首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aims/hypothesis  Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods  Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results  Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p < 0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation  The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.  相似文献   

2.
Therapeutic strategies for transplantation of pancreatic islet cells are urgently needed to expand β-cell mass by stimulating islet cell proliferation and/or prolonging islet cell survival. Control of the islets by different growth factors provides a potential venue for augmenting β-cell mass. In the present study, we show the expression of the biologically active splice variant-1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor in rat insulinoma (INS-1) cells as well as in rat and human pancreatic islets. In studies in vitro of INS-1 cells, the GHRH agonist JI-36 caused a significant increase in cell proliferation and a reduction of cell apoptosis. JI-36 increased islet size and glucose-stimulated insulin secretion in isolated rat islets after 48–72 h. At the ultrastructural level, INS-1 cells treated with agonist JI-36 revealed a metabolic active stimulation state with increased cytoplasm. Coincubation with the GHRH antagonist MIA-602 reversed the actions of the agonist JI-36, indicating the specificity of this agonist. In vivo, the function of pancreatic islets was assessed by transplantation of rat islets under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Islets treated with GHRH agonist JI-36 were able to achieve normoglycemia earlier and more consistently than untreated islets. Furthermore, in contrast to diabetic animals transplanted with untreated islets, insulin response to an i.p. glucose tolerance test (IPGTT) in animals receiving islets treated with agonist Jl-36 was comparable to that of normal healthy mice. In conclusion, our study provides evidence that agonists of GHRH represent a promising pharmacological therapy aimed at promoting islet graft growth and proliferation in diabetic patients.  相似文献   

3.
Synthetic LXR ligand inhibits the development of atherosclerosis in mice   总被引:28,自引:0,他引:28  
The nuclear receptors LXRalpha and LXRbeta have been implicated in the control of cholesterol and fatty acid metabolism in multiple cell types. Activation of these receptors stimulates cholesterol efflux in macrophages, promotes bile acid synthesis in liver, and inhibits intestinal cholesterol absorption, actions that would collectively be expected to reduce atherosclerotic risk. However, synthetic LXR ligands have also been shown to induce lipogenesis and hypertriglyceridemia in mice, raising questions as to the net effects of these compounds on the development of cardiovascular disease. We demonstrate here that the nonsteroidal LXR agonist GW3965 has potent antiatherogenic activity in two different murine models. In LDLR(-/-) mice, GW3965 reduced lesion area by 53% in males and 34% in females. A similar reduction of 47% was observed in male apoE(-/-) mice. Long-term (12-week) treatment with LXR agonist had differential effects on plasma lipid profiles in LDLR(-/-) and apoE(-/-) mice. GW3965 induced expression of ATP-binding cassettes A1 and G1 in modified low-density lipoprotein-loaded macrophages in vitro as well as in the aortas of hyperlipidemic mice, suggesting that direct actions of LXR ligands on vascular gene expression are likely to contribute to their antiatherogenic effects. These observations provide direct evidence for an atheroprotective effect of LXR agonists and support their further evaluation as potential modulators of human cardiovascular disease.  相似文献   

4.
Background/aimsAlthough the role of cytokines in the etiopathology of chronic pancreatitis (CP) is well recognized, information on pancreatic tissue cytokines in CP with/without associated diabetes is unavailable. The aim of the present study was to identify the differences in pancreatic cytokines and observe their correlations with the glycemic status in CP.MethodsPancreata were obtained from CP patients (n = 44), with/without associated diabetes and non-diabetic control subjects (n = 20). Patients with CP were classified into two groups after ascertaining their diabetic status. Pancreatic cytokines (IL 1β, IL 6, IL 8, IL 10, IL 12P70, TNF α, IFN γ) were analyzed by flow cytometer. The influence of individual and cocktail of cytokines on glucose stimulated insulin release (GSIR) was examined by challenging the islets from control subjects.ResultsThe pancreatic IFN γ levels in diabetic and non diabetic CP patients were significantly higher in comparison to controls. The glucose stimulated insulin release (GSIR) in response to high glucose concentration in control islets, islets from non-diabetic and diabetic CP patients was 8.2, 5.67 and 3.15 μU × 10?3/min/islet equivalent respectively. IFN γ resulted in 82.35% decrease in GSIR from the control islet cells at a concentration of >20 pg/ml which was reversed by epigallocatechin-3-gallate (EGCG).ConclusionThese results suggest that IFN γ among other cytokines, play a major role in β-cell dysfunction associated with CP.  相似文献   

5.
6.
Despite the considerable interest for islet and pancreas transplantation, remarkably little is known about the direct effects of immunosuppressive drugs on human β-cell function. We measured different insulin secretory parameters and insulin gene expression of human islets cultured for 5 days in the presence of mycophenolate mofetil (MMF), cyclosporin A (CsA), tacrolimus (FK506) or a mixture of 3 cytokines. Basal insulin release after exposure to cytokines and FK506 was significantly higher than in control islets. Responsiveness to an acute glucose stimulus did not differ significantly between control and treated islets. However, absolute incremental insulin responses (Δ-AUCs) of islets exposed to cytokines or FK506 were significantly higher compared to islets exposed to CsA or MMF, mainly because of the higher basal release. Indeed, maximal over basal release (stimulation index, SI) tended to be lower in islets exposed to FK506 than in control islets. Insulin gene expression was significantly reduced only in islets exposed to CsA. FK506 was, among those tested, the immunosuppressive drug that most profoundly altered the normal insulin secretory pattern of human β-cells, whereas CsA was the only inhibiting insulin gene expression. Although the abnormalities induced by the immunosoppressive drugs utilized in this study were modest, these in vitro data are consistent with the reported in vivo diabetogenicity of CsA and FK506 and point to MMF as the ideal immunosuppressive agent from a pancreatic β-cell point of view. Received: 26 November 2001 / Accepted in revised form: 19 June 2002 Correspondence to A.M. Davalli  相似文献   

7.
Aims/hypothesis  Recent histological analysis of pancreases obtained from patients with long-standing type 1 diabetes identified chronic islet inflammation and limited evidence suggestive of beta cell replication. Studies in rodent models also suggest that beta cell replication can be induced by certain inflammatory cytokines and by gastrin. We therefore tested the hypothesis that beta cell replication is observed in non-autoimmune human pancreatic disorders in which localised inflammation or elevated gastrin levels are present. Methods  Resected operative pancreatic specimens were obtained from patients diagnosed with primary adenocarcinoma (with or without chronic severe pancreatitis) or gastrinoma. Additional pancreatic tissue was obtained from autopsy control patients. Immunohistochemistry was used to assess fractional insulin area, beta cell number and replication rate and differentiation factors relevant to beta cell development. Results  Fractional insulin area was similar among groups. Patients with pancreatic adenocarcinoma and localised chronic severe pancreatitis displayed significant increases in the number of single beta cells, as well as increased beta cell replication rate and levels of neurogenic differentiation 1 in islets. Patients with gastrinoma demonstrated significant increases in the number of single beta cells, but the beta cell replication rate and islet differentiation factor levels were similar to those in the control group. Conclusions/interpretation  These findings indicate that chronic severe pancreatic inflammation can be associated with significant effects on beta cell number or replication rate, depending on the distribution of the cells. This information may prove useful for attempts seeking to design therapies aimed at inducing beta cell replication as a means of reversing diabetes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

8.
The maintenance of viable and functional pancreatic islets is crucial for successful islet transplantation from brain-dead donors. To overcome islet quality loss during culture, some studies have co-cultured islets with mesenchymal stem/stromal cells (MSC). However, it is still uncertain if MSC-secreted factors are enough to improve islet quality or if a physical contact between MSCs and islets is needed. Therefore, we performed a systematic review and meta-analysis to clarify the effect of different culture contact systems of islets with MSCs on viability and insulin secretion outcomes. Pubmed and Embase were searched. Twenty studies fulfilled the eligibility criteria and were included in the qualitative synthesis and/or meta-analysis. For both outcomes, pooled weighted mean differences (WMD) between islet cultured alone (control group) and the co-culture condition were calculated. Viability mean was higher in islets co-cultured with MSCs compared with islet cultured alone [WMD = 18.08 (95% CI 12.59–23.57)]. The improvement in viability was higher in islets co-cultured in indirect or mixed contact with MSCs than in direct physical contact (P <0.001). Moreover, the mean of insulin stimulation index (ISI) was higher in islets from co-culture condition compared with islet cultured alone [WMD = 0.83 (95% CI 0.54–1.13)], independently of contact system. Results from the studies that were analyzed only qualitatively are in accordance with meta-analysis data. Co-culture of islets with MSCs has the potential for protecting islets from injury during culture period. Moreover, culture time appears to influence the beneficial effect of different methods of co-culture on viability and function of islets.  相似文献   

9.
10.
Aims/hypothesis The protocols used for the preparation of human pancreatic islets immediately induce a sustained and massive activation of the c-Jun-N-terminal kinase (JNK). JNK, which participates in apoptosis of insulin-secreting cells, is activated by mechanical stresses, as well as by exposure to pro-inflammatory cytokines. Here, we investigated whether the delivery of a protease-resistant JNK inhibitory peptide (D-JNKI) through a protein transduction system during pancreatic digestion might impair JNK signalling throughout the transplantation procedure. Methods Rat pancreases were treated with D-JNKI through the pancreatic duct and cells then isolated by enzymatic digestion. Protein extracts were prepared to determine JNK activity by kinase assays and total RNA was extracted to measure gene expressions by a Light-Cycler technique. Cell apoptosis rate was determined by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and by scoring cells displaying pycnotic nuclei. Results Our data establish that the peptide transduction system used here efficiently transfects islets, allowing for stable in vivo (up to 2 days) transfection of human islets transplanted under the kidney capsule. Further, D-JNKI decreases intracellular JNK signalling during isolation and following cytokine exposure in both human and rat islets, as measured by kinase assays and reduced c-fos expression; D-JNKI also confers protection against apoptosis induced during the rat islet preparation and subsequent to IL-1β exposure. Conclusions/interpretation JNK signalling participates in islet isolation- and IL-1β-induced apoptosis in rat islets. Furthermore, the system we used might be more generally applicable for the persistent blockage (several days) of pro-apoptotic pathways in the transplanted islets; this days-long protection might potentially be an absolute prerequisite to help transplanted islets better survive the first wave of the non-specific inflammatory attack.  相似文献   

11.
Aims/hypothesis Activation of c-jun N-terminal kinase (JNK) has been described in islet isolation and engraftment, making JNK a key target in islet transplantation. The objective of this study was to investigate if JNK inhibition with a cell-permeable TAT peptide inhibitor (L-JNKI) protects functional beta cell mass in human islets and affects AKT and its substrates in islet cells. Methods The effect of L-JNKI (10 μmol/l) on islet count, mitochondrial membrane potential, glucose-stimulated insulin release and phosphorylation of both AKT and its substrates, as well as on reversal of diabetes in immunodeficient diabetic Nu/Nu mice was studied. Results In vitro, L-JNKI reduced the islet loss in culture and protected from cell death caused by acute cytokine exposure. In vivo, treatment of freshly isolated human islets and diabetic Nu/Nu mice recipients of such islets resulted in improved functional beta cell mass. We showed that L-JNKI activates AKT and downregulates glycogen synthase kinase-3 beta (GSK-3B) in human islets exposed to cytokines, while other AKT substrates were unaffected, suggesting that a specific AKT/GSK-3B regulation by L-JNKI may represent one of its mechanisms of cytoprotection. Conclusions/interpretation In conclusion, we have demonstrated that targeting JNK in human pancreatic islets results in improved functional beta cell mass and in the regulation of AKT/GSK3B activity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

12.
Interleukin-1 (IL-1), tumor necrosis factor (TNF), and interferon-gamma (IFN gamma) inhibit insulin release and may be cytotoxic to isolated rodent pancreatic islets. In this study we examined the effects of IL-1, TNF, and IFN gamma on the viability and hormone secretion of islets isolated from adult human pancreas and maintained in monolayer culture. IL-1 and TNF were cytotoxic to the islet cells (20-30% cell lysis) in a 51Cr release cytotoxicity assay, and IFN gamma had only small effects (less than 10% lysis). Combination of maximally cytotoxic concentrations of IL-1 (10 U/mL) and TNF (10(3) U/mL) produced an additive cytotoxic effect. IFN gamma (10(3) U/mL) acted synergistically with IL-1 and TNF, and the three cytokines added together produced maximal islet cell lysis (46.4 +/- 4.3%). Assay of insulin and glucagon in the islet monolayers revealed that IL-1, TNF, and IFN gamma inhibited both B- and A-cell secretory functions; however, only IL-1 and TNF produced permanent decreases in insulin and glucagon contents in the islet cultures. These findings indicate that IL-1 and TNF, as single agents, are cytotoxic to human islet cells, and that this cytotoxicity can be amplified by combining the cytokines and/or adding IFN gamma. However, the lack of specificity for B-cells in vitro suggests that additional factors might be operative in vivo for the cytokine products of macrophages and lymphocytes infiltrating islets to produce the B-cell-specific damage characteristic of type 1 diabetes.  相似文献   

13.

Aims/hypothesis

Pro-inflammatory cytokines induce death of beta cells and hamper engraftment of transplanted islet mass. Our aim was to reveal novel genes involved in this process, as a platform for innovative therapeutic approaches.

Methods

Small interfering RNA (siRNA) high-throughput screening (HTS) of primary human islets was employed to identify novel genes involved in cytokine-induced beta cell apoptosis. Dispersed human islets from nine human donors, treated with a combination of TNF-α, IL-1β and IFN-γ were transfected with ~730 different siRNAs. Caspase-3/7 activity was measured, results were analysed and potential anti- and pro-apoptotic genes were identified.

Results

Dispersed human pancreatic islets appeared to be suitable targets for performance of siRNA HTS. Using this methodology we found a number of potential pro- and anti-apoptotic target hits that have not been previously associated with pancreatic beta cell death. One such hit was the de-ubiquitinating enzyme otubain 2 (OTUB2). OTUB2 knockdown increased caspase-3/7 activity in MIN6 cells and primary human islets and inhibited insulin secretion and increased nuclear factor-κB (NF-κB) activity both under basal conditions and following cytokine treatment.

Conclusions

Use of dispersed human islets provides a new platform for functional HTS in a highly physiological system. Employing this technique enabled the identification of OTUB2 as a novel promoter of viability and insulin secretion in human beta cells. OTUB2 acts through the inhibition of NF-κB signalling, which is deleterious to beta cell survival. siRNA screens of human islets may therefore identify new targets, such as OTUB2, for therapeutic intervention in type 1 diabetes and islet transplantation.  相似文献   

14.
15.
The aim of this study was to evaluate the feasibility of islet allografts in patients with type 1 diabetes melititus. Six patients received human islets from either one or two donors via the portal vein, after (n=4) or simultaneously with (n=2) a kidney graft. The patients with functioning kidney grafts (nos. 1–4) were already on triple immunosuppressive therapy (cyclosporine A, azathioprine, prednisone). Prednisone was increased to 60 mg/day for 15 days after the islet transplant in patient 1. Patient 2–4 and the patients who underwent a simultaneous kidney-islets graft (nos. 5, 6) also received antilymphocyte globulin. Intravenous insulin was given for the first 15 days to maintain blood glucose concentrations within the normal range. Patient 1 rejected the islets within 15 days of islet transplantation. In patient 2, a 25% reduction in insulin requirement was observed and 12 months after transplantation post-prandial serum C-peptide was 1.5 ng/ml. In patient 3, the insulin requirement decreased from 40 to 8 units/day with a post-prandial serum C-peptide of 4.1 ng/ml 12 months after islet transplantation. In patient 4 the post-prandial secretion of C-peptide increased to 6.4 ng/ml. Six months after the islet infusion, insulin therapy was discontinued and HbA1c, 24-h metabolic profile and oral glucose tolerance test remained within the normal range. He had remained off insulin for 5 months until recently, when foot gangrene paralleled a worsening of post-prandial glycaemic control. Twelve months after transplantation he is receiving 8 units insulin/day. Patients 5 and 6 received a simultaneous kidney and islet graft and 6 months after transplantation their post-prandial C-peptide secretion peaks were 2.5 and 1.9 ng/ml respectively. Their daily insulin requirement was not significantly modified. In conclusion, these results show that an adequate number of human islets injected intraportally in type 1 diabetic patients can replace the pancreatic endocrine function and can lead to insulin independence.  相似文献   

16.
Aims/hypothesis. Vulnerability of pancreatic islets to oxygen free radicals and nitric oxide contributes to islet transplantation obstacles. This susceptibility can be linked to the low expression levels of antioxidant enzymes in islets. Our aim was to investigate the effect of overexpressing Cu/Zn superoxide dismutase in human islets through a simple procedure on the cytotoxic effects of two nitric oxide donors: 3-morpholinosydnonimine (SIN-1) and S-Nitroso-N-acetyl-d,l-penicillamine (SNAP). Methods. Cultured human islets and INS-1 rat-derived insulin-secreting cells were transfected by an E1-deleted adenovirus carrying Cu/Zn SOD cDNA under the control of a cytomegalovirus (CMV) promoter (AdSOD). The viability of the cells was tested by the WST-1 assay (Roche, Indianapolis, Ind., USA). Results. The AdSOD procedure allowed SOD activity to increase by twofold to threefold for 2 to 8 days following transfection. Adenovirus-driven SOD overexpression was associated with a significant reduction of SIN-1-induced cytotoxicity on human islets (69.9 ± 10.5 % protection at 200 μmol/l and 40.5 ± 8.9 % protection at 400 μmol/l) and INS-1 cells (82.2 ± 8.8 % protection at 200 μmol/l and 31.1 ± 5.8 % protection at 400 μmol/l). Protection against increasing doses of SNAP was AdSOD dose-dependent. Transfected islets released significantly more insulin than control islets in glucose-theophyllin-stimulated conditions, without or following exposure to SNAP. Conclusions/interpretation. We thus established that adenoviral-induced overexpression of Cu/Zn SOD can be beneficial to human islet endocrine function and resistance to nitric oxide cytotoxicity. These data could be relevant for the development of new strategies aimed at preventing NO-induced beta-cell damage in an islet transplantation setting. [Diabetologia (2000) 43: 625–631] Received: 9 September 1999 and in revised form: 5 February 2000  相似文献   

17.
Background and aimsSuccessful islet transplantation as a promising treatment of diabetes type 1 is threatened with the loss of islets during the pre-transplant culture due to hypoxia and oxidative stress-induced apoptosis. Therefore, optimization of culture in order to preserve the islets is a critical point. In this study, we investigated the effect of resveratrol, as a cytoprotective agent, on the cultured human islets.Methods and resultsIsolated islets were treated with different concentrations of resveratrol for 24 and 72 h. Islets' viability, apoptosis, apoptosis markers, and insulin and C-peptide secretion, along with the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were investigated. Our findings showed that the islets were exposed to hypoxia and oxidative stress after isolation and during culture. This insult induced apoptosis and decreased viability during 72 h. The presence of resveratrol significantly attenuated HIF-1α and ROS production, reduced apoptosis, promoted the VEGF secretion, and increased the insulin and C-peptide secretion. In this regard, resveratrol improved the islet's survival and function in the culture period.ConclusionsUsing resveratrol can attenuate the stressful condition for the islets in the pre-transplant culture and subsequently ameliorate their viability and functionality that lead to successful outcome after clinical transplantation.  相似文献   

18.

Aim

We have explored whether the insulin secretory defects induced by glucotoxicity in human pancreatic islets could be prevented by metformin and investigated some of the possible mechanisms involved.

Methods

Human pancreatic islets and INS-1E cells were cultured for 24 h with or without high glucose (16.7 mM) concentration in the presence or absence of therapeutical concentration of metformin and then glucose-stimulated insulin release, adenine nucleotide levels and mitochondrial complex I and II activities were measured. Islet ultrastructure was analyzed by electron microscopy.

Results

Compared to control islets, human islets cultured with high glucose showed a reduced glucose-stimulated insulin secretion that was associated with lower ATP levels and a lower ATP/ADP ratio. These functional and biochemical defects were significantly prevented by the presence of metformin in the culture medium, that was also able to significantly inhibit the activity of mitochondrial complex I especially in beta cells exposed to high glucose. Ultrastructural observations showed that mitochondrial volume density was significantly increased in high glucose cultured islets. The critical involvement of mitochondria was further supported by the observation of remarkably swollen organelles with dispersed matrix and fragmented cristae. Metformin was able to efficiently prevent the appearance of all these ultrastructural alterations in human islets exposed to high glucose.

Conclusions

Our results show that the functional, biochemical and ultrastructural abnormalities observed in human islet cells exposed to glucotoxic condition can be significantly prevented by metformin, further highlighting a direct beneficial effect of this drug on the insulin secreting human pancreatic beta cells.  相似文献   

19.
Advances in human islet transplant techniques are hampered by the inability to assess the quality of isolated islets. A flow culture system was developed to perifuse isolated pancreatic islets or cultured beta-cell lines in order to continuously and noninvasively assess cell function and viability with high kinetic resolution. Continuous perifusion of large amounts of islet tissue as isolated from human pancreata enables the use of noninvasive measurement technologies not previously applied to islets. To compare dynamic perifusion of tissue at high density with conventional static cultures, we measured glucose-stimulated insulin secretion and O2 consumption of large amounts of INS-1 cells (45-65 x 10(6)) to confirm that perifused cells were adequately supplied with oxygen and nutrients and remained functionally responsive. Isolated human and monkey islets that were perifused for 18 h showed robust biphasic insulin secretion in response to a step increase in glucose, demonstrating the ability to maintain islets and the high kinetic resolution of the system. As an example of the system's ability to resolve multiple indicator dilution experiments, the retention of [3H]-glibenclamide was kinetically distinguished from that of an extracellular marker. In summary, the perifusion system is able to maintain healthy cells, assess insulin secretion and metabolite fluxes such as oxygen consumption and lactate production, and characterize the kinetics of the interaction between radiopharmaceuticals and islet cells. The ability to systematically assess the metabolic and functional viability of islets will facilitate the optimization of islet isolation procedures, islet transplantation studies, and islet storage methodologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号