首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the temporal expression of the insulin-like growth factor (IGF) axis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model as prostate cancer progression in this model closely mimics that observed in the human disease, and the model provides samples representing the earliest stages of prostate cancer that are clinically the most difficult to obtain. We report that prostate-specific IGF-I mRNA expression increased during prostate cancer progression in TRAMP mice and was elevated in the accompanying metastatic lesions, whereas prostatic IGF-I mRNA remained at nontransgenic levels in androgen-independent disease. Expression of IGF-II mRNA, however, was reduced in primary prostate cancer, metastatic lesions, and androgen-independent disease. Expression of type-1 IGF receptor (IGF1R) mRNA, encoding the cognate receptor for both IGF-I and IGF-II, as well as type-2 IGF receptor (IGF2R) mRNA was not found to be altered during primary prostate cancer progression in intact TRAMP mice but was dramatically reduced in metastatic lesions and in androgen-independent disease. Similar to reports from clinical disease, serum IGF-I levels were observed to increase precociously in TRAMP mice early in disease progression but remained at nontransgenic levels after castration. Elevated serum levels of IGF-binding protein 2 were observed to correlate with advanced prostate cancer in the TRAMP model. Together these observations implicate IGF-I as an important factor during the initiation and progression of primary prostate cancer and provide evidence that there is a strong selection against expression of IGF1R and IGF2R in metastatic and androgen-independent disease.  相似文献   

2.
3.
The Ron receptor tyrosine kinase (TK) is overexpressed in many cancers, including prostate cancer. To examine the significance of Ron in prostate cancer in vivo, we utilized a genetically engineered mouse model, referred to as TRAMP mice, that is predisposed to develop prostate tumors. In this model, we show that prostate tumors from 30-week-old TRAMP mice have increased Ron expression compared with age-matched wild-type prostates. Based on the upregulation of Ron in human prostate cancers and in this murine model of prostate tumorigenesis, we hypothesized that this receptor has a functional role in the development of prostate tumors. To test this hypothesis, we crossed TRAMP mice with mice that are deficient in Ron signaling (TK-/-). Interestingly, TK-/- TRAMP+ mice show a significant decrease in prostate tumor mass relative to TRAMP mice containing functional Ron. Moreover, TK-/- TRAMP+ prostate tumors exhibited decreased tumor vascularization relative to TK+/+ TRAMP+ prostate tumors, which correlated with reduced levels of the angiogenic molecules vascular endothelial growth factor and CXCL2. Although Ron loss did not alter tumor cell proliferation, a significant decrease in cell survival was observed. Similarly, murine prostate cancer cell lines containing a Ron deficiency exhibited decreased levels of active nuclear factor-κB, suggesting that Ron may be important in regulating prostate cell survival at least partly through this pathway. In total, our data show for the first time that Ron promotes prostate tumor growth, prostate tumor angiogenesis and prostate cancer cell survival in vivo.  相似文献   

4.
Epidemiological studies and clinical observations suggest that nonsteroidal anti-inflammatory drugs and certain selective cyclooxygenase (COX)-2 inhibitors may reduce the relative risk of clinically evident prostate cancer. This prompted us to investigate the chemopreventive potential of celecoxib, a selective COX-2 inhibitor, against prostate carcinogenesis in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Similar to prostate cancer in humans, prostate malignancies in TRAMP mice progress from precursor intraepithelial lesions, to invasive carcinoma that metastasizes to lymph nodes, liver, lungs, and occasionally to bone. The basal enzyme activity and protein expression of COX-2 is significantly higher (>4-fold) in the dorsolateral prostate of TRAMP mice up to 24 weeks of age compared with their nontransgenic littermates. Eight-week-old TRAMP mice were randomly divided and fed either control diet (AIN 76A) or a custom prepared AIN 76A diet containing 1500-ppm celecoxib ad libitum for 24 weeks, a dosage that would compare with the normal recommended dose for the treatment of human disease. Studies from two independent experiments, each consisting of 10 mice on test, showed that the cumulative incidence of prostate cancer development at 32 weeks of age in animals fed with AIN 76A diet was 100% (20 of 20) as observed by tumor palpation, whereas 65% (13 of 20), 35% (7 of 20), and 20% (4 of 20) of the animals exhibited distant site metastases to lymph nodes, lungs, and liver. Celecoxib supplementation to TRAMP mice from 8-32 weeks of age exhibited significant reduction in tumor development (5 of 20) with no signs of metastasis. Celecoxib feeding resulted in a significant decrease in prostate (56%; P < 0.0003) and genitourinary weight (48%; P < 0.008). Sequential magnetic resonance imaging analysis of celecoxib-fed mice documented lower prostate volume compared with the AIN 76A-fed group. Histopathological examination of celecoxib-fed animals showed reduced proliferation, and down-modulation of COX-2 and prostaglandin E2 levels in the dorsolateral prostate and plasma, respectively. These results correlated with retention of antimetastasis markers, viz E-cadherin, and alpha- and beta-catenin, along with a significant decrease in vascular endothelial growth factor protein expression. Celecoxib supplementation also resulted in enhanced in vivo apoptosis in the prostate as monitored by several techniques including a recently perfected technique of 99mTc-labeled annexin V in live animals followed by phosphor imaging. One striking observation in an additional study was that celecoxib feeding to mice with established tumors (16 weeks of age) significantly improved their overall survival (P = 0.014), compared with AIN 76A-fed group. Our findings suggest that celecoxib may be useful in chemoprevention of prostate cancer.  相似文献   

5.
The Ron receptor is deregulated in a variety of cancers. Hepatocyte growth factor-like protein (HGFL) is the ligand for Ron and is constitutively secreted from hepatocytes into the circulation. While a few recent reports have emerged analyzing ectopic HGFL overexpression in cancer cells, no studies have examined the effect of host-produced HGFL in tumorigenesis. To examine HGFL function in prostate cancer, the TRAMP mouse model, which is predisposed to develop prostate tumors, was utilized. Prostate tumors from TRAMP mice exhibit elevated levels of HGFL, which correlated with upregulation in human prostate cancer. To directly implicate HGFL in prostate tumorigenesis, TRAMP mice deficient in HGFL (HGFL-/-TRAMP+) were generated. HGFL-/- TRAMP+ mice developed significantly smaller prostate tumors compared to controls. Analysis of HGFL-/- tumors revealed reduced tumor vascularization. No differences in cancer cell proliferation were detected between HGFL-/- TRAMP+ and HGFL+/+ TRAMP+ mice. However, a significant increase in cancer cell death was detected in HGFL-/- TRAMP+ prostates which correlated with decreased pro-survival targets. In vitro analysis demonstrated robust STAT3 activation resulting in Bcl2-dependent survival following treatment of prostate cancer cells with HGFL. These data document a novel function for endogenous HGFL in prostate cancer by imparting a critical survival signal to tumor cells.  相似文献   

6.
PURPOSE: Divergent responses to androgen deprivation have been found in patients and in animal models of prostate cancer. The molecular basis for these different outcomes is unknown. Our aim was to identify the molecular responses of prostate cancer with divergent outcomes to androgen deprivation in TRAMP mice. EXPERIMENTAL DESIGN: Castrated and noncastrated B6xFVB TRAMP mice were evaluated for survival, tumor development, pathology, and expressions of specific proteins at different time points. RESULTS: TRAMP mice responded differentially to androgen deprivation. In the majority, primary tumors regressed after castration (positive response), whereas in others the tumors grew even more aggressively than in the noncastrated mice (negative response). Mice with regressed tumors had the highest survival rates. Androgen receptor was elevated in all tumors from castrated mice despite significant differences in tumor sizes. In positively responding tumors, expressions of Bcl-2 and Grp78 were greatly increased by 10 weeks after castration, whereas expressions of Bax, Bcl-xl, SV40 T antigen, and c-myc were lower. These tumors also showed a reduction in proliferating cells compared with noncastrates and negatively responding tumors. Most of these changes disappeared 20 weeks after castration, by which time there was an increase in the size of primary tumors as well as in distant metastasis. CONCLUSIONS: In TRAMP prostate cancer that responded positively to castration, different expression patterns of proteins involved in cellular apoptosis, stress, and proliferation occur approximately 10 weeks after castration. This may be an optimal time for targeting Bcl-2, and perhaps Grp78, to enhance the antitumor effects of androgen deprivation.  相似文献   

7.
Yang D  Holt GE  Velders MP  Kwon ED  Kast WM 《Cancer research》2001,61(15):5857-5860
To identify genes that are differentially up-regulated in prostate cancer of transgenic adenocarcinoma mouse prostate (TRAMP) mice, we subtracted cDNA isolated from mouse kidney and spleen from cDNA isolated from TRAMP-C1 cells, a prostate tumor cell line derived from a TRAMP mouse. Using this strategy, cDNA clones that were homologous to human six-transmembrane epithelial antigen of the prostate (STEAP) and prostate stem cell antigen (PSCA) were isolated. Mouse STEAP (mSteap) is 80% homologous to human STEAP at both the nucleotide and amino acid levels and contains six potential membrane-spanning regions similar to human STEAP. Mouse PSCA (mPsca) shares 65% homology with human PSCA at the nucleotide and amino acid levels. mRNA expression of mSteap and mPsca is largely prostate-specific and highly detected in primary prostate tumors and metastases of TRAMP mice. Both mSteap and mPsca map to chromosome 5. Another known gene coding for mouse prostate-specific membrane antigen (mPsma) is also highly expressed in both primary and metastatic lesions of TRAMP mice. These results indicate that the TRAMP mouse model can be used to effectively identify genes homologous to human prostate-specific genes, thereby allowing for the investigation of their functional roles in prostate cancer. mSteap, mPsca, and mPsma constitute new tools for preventative and/or therapeutic vaccine construction and immune monitoring in the TRAMP mouse model that may provide insights into the treatment of human prostate cancer.  相似文献   

8.
Prostate cancers require androgen for growth but progress to an androgen-independent stage under the selective pressure of androgen ablation therapy. Here we describe a novel human prostate cancer xenograft (LAPC-9) propagated by serial passage in male severe combined immunodeficient mice that expresses prostate-specific antigen and wild-type androgen receptor. In response to castration, LAPC-9 cells undergo growth arrest and persist in a dormant, androgen-responsive state for at least 6 months. After prolonged periods of androgen deprivation, spontaneous androgen-independent outgrowths develop. Thus, prostate cancers progress to androgen independence through two distinct stages, initially escaping dependence on androgen for survival and, subsequently, for growth. Through the use of serial dilution and fluctuation analysis, we provide evidence that the latter stage of androgen independence results from clonal expansion of androgen-independent cells that are present at a frequency of about 1 per 10(5)-10(6) androgen-dependent cells. We conclude that prostate cancers contain heterogeneous mixtures of cells that vary in their dependence on androgen for growth and survival and that treatment with antiandrogen therapy provides selective pressure and alters the relative frequency of these cells, thereby leading to outgrowths of androgen-independent cancers.  相似文献   

9.
10.
11.
The chemopreventive efficacy of toremifene, an antiestrogen, was evaluated in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. TRAMP mice were segregated into three groups: (a) the low-dose toremifene group (6.6 mg/kg/day); (b) the high-dose toremifene group (33 mg/kg/day); and (c) the control placebo group. Efficacy of treatment was measured by the absence of palpable tumor. To extend these studies using more sensitive techniques, TRAMP mice were then treated with placebo, flutamide (an antiandrogen; 33 mg/kg/day), or toremifene (10 mg/kg/day). Animals from each treatment group were sacrificed at 7, 10, 15, 20, 25, and 30 weeks of age, and prostate tissues and seminal vesicles were harvested. Tissues from animals (n = 5) in each group were evaluated by wholemount dissections of genitourinary tracts, histology, immunohistochemistry, and Western blot analyses. Blood was pooled per group to measure estradiol and testosterone hormonal levels. Tumors formed at week 17 in the placebo group (n = 10), at week 21 in the high-dose toremifene group (n = 12), and at week 29 in the low-dose toremifene group (n = 12). This represents an increased tumor latency of up to 12 weeks. By 33 weeks, all animals in the placebo group had tumors compared with only 35% of the animals treated with toremifene. Although both flutamide and toremifene decreased tumor incidence compared with the placebo, toremifene was more effective than flutamide. High-grade prostatic intraepithelial neoplasia was observed in animals in the placebo group, but not in animals treated with toremifene. Moreover, toremifene-treated animals had prolonged survival compared with placebo-treated animals. By 33 weeks of age, 100% of the placebo-treated animals had developed palpable tumors and died, whereas 60% of the toremifene-treated animals were tumor free. T antigen levels in the prostate of toremifene-treated animals were similar to those of placebo-treated, age-matched animals. Whereas serum estradiol levels remained unchanged, the total and free testosterone levels were elevated in the toremifene-treated group. Toremifene treatment did not affect androgen receptor levels. Because toremifene prevented prostate cancer in a milieu of elevated blood free testosterone levels with no change in prostate androgen receptor expression, the mechanism of toremifene's chemopreventive activity may be through nonandrogenic pathways, such as estrogen receptor signaling.  相似文献   

12.
13.
Fibroblast growth factor (FGF) 2 (or basic FGF) is expressed at increased levels in human prostate cancer. FGF2 can promote cell motility and proliferation, increase tumor angiogenesis, and inhibit apoptosis, all of which play an important role in tumor progression. To determine whether FGF2 plays a critical role in prostate cancer progression, we have used the transgenic adenocarcinoma of the mouse prostate (TRAMP) model system. A high percentage of TRAMP mice develop metastatic prostate cancer, and thus the TRAMP model is useful for evaluating cancer progression. TRAMP mice were crossed with FGF2 knockout (FGF2(-/-)) mice, and tumor progression in TRAMP mice that were either hemi- or homozygous for inactivation of the FGF2 allele was compared with progression in wild-type TRAMP mice. Inactivation of even one FGF2 allele resulted in increased survival, a decrease in metastasis, and inhibition of progression to the poorly differentiated phenotype in primary prostatic tumors. When compared with wild-type mice, poorly differentiated tumors arising in FGF(+/-) and FGF(-/-) mice expressed higher levels of vascular endothelial growth factor and, in some cases, increased levels of acidic FGF intracellular binding protein, a nuclear FGF1-binding protein. These findings suggest that both FGF2-mediated angiogenesis and intranuclear FGF2 activities may promote tumor progression and support the hypothesis that FGF2 plays a significant role in prostate cancer progression in vivo.  相似文献   

14.
PURPOSE: We recently showed that metastasis-promoting Mts1 gene (S100A4) and protein is overexpressed during progression of prostate cancer in humans. The purpose of this study was to assess the expression of S100A4 during autochthonous prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Because oral consumption of green tea polyphenols (GTP) has been shown to inhibit metastasis and prostate cancer in TRAMP, we further assessed the significance of S100A4 during chemoprevention regimen. EXPERIMENTAL DESIGN: Male TRAMP mice 8 weeks of age were equally divided into two groups. A freshly prepared 0.1% GTP solution in tap water was supplied thrice a week to experimental animals as the sole source of drinking fluid for 24 weeks, whereas the control group of animals received the same tap water throughout the experiment. The animals were sacrificed at 0, 8, 16, and 24 weeks of GTP feeding and were analyzed for S100A4 and E-cadherin. Additional untreated and treated nontransgenic controls were also included in the study. RESULTS: With the progression of age and prostate cancer growth in TRAMP mice, an increase in the expression of S100A4 at mRNA and protein level in dorsolateral prostate, but not in nontransgenic mice, occurred. GTP feeding to TRAMP mice resulted in marked inhibition of prostate cancer progression, which was associated with reduction of S100A4 and restoration of E-cadherin. CONCLUSIONS: S100A4 represents a promising marker for prostate cancer progression and could be employed as a biomarker in chemoprevention regimens.  相似文献   

15.
Decrease of cellular zinc in the epithelium of the prostate has been implicated in the development of prostate cancer. To investigate whether ZnT7, a zinc transporter involved in intracellular zinc accumulation, played a role in prostate cancer development, we generated and characterized a transgenic adenocarcinoma mouse prostate (TRAMP) model with a Znt7-null genetic background. TRAMP mice (TRAMP/Znt7−/− and TRAMP/Znt7+/+) were euthanized at 6, 8, 16, and 28 weeks of age for histopathological analysis of the prostates and for the presence of prostate tumors and metastasis. At 6 and 8 weeks of age, TRAMP/Znt7−/− mice displayed higher frequencies of low grade prostatic intraepithelial neoplasia (PIN) and high grade PIN, respectively, in the prostates than the age-matched TRAMP/Znt7+/+ mice. At 16 weeks of age, 33% TRAMP/Znt7−/− mice had prostate tumors and one half of the mice with prostate tumors had tumor metastasized to the draining lymph nodes while no prostate tumor was detected in the control TRAMP mice. By 28 weeks, 67% TRAMP/Znt7−/− mice developed prostate tumors while only 22% control TRAMP mice had prostate tumors. Furthermore, apoptosis was reduced in the prostates of TRAMP/Znt7−/− mice. In conclusion, a null-mutation of the Znt7 gene accelerates prostate tumor formation in TRAMP mice.  相似文献   

16.
PURPOSE: Androgen ablation is the standard initial treatment for advanced prostate cancer; however, tumors eventually develop androgen independence and become incurable. Chemotherapy is commonly used after hormone treatment fails but has not shown significant survival benefit. Studies suggest that androgen ablation can select for a population of hormone-independent cells that are also relatively chemotherapy resistant. Thus, it may be therapeutically advantageous to target prostate cancer with chemotherapy before hormone ablation. This study was undertaken to determine the relative efficacy of such an approach in a preclinical model of prostate cancer. EXPERIMENTAL DESIGN: Severe combined immunodeficient mice bearing human LNCaP prostate tumors were treated with docetaxel and/or surgical castration applied singly, concurrently, or in different sequences. Treatment efficacy was determined by tumor volume and growth delay measurements. The extent of apoptosis in tumors in response to treatments was assessed via terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. In addition, Western blots were done to study the relative expression of Bcl-2 and Bax in the tumors. RESULTS: Docetaxel followed by castration showed the most potent antitumor effects. In contrast, with the exception of castration alone, castration followed by docetaxel produced the least antitumor activity. TUNEL assays confirmed that the density of apoptotic tumor cells was significantly greater for docetaxel followed by castration than for any other treatment. In tumors of mice treated with single modality therapies, Bax to Bcl-2 ratios decreased significantly after castration, whereas this ratio remained high after docetaxel treatment. CONCLUSION: A treatment sequence of docetaxel followed by hormone ablation may be more effective in treating prostate cancer than concurrent docetaxel/hormone therapy or hormone ablation followed by docetaxel.  相似文献   

17.
18.
Antiangiogenic therapy is a promising alternative for prostate cancer growth and metastasis and holds great promise as an adjuvant therapy. The present study evaluated the potential of stable expression of angiostatin and endostatin before the onset of neoplasia and during the early and late stages of prostate cancer progression in transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Groups of 5-, 10-, and 18-week-old male TRAMP mice received recombinant adeno-associated virus-6 encoding mouse endostatin plus angiostatin (E+A) by i.m. injection. The effects of therapy were determined by sacrificing groups of treated mice at defined stages of tumor progression and following cohorts of similarly treated mice for long-term survival. Results indicated remarkable survival after recombinant adeno-associated virus-(E+A) therapy only when the treatment was given at an earlier time, before the onset of high-grade neoplasia, compared with treatment given for invasive cancer. Interestingly, early-stage antiangiogenic therapy arrested the progression of moderately differentiated carcinoma to poorly differentiated state and distant metastasis. Immunohistochemical analysis of the prostate from treated mice indicated significantly lower endothelial cell proliferation and increased tumor cell apoptosis. Vascular endothelial growth factor receptor (VEGFR)-2 expression was significantly down-regulated in tumor endothelium after treatment but not VEGFR-1. Analysis of the neuroendocrine marker synaptophysin expression indicated that antiangiogenic therapy given at an early-stage disease reduced neuroendocrine transition of the epithelial tumors. These studies indicate that stable endostatin and angiostatin gene therapy may be more effective for minimally invasive tumors rather than advanced-stage disease.  相似文献   

19.
Development of effective chemopreventive agents for human consumption requires conclusive evidence of their efficacy in animal models that have relevance to human diseases. Transgenic adenocarcinoma mouse prostate (TRAMP) is an excellent model of prostate cancer that mimics progressive forms of human disease inasmuch as 100% of males develop histological PIN by 8-12 weeks of age that progress to adenocarcinoma with distant site metastases by 24-28 weeks of age. In these animals, ornithine decarboxylase (ODC) activity (>3-fold) as well as protein expression (>4-fold) was found to be markedly higher in the dorsolateral prostate as compared with the nontransgenic littermates, suggesting their suitability to determine the chemopreventive effect of alpha-difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, against prostate cancer. Using male TRAMP mice, we studied the effect of oral consumption of DFMO on development of prostate carcinogenesis and surrogate end point biomarkers related to prostate cancer progression. In two independent experiments, each consisting of 8 animals on test, the cumulative incidence of prostatic cancer development at 28 weeks of age in 16 untreated TRAMP mice was 100% (16 of 16), whereas 94% (15 of 16) and 69% (11 of 16) of the animals exhibited distant site metastases to lymph nodes and lungs, respectively. Oral consumption of 1% DFMO (w/v) in the drinking water to TRAMP mice from 8 to 28 weeks of age resulted in a significant decrease in (a) weight (59%) and volume (66%) of prostate, (b) genitourinary weight (63%), and (c) ODC enzyme activity (52%) in the dorsolateral prostate. Importantly, in none of the DFMO-fed TRAMP mice were any distant metastases to lymph node and lungs observed. Furthermore, DFMO treatment resulted in the marked reduction in the protein expression of proliferation cell nuclear antigen, ODC, and probasin in the dorsolateral prostate. The protein expression of antimetastases markers, i.e., E-cadherin and alpha- and beta-catenin, was found to be restored in DFMO-fed animals as compared with the non-DFMO-fed mice. These chemopreventive effects of DFMO were further confirmed by immunohistochemical analysis of the dorsolateral prostate. Histological analysis of the dorsolateral prostate of DFMO-fed animals displayed marginal epithelial stratification, a small number of cribriform structures, elongated hyperchromatic epithelial nuclei, and a significant increase in apoptotic index. Non-DFMO-fed animals, on the other hand, displayed extensive epithelial stratification with profound cribriform structures accompanied with marked thickening, remodeling, and hypercellularity of the fibromuscular stroma. In nontransgenic littermates fed with DFMO, no significant alterations in the above parameters were evident. These data demonstrate that ODC represents a promising and rational target for chemoprevention of human prostate cancer and that TRAMP mice are excellent models for screening of novel drugs and chemopreventive regimens for potential human use.  相似文献   

20.
Testosterone-repressed prostate message-2 (TRPM-2) expression is highly up-regulated in normal and malignant prostate cells after androgen withdrawal. Although recent studies have suggested a protective role of TRPM-2 expression against apoptosis in several experimental models, the functional role of TRPM-2 in chemotherapy-induced apoptosis remains undefined. Here, we demonstrated that overexpression of TRPM-2 in human androgen-dependent LNCaP prostate cancer cells by stable transfection rendered them highly resistant to paclitaxel treatment than control LNCaP cells, with a 20-fold higher IC50 through the inhibition of apoptotic cell death. In mice bearing TRPM-2-overexpressing LNCaP tumors, tumor volume and serum prostate-specific antigen increased two to three times faster after castration and paclitaxel treatment compared with mice bearing control tumors. We then tested the efficacy of combined treatment with antisense TRPM-2 oligodeoxynucleotide (ODN) and paclitaxel in the mouse androgen-dependent Shionogi tumor model. Antisense TRPM-2 ODN treatment significantly enhanced paclitaxel chemosensitivity of Shionogi tumor cells in a dose-dependent manner, reducing the IC50 by 75%. Combined treatment of Shionogi cells with 500 nM antisense TRPM-2 ODN and 10 nM paclitaxel-induced apoptosis, either agent alone did not. Adjuvant administration of antisense TRPM-2 ODN and polymeric micellar paclitaxel after castration resulted in reduced TRPM-2 levels in vivo and a significant delay of emergence of androgen-independent recurrent Shionogi tumors compared with administration of either agent alone. Furthermore, combined treatment of mice bearing androgen-independent recurrent Shionogi tumors with antisense TRPM-2 ODN and micellar paclitaxel inhibited tumor growth compared with treatment with either agent alone. Collectively, these findings demonstrate that TRPM-2 overexpression helps confer a chemoresistant phenotype through inhibition of apoptosis, and that antisense TRPM-2 ODN may be useful in enhancing the effects of cytotoxic chemotherapy in hormone-refractory prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号