stimulation, VIP, or ATP. 6 During prolonged inhibitory nerve stimulation the relaxation of the mouse anococcygeus in response to VIP was reduced greatly while that to ATP was unaffected. 7 Bundles of VIP-immunoreactive sites were detected in sections of the mouse anococcygeus treated by the peroxidase-antiperoxidase (PAP) immunocytochemical technique. 8 The results suggest that the mechanisms underlying non-adrenergic, non-cholinergic inhibitory transmission in the mouse anococcygeus are similar to those in the bovine retractor penis and unlike those in the guinea-pig taenia caeci. 9 The possibility that VIP or ATP might be involved in inhibitory neurotransmission in the mouse anococcygeus is discussed.  相似文献   

11.
AIM: To investigate the inhibition of endothelium-de-pendent in vitro vascular relaxation induced by the total saponins (gensenosides) from Panax notoginseng (PNS) and the effect of PNS on the cytosolic Ca2 concentration on cultured bovine pulmonary artery endothelial cells. METHODS: The endothelial-dependent vascular relaxation was assessed using acetylcholine (ACh) or cyclopi-azonic acid (CPA) induced relaxation in endothelium-intact rat aorta. Cytosolic Ca2 level was assessed in real time using dynamic digital fluorescence ratio imaging. RESULTS: In addition to its direct relaxation of the smooth muscle cells at high concentrations, PNS, at 100 mg/L having little effect on smooth muscle, caused a marked inhibition of endothelium-dependent relaxation brought about by PNS. This inhibitory effect was due to its inhibition of elevation of cytosolic Ca2 , which is required for the activation of NO generation and release from the vascular endothelial cells. Nifedipine has no effect on either the endothe  相似文献   

12.
Endothelial damage or removal abolishes the dilation of epicardial coronary arteries induced by increments in flow through these arteries in vitro. Therefore, we tested whether or not the release of a cyclooxygenase product from endothelial cells in vivo is the mechanism of this flow-dependent dilation. In eight conscious dogs, instrumented to register the external diameter of two epicardial branches--anterior descending and circumflex--of the left coronary artery, increments in coronary flow increased and reductions in coronary flow decreased the diameter of the left circumflex epicardial artery by 182 +/- 11 micron/100% change in flow. When mean coronary flow in one epicardial branch was kept constant by a distal, flow-limiting stenosis during the application of flow-augmenting stimuli (temporal coronary occlusion or 80-400 micrograms/kg adenosine i.v.), no dilation of this artery was observed. Cyclooxygenase inhibition (suppressing the bradykinin-induced elevation of plasma 6-keto-PGF1 alpha) by indomethacin (5 mg/kg) or by diclofenac (10 mg/kg) increased smooth muscle tone in both epicardial arteries, but did not modify the flow-diameter relation (181 +/- 10 and 179 +/- 9 microns/100% change in flow, respectively). It is concluded that a tonic, instantaneous influence of coronary flow on the smooth muscle tone of the epicardial coronary arteries exists in vivo. It is unlikely that prostacyclin or another prostanoid is a mediator of this endothelium-mediated influence of flow on smooth muscle tone.  相似文献   

13.
In the present study, we assessed the effects of dexamethasone on fetal bovine serum-induced dysfunction of mesenteric endothelial cells using an organ culture procedure. In rabbit mesenteric arteries cultured in the presence of 10% fetal bovine serum for 7 days, the endothelium-dependent, nitric oxide (NO)-mediated relaxations caused by substance P and ionomycin were decreased as compared to those in non-treated arteries. Dexamethasone (3 microM) inhibited the proliferative stimuli-induced endothelial dysfunction without affecting the contractility or NO susceptibility of smooth muscle cells. Cross-sectioned hematoxylin-eosin staining and whole-mount CD31 staining indicated that chronic proliferative stimulation induced detachment of endothelial cells from the tunica intima in some regions, and also caused thickening of the arterial wall and shortening of the internal diameter. Endothelial NO synthesis (eNOS) mRNA expression was also decreased by the treatment with fetal bovine serum. The dexamethasone treatment did not inhibit the smooth muscle hypertrophy, but it inhibited the peeling of endothelial cells and recovered the eNOS mRNA expression. These results suggest that DEX ameliorate the impairments of arterial relaxation induced by proliferative stimuli and that these beneficial effects may be mediated by maintaining the adhesion of endothelial cells to the vascular wall and/or by recovering eNOS mRNA expression.  相似文献   

14.
15.
The vascular endothelium modulates relaxation and contraction of blood vessels. Since endothelial cells respond to a variety of vasoactive substances, it was suggested that specific cell membrane receptors exist on the endothelial cells which are responsible for the modulatory role of the endothelium on the blood vessels. We therefore investigated the localization and binding characteristics of histaminergic H1-receptors in the vascular model system of the bovine thoracic aorta. Our earlier binding experiments showed that histaminergic H1-receptor binding sites labelled with [3H]mepyramine are present on the vascular smooth muscle membranes of this tissue. In addition a small number of specific H1-receptor binding sites also exist on the endothelial cells of this tissue with the following binding characteristics: Bmax = 34.6 fmol [3H]mepyramine/mg protein, KD = 2.13 nM. [3H]mepyramine binding is more effectively inhibited by H1- than H2-receptor agonists and antagonists. These results provide evidence for the existence of endothelial histaminergic H1-receptor binding sites in addition to vascular smooth muscle H1-receptors in the bovine thoracic aorta.  相似文献   

16.
Sphingolipids such as sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPPC) can act both intracellularly and at G-protein-coupled receptors, some of which were cloned and designated as Edg-receptors. Sphingolipid-induced vascular effects were determined in isolated rat mesenteric and intrarenal microvessels. Additionally, sphingolipid-induced elevations in intracellular Ca(2+) concentration were measured in cultured rat aortic smooth muscle cells. SPPC and SPP (0.1-100 micromol l(-1)) caused concentration-dependent contraction of mesenteric and intrarenal microvessels (e.g. SPPC in mesenteric microvessels pEC(50) 5.63+/-0.17 and E(max) 49+/-3% of noradrenaline), with other sphingolipids being less active. The vasoconstrictor effect of SPPC in mesenteric microvessels was stereospecific (pEC(50) D-erythro-SPPC 5.69+/-0.08, L-threo-SPPC 5.31+/-0.06) and inhibited by pretreatment with pertussis toxin (E(max) from 44+/-5 to 19+/-4%), by chelation of extracellular Ca(2+) with EGTA and by nitrendipine (E(max) from 40+/-6 to 6+/-1 and 29+/-6%, respectively). Mechanical endothelial denudation or NO synthase inhibition did not alter the SPPC effects, while indomethacin reduced them (E(max) from 87+/-3 to 70+/-4%). SPP and SPPC caused transient increases in intracellular Ca(2+) concentrations in rat aortic smooth muscle cells in a pertussis toxin-sensitive manner. Our data demonstrate that SPP and SPPC cause vasoconstriction of isolated rat microvessels and increase intracellular Ca(2+) concentrations in cultured rat aortic smooth muscle cells. These effects appear to occur via receptors coupled to pertussis toxin-sensitive G-proteins. This is the first demonstration of effects of SPP and SPPC on vascular tone and suggests that sphingolipids may be an hitherto unrecognized class of endogenous regulators of vascular tone.  相似文献   

17.
In vitro labelling and autoradiographic techniques were used to examine the localization of [3H]quinuclidinyl benzilate ([3H]QNB) and [125I]4-iodo-QNB ([125I]4IQNB) to slide-mounted sections of rabbit aorta and pulmonary artery, cat aorta, pulmonary and superior mesenteric arteries. These vessels all respond to acetylcholine (ACh) with endothelium-dependent relaxation, yet there was no evidence for endothelium-related binding of either [3H]QNB or [125I]4IQNB. Muscarinic receptors were localized over the medial smooth muscle and, in the rabbit pulmonary artery, the density of binding increased towards the adventitia. Binding of either radioligand to sections of rabbit pulmonary artery was not affected by the muscarinic M1 receptor antagonist pirenzepine (20 nM) but was markedly reduced by the muscarinic M2 antagonist 4DAMP (4-diphenylacetoxy-N-methyl-piperidine methobromide) (1 nM). This study provides evidence for muscarinic receptors located directly on smooth muscle cells, indicating that endothelium-dependent relaxation to ACh results from an indirect mechanism involving smooth muscle muscarinic receptors.  相似文献   

18.
Selective estrogen receptor modulators (SERMs) reduce vascular tone in the systemic circulation. Their effects on the pulmonary circulation are unknown. The present study examined the effect of oral treatment with raloxifene (a second-generation SERM) on vasomotor reactivity in pulmonary arteries from normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Pulmonary arterial rings were suspended in a multi-channel myograph, and changes in isometric tension were measured. WKY rings constricted less to U46619 than SHR rings, and the difference was eliminated after chronic treatment with raloxifene. More contraction to U46619 was obtained after inhibition of nitric oxide synthase (NOS) by L-NAME (as an index of basal NO release) in raloxifene-treated than in control SHR rings. Less U46619-induced contraction after raloxifene treatment occurred only in SHR rings with endothelium, and this effect was abolished upon removal of the endothelium. Raloxifene treatment did not enhance the contribution of basal NO to U46619-induced constriction in WKY rings. Raloxifene treatment did not modify endothelium-dependent relaxation to acetylcholine and endothelium-independent relaxation to nifedipine. The reduced relaxing sensitivity to sodium nitroprusside (SNP) in SHR rings was normalized by raloxifene treatment. Raloxifene treatment reduced CaCl2-induced tone in SHR but not in WKY rings. The results show that chronic treatment with raloxifene could improve pulmonary vascular function in hypertensive animals by (1) increasing basal NO release, (2) reducing vascular smooth muscle tone, and (3) improving the effect of NO on vascular smooth muscle in SHR. In contrast, raloxifene has little effect on vascular reactivity in pulmonary arteries from normotensive WKY rats.  相似文献   

19.
The pharmacological characteristics and the anatomical localization of muscarinic receptors in the pulmonary vascular tree were investigated in lung sections of Wister-Kyoto (WKY) and spontaneously hypertensive rats (SHR). [3H]Quinuclidinyl benzylate [( 3H]QNB) was bound by sections of rat lung in a manner consistent with the labeling of muscarinic acetylcholine receptors, with a dissociation constant value (Kd) of 0.41 +/- 0.3 nM in WKY rats and of 0.37 +/- 0.2 nM in SHR. The density of muscarinic acetylcholine receptors was higher in sections of lung of WKY rats than of SHR. In the pulmonary vasculature these sites were associated with the smooth muscle of the medial layer of different size branches of the pulmonary artery and vein. No [3H]QNB binding sites were found within the endothelium in the blood vessels of either WKY rats or SHR. The density of [3H]QNB binding sites was significantly lower in the smooth muscle of pulmonary vein and its branches in SHR. There were no significant hypertension-dependent changes in the density and pattern of muscarinic receptors of pulmonary artery smooth muscle.  相似文献   

20.
We have characterized the prostanoid receptors involved in the regulation of human penile arterial and trabecular smooth muscle tone. Arachidonic acid induced relaxation of human corpus cavernosum strips (HCCS) that was blocked by the cyclo-oxygenase inhibitor, indomethacin, and augmented by the thromboxane receptor (TP) antagonist, SQ29548, suggesting that endogenous production of prostanoids regulates penile smooth muscle tone. TP-receptors mediate contraction of HCCS and penile resistance arteries (HPRA), since the agonist of these receptors, U46619, potently contracted HCCS (EC50 8.3+/-2.8 nM) and HPRA (EC50 6.2+/-2.2 nM), and the contractions produced by prostaglandin F(2alpha) at high concentrations (EC50 6460+/-3220 nM in HCCS and 8900+/-6700 nM in HPRA) were inhibited by the selective TP-receptor antagonist, SQ29548 (0.02 microM). EP-receptors are responsible for prostanoid-induced relaxant effects in HCCS because only prostaglandin E1 (PGE1), prostaglandin E2 and the EP2/EP4-receptor agonist, butaprost, produced consistent relaxation of this tissue (EC50 93.8+/-31.5, 16.3+/-3.8 and 1820+/-1284 nM, respectively). In HPRA, both prostacyclin and PGE1 (EC50 60.1+/-18.4 and 109.0+/-30.9 nM, respectively) as well as the selective IP receptor agonist, cicaprost, and butaprost (EC50 25.2+/-15.2 and 7050+/-6020 nM, respectively) caused relaxation, suggesting co-existence of IP- and EP-receptors (EP2 and/or EP4). In summary, endogenous production of prostanoids may regulate penile smooth muscle contractility by way of specific receptors. TP-receptors mediate contraction in HCCS and HPRA, while the relaxant effects of prostanoids are mediated by EP2- and/or EP4-receptors in HCCS and by EP- and IP-receptors in HPRA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号