首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease. © 1996 Wiley-Liss, Inc.  相似文献   

2.
First described as a survival factor for chick ciliary ganglion neurons, ciliary neurotrophic factor (CNTF) has recently been shown to promote survival of chick embryo motor neurons. We now report neurotrophic effects of CNTF toward three populations of rat hippocampal neurons, the first demonstration of effects of CNTF upon rodent CNS neurons in culture. CNTF elicited an increase in the neurofilament content of hippocampal cultures prepared from embryonic day 18 (E18) rat brain. This was accompanied by increases of 2-, 28-, and 3-fold in the number of GABAergic, cholinergic, and calbindin-immunopositive cells, respectively. CNTF totally prevented the 67% loss of GABAergic neurons that occurred in control cultures over 8 d. CNTF also increased high-affinity GABA uptake and glutamic acid decarboxylase activity. Effects of CNTF were in all cases dose dependent, with maximal stimulation at approximately 100 pg/ml. When addition was delayed for 3 d, CNTF failed to elicit increases either in the number of cholinergic neurons or in GABA uptake.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, and ciliary neurotrophic factor (CNTF), a member of the neurocytokine family, are known to have synergistic effects on motoneurons, but such synergistic effect has not been studied in detail especially in the brain. In the present study, we examined the synergistic effects of BDNF and CNTF on the survival of basal forebrain cholinergic neurons cultured from postnatal 2-week-old (P2w) rats. Although BDNF is well-known to promote the survival of basal forebrain cholinergic neurons in P2w culture, CNTF had little effect on the survival of choline acetyltransferase (ChAT)-positive neurons and did not increase ChAT activity in the culture. However, CNTF enhanced BDNF-mediated promotion of cell survival of cholinergic neurons when added concomitantly. BDNF alone induced only a three-fold increase in ChAT activity in control cultures, but the concomitant addition of CNTF resulted in an eight-fold increase. CNTF did not enhance BDNF-mediated cell survival of total neurons from the basal forebrain, hippocampus or cerebellum, suggesting that the synergistic effects of CNTF on the BDNF-mediated increase of viability might be strong in basal forebrain cholinergic neurons. CNTF also enhanced the neurotrophin-4/5-mediated increase of ChAT activity, but not the nerve growth factor (NGF)-mediated one. Furthermore, the BDNF-mediated increase was also enhanced by leukemia inhibitory factor but not by interleukin-6. Similar synergistic pattern between neurotrophins and cytokines were also observed in the induction of ChAT activity in embryonic basal forebrain culture. These results suggest that TrkB, a functional high-affinity receptor of BDNF and NT-4/5, and LIFR beta, a receptor component contained in CNTF and LIF receptor complex, might be involved in the observed synergistic effects.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) is a small, basic protein purified from the mammalian brain that has been shown previously to support the survival of cultured spinal sensory neurons (Barde et al., 1982). In current studies, BDNF was tested for its ability to support the survival of cultured CNS cells isolated from the perinatal rat retina. Both immunofluorescent labeling of Thy-1 and prior retrograde labeling with HRP were used as retinal ganglion cell markers in vitro. With embryonic day (E) 17 retinas, it was found that BDNF allowed the survival of a small subpopulation of neurons (about 7% of the cells plated at this age) identified by the immunofluorescent labeling of Thy-1. No detectable effects were seen when either the total number of cells or the number of tetanus toxin-positive neurons was measured. BDNF also had an effect on cultured neurons retrogradely labeled after HRP injections in the superior colliculi of neonatal rats. The BDNF-responsive population was therefore detected only in retinal cultures with specific markers and identified as consisting of retinal ganglion cells. These cells could be enriched about 80-fold by density gradient centrifugation, and purified ganglion cell cultures were shown to be responsive to BDNF. Whereas with E17 retinas, the number of surviving Thy-1 positive neurons could be kept constant for at least 4 d, the survival of postnatal neurons was only transiently increased by BDNF. We conclude that in the retina, BDNF affects only the survival of ganglion cells in vitro by a direct action on these cells. The results are discussed in terms of target-derived neurotrophic support during development.  相似文献   

5.
We studied the effect of CNTF (ciliary neurotrophic factor, human recombinant and chick) on the survival of motoneurons in the embryonic chick lumbar spinal cord during the period of ontogenetic cell death. Daily applications of 5 micrograms CNTF to the chorionic-allantoic membrane from embryonic day 6 (E6) to E9 maintained approximately 15,500 motoneurons as opposed to 13,200 in controls. In contrast, CNTF failed to promote the survival of cells in spinal cord cultures enriched for motoneurons. These results suggest that CNTF may regulate motoneuron survival in-vivo, but its mode of action remains to be elucidated.  相似文献   

6.
Cultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors – ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) – in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors – CNTF, NGF and NT3 – at significantly higher levels than other cultured cell types or cell lines examined. BDNF messenger RNA (mRNA), however, was undetectable in these astrocytes. The levels of CNTF, NGF and NT3 mRNA in astrocytes were largely unaffected by their degree of confluency, while serum removal caused only a transient decrease in mRNA levels, which returned to basal levels within 48 h. Astrocyte-derived CNTF was found to comigrate with recombinant rat CNTF at 23 kD on a Western blot. Immunocytochemical analysis revealed strong CNTF immunoreactivity in the cytoplasm of astrocytes, weak staining in the nucleus, but no CNTF at the cell surface. NGF and NT3 were undetectable immunocytochemically. CNTF-like activity, as assessed by bioassay on ciliary ganglion neurons, was found in the extract of cultured astrocytes but not in conditioned medium, whereas astrocyte-conditioned medium supported survival of dorsal root ganglion neurons but not ciliary or nodose ganglion neurons. This conditioned medium activity was neutralized with antibodies to NGF. Astrocyte extract also supported survival of dorsal root ganglion and nodose ganglion neurons, but these activities were not blocked by anti-NGF. Part, but not all, of the activity in astrocyte extracts which sustained nodose ganglion neurons could be attributed to CNTF.  相似文献   

7.
Chromaffin granules, the secretory organelles of the neuron-like adrenal medullary chromaffin cells, have previously been shown to store and liberate neurotrophic activities that support in vitro survival of several neuron populations including those innervating the adrenal medulla. Molecules resembling fibroblast growth factor and ciliary neurotrophic factor have been identified among these activities. Since chromaffin granules store a variety of neuropeptides and many neuropeptides can have pleiotropic effects on neuronal growth and maintenance we have tested 24 different neuropeptides for their capacities to promote survival of embryonic chick ciliary, dorsal root and sympathetic ganglionic neurons. Peptides tested included several derivatives of proenkephalin (Leu- and met-enkephalin, fragments BAM 22, B, F and E), somatostatin, substance P, neuropeptide Y, neurotensin, VIP, bombesin, secretin, pancreastatin, dynorphin B, dynorphin 1-13, beta-endorphin, alpha-, beta-, and gamma-MSH. Control cultures received saturating concentrations of ciliary neurotrophic or nerve growth factor (CNTF; NGF), or no trophic supplements. At 1 x 10(-5) M leu- and met-enkephalin as well as somatostatin supported sympathetic neurons to the same extent as NGF. At the same concentrations, leu-enkephalin, the proenkephalin fragments BAM 22 and E, and somatostatin maintained about half of the dorsal root ganglionic neurons supported by NGF, but were not effective on ciliary neurons. VIP promoted the survival of approximately 50% of the ciliary and embryonic day 10 dorsal root ganglionic neurons as compared to saturating amounts of CNTF, but required the presence of non-neuronal cells in the cultures to be effective. Neurotensin (1 x 10(-5) M had a small effect on ciliary neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have previously shown that not only motoneurons and dorsal root ganglion cells but also small neurons, presumably interneurons in the spinal cord, may undergo apoptotic cell death as a result of neonatal peripheral nerve transection in the rat. With the aid of electron microscopy, we have here demonstrated that apoptosis in the spinal cord is confined to neurons and does not involve glial cells at the survival time studied (24 hours). To define the relative importance of the loss of a potential target (motoneuron) and a potential afferent input (dorsal root ganglion cell) for the induction of apoptosis in interneurons in this situation, we have compared the distributions and time courses for TUNEL labeling, which detects apoptotic cell nuclei, in the L5 segment of the spinal cord and the L5 dorsal root ganglion after sciatic nerve transection in the neonatal (P2) rat. In additional experiments, we studied the effects on TUNEL labeling of interneurons after treatment of the cut sciatic nerve with either ciliary neurotrophic factor (CNTF) to rescue motoneurons or nerve growth factor (NGF) to rescue dorsal root ganglion cells. The time courses of the TUNEL labeling in motoneurons and interneurons induced by the lesion show great similarities (peak at 8-48 hours postoperatively), whereas the labeling in dorsal root ganglion cells occurs later (24-72 hours). Both CNTF and NGF decrease the number of TUNEL-labeled interneurons, but there is a regional difference, in that CNTF preferentially saves interneurons in deep dorsal and ventral parts of the spinal cord, whereas the rescuing effects of NGF are seen mainly in the superficial dorsal horn. The results are interpreted as signs of a trophic dependence on both the target and the afferent input for the survival of interneurons neonatally.  相似文献   

9.
A reproducible neuronal degeneration induced by nerve lesion in neonatal rats or mice provides a convenient in vivo assay for testing the survival-promoting activity of putative growth factors on motoneurons. The goal of this study was to compare the rescue effects of the four known neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4)] and two of the cytokines [ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF)] in one particular experimental model of spinal motoneuron degeneration at two different survival times. The sciatic nerve was cut in neonatal rats and the factors were applied onto the nerve stump; bovine serum albumin was used in controls. Simultaneous application of the retrograde tracer fluoro-gold made it possible to count motoneurons specifically in the sciatic pool. One week after lesion, the neurotrophins BDNF, NT-3 and NT-4, but not NGF, equally enhanced motoneuron survival compared to controls; their effects were significantly better than those of the cytokines. However, the rescue from cell death was only transitory because a great number of the motoneurons died during the second week after nerve lesion. Additional BDNF and/or CNTF supplied by repeated subcutaneous injections (1 mg/ml) over 2 weeks could not prevent this delayed motoneuron loss. These results suggest that still other factors or alternative routes of administration may be required for permanent rescue of the lesioned immature motoneurons.  相似文献   

10.
We have studied the effects of ciliary neuronotrophic factor (CNTF) and nerve growth factor (NGF) on cultures of E14 rat spinal cord cells maintained for 7 days. The trophic factors were supplied at the day of seeding and every other day thereafter. Treatments with CNTF (human recombinant or purified from rat sciatic nerve, 100 TU/ml) resulted after 7 days in an increase, relative to control cultures, of: (i) the total number of neurons (identified by neurofilament protein and neuron-specific enolase immunostaining) that were not stained with choline, acetyltransferase (ChAT) and low affinity nerve growth factor receptor (LNGFR) antibodies; (ii) the number of motoneurons (0.5% of the neuronal population) as identified by size (greater than 25 microns), morphology and immunostaining for ChAT and LNGFR; and (iii) a population of small- to medium-sized (less than 25 microns), ChAT- and LNGFR-positive neurons, representing 5-10% of the total neuronal population. NGF treatments (mouse submaxillary beta NGF; 10-3000 TU/ml) were without effect on all 3 neuronal populations. Experiments in which CNTF administration was delayed revealed that the population of ChAT- and LNGFR-negative neurons and the population of motoneurons, were both dependent on CNTF for their survival. The third population, small ChAT and LNGFR-positive neurons, was not dependent on CNTF for survival but was induced by CNTF to express its two markers. These observations indicate that CNTF is a neuronotrophic factor for motoneurons, but that the effect of CNTF is not restricted to that cell population. In addition to its survival promoting effect, CNTF has also a regulatory role on the expression of ChAT and LNGFR for some spinal cord neurons.  相似文献   

11.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

12.
In a search for neurotrophic factors (NTFs) regulating retinal ganglion cell (RGC) death in the chick embryo we have used purified and cultured RGCs. Purification of RGCs from embryonic day 10 was achieved by employing the "panning" method (Silverstein and Chun: Soc Neurosci Abstr 13:1054, 1987). The obtained neuron population consisted of 97% RGCs as demonstrated by retrograde labeling with a fluorescence dye. RGCs were cultured at low density in a chemically defined medium and short-term survival (24 hr) was determined. In the absence of NTFs, less than 3% of the RGCs survived. In the presence of various crude or purified NTFs (eye, brain, and tectum extracts; glial-conditioned medium; ciliary neurotrophic factor [CNTF]; nerve growth factor [NGF]) 31% to 52% of the RGCs were maintained. The effects of NGF and CNTF were not additive. Neither acidic nor basic fibroblast growth factor was able to maintain RGCs in culture. Our results, obtained with a culture system which allowed the analysis of direct trophic actions, suggest that NGF and CNTF may be NTFs for overlapping subpopulations of chick RGCs.  相似文献   

13.
14.
S D Skaper  S Varon 《Brain research》1986,389(1-2):39-46
Chick embryo dorsal root ganglion (DRG) neurons can be supported in vitro by nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF). Pyruvate is also required for survival of neurons from embryonic day 8 (E8) chick ciliary ganglia and from several chick and rat embryonic central nervous system sources. Here we have examined the survival requirements of chick DRG neurons between E6.5 and E15. These DRG neurons, initially dependent only on NGF, become dependent also on CNTF and later on increasingly independent from both factors. Pyruvate nearly doubles neuronal survival at all ages under all conditions. The pyruvate concentration permitting this additional survival was reduced two-fold with serine present. In the presence of polyornithine-bound laminins, nearly all seeded neurons were rescued by pyruvate plus NGF (E8 on), or pyruvate plus CNTF (E10 on), or pyruvate without trophic factors (E15). The same maximal survival was achieved without pyruvate by supplying E10 or older neurons with both NGF and CNTF. Unmodified polyornithine substrata yielded about one-half this number of surviving neurons.  相似文献   

15.
Neurotrophins exert their biological functions on neuronal cells through two types of receptors, the trk tyrosine kinases and the low-affinity neurotrophin receptor (p75NTR), which can bind all neurotrophins with similar affinity. The p75NTR is highly expressed in developing motoneurons and in adult motoneurons after axotomy, suggestive of a physiological role in mediating neurotrophin responses under such conditions. In order to characterize this specific function of p75NTR, we have tested the effects of nerve growth factor (NGF) on embryonic motoneurons from control and p75NTR-deficient mice. NGF antagonizes brain-derived neurotrophic factor (BDNF)- and neurotrophin-3 (NT-3)-mediated survival in control but not p75NTR-deficient motoneurons. Survival of cultured motoneurons in the presence of 0.5 ng/mL of either ciliary neurotrophic factor (CNTF) or glial-derived neurotrophic factor (GDNF) was not reduced by 20 ng/mL NGF. Dose-response investigations revealed that five times higher concentrations of BDNF are required for half-maximal survival of p75NTR-deficient motoneurons in comparison to motoneurons from wild-type controls. After facial nerve lesion in newborn wild-type mice, local administration of NGF reduced survival of corresponding motoneurons to less than 2% compared to the unlesioned control side. In p75NTR-deficient mice, the same treatment did not enhance facial motoneuron death on the lesioned side. In the facial nucleus of 1-week-old p75NTR -/- mice, a significant reduction of motoneurons was observed at the unlesioned side in comparison to p75NTR +/+ mice. The observation that motoneuron cell numbers are reduced in the facial nucleus of newborn p75NTR-deficient mice suggests that p75NTR might not function as a physiological cell death receptor in developing motoneurons.  相似文献   

16.
Human recombinant glial cell line-derived neurotrophic factor (GDNF) was tested for its ability to stimulate fiber formation and neuron survival in primary cultures of peripheral ganglia dissected from the chicken embryo. GDNF, first characterized by its actions on central nervous system (CNS) neurons, had a marked stimulatory effect on fiber outgrowth in sympathetic and ciliary ganglia. Weaker responses were evoked in sensory spinal and nodose ganglia and in the ganglion of Remak. In addition, survival of neurons from the sympathetic and ciliary ganglia was stimulated by GDNF at 50 ng/ml. The effects were not mimicked by the distant but related protein transforming growth factor beta 1 (TGFβ1). The profile of neurons stimulated by GDNF is also distinct from the patterns of stimulation shown by nerve growth factor (NGF), stimulation strongly sympathetic but not ciliary ganglia, and ciliary neurotrophic factor (CNTF), stimulating mainly the ciliary ganglion. Moreover, using in situ hybridization histochemistry, GDNF was demonstrated to be present in the pineal gland in the new born rat, a target organ for sympathetic innervation. The present results suggest that GDNF is likely to act upon receptors present in several autonomic and sensory neuronal populations. GDNF may serve to support fiber outgrowth and cell survival in peripheral ganglia, adding yet one more trophic factor to the list of specific proteins controlling development and maintenance of the peripheral nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Many neurotrophic factors have been shown to enhance survival of embryonic motor neurons or affect their response to injury. Few studies have investigated the potential effects of neurotrophic factors on more mature motor neurons that might be relevant for neurodegenerative diseases. Using organotypic spinal cord cultures from postnatal rats, we have demonstrated that insulin-like growth factor-I (IGF-I) and glial-derived neurotrophic factor (GDNF) significantly increase choline acetyltransferase (ChAT) activity, but brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4/5), and neurotrophin-3 (NT-3) do not. Surprisingly, ciliary neurotrophic factor (CNTF) actually reduces ChAT activity compared to age-matched control cultures. Neurotrophic factors have also been shown to alter the sensitivity of some neurons to glutamate neurotoxicity, a postulated mechanism of injury in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). Incubation of organotypic spinal cord cultures in the presence of the glutamate transport inhibitor threo-hydroxyaspartate (THA) reproducibly causes death of motor neurons which is glutamate-mediated. In this model of motor neuron degeneration, IGF-I, GDNF, and NT-4/5 are potently neuroprotective, but BDNF, CNTF, and NT-3 are not. The organotypic glutamate toxicity model appears to be the best preclinical predictor to date of success in human clinical trials in ALS.  相似文献   

18.
At focal CNS injury sites, several cytokines accumulate, including ciliary neurotrophic factor (CNTF) and interleukin-1beta (IL-1beta). Additionally, the CNTF alpha receptor is induced on astrocytes, establishing an autocrine/paracrine loop. How astrocyte function is altered as a result of CNTF stimulation remains incompletely characterized. Here, we demonstrate that direct injection of CNTF into the spinal cord increases GFAP expression and astroglial size and that primary cultures of spinal cord astrocytes treated with CNTF, IL-1beta, or leukemia inhibitory factor exhibit nuclear hypertrophy comparable to that observed in vivo. Using a coculture bioassay, we further demonstrate that CNTF treatment of astrocytes increases their ability to support ChAT(+) ventral spinal cord neurons (presumably motor neurons) more than twofold compared with untreated astrocytes. Also, the complexity of neurites was significantly increased in neurons cultured with CNTF-treated astrocytes compared with untreated astrocytes. RT-PCR analysis demonstrated that CNTF increased levels of FGF-2 and nerve growth factor (NGF) mRNA and that IL-1beta increased NGF and hepatocyte growth factor mRNA levels. Furthermore, both CNTF and IL-1beta stimulated the release of FGF-2 from cultured spinal cord astrocytes. These findings demonstrate that cytokine-activated astrocytes better support CNS neuron survival via the production of neurotrophic molecules. We also show that CNTF synergizes with FGF-2, but not epidermal growth factor, to promote DNA synthesis in spinal cord astrocyte cultures. The significance of these findings is discussed by presenting a new model depicting the sequential activation of astrocytes by cytokines and growth factors in the context of CNS injury and repair.  相似文献   

19.
We examined neuroprotective effects of recombinant adenoviral vectors encoding glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT1), insulin-like growth factor-1 (IGF1), and transforming growth factor-beta2 (TGFbeta2) on lesioned adult rat facial motoneurons. The right facial nerves of adult Fischer 344 male rats were avulsed and removed from the stylomastoid foramen, and adenoviral vectors were injected into the facial canal. Animals avulsed and treated with adenovirus encoding GDNF, BDNF, CNTF, CT1, IGF1 and TGFbeta2 showed intense immunolabeling for these factors in lesioned facial motoneurons, respectively, indicating adenoviral induction of the neurotrophic factors in these neurons. The treatment with adenovirus encoding GDNF, BDNF, or TGFbeta2 after avulsion significantly prevented the loss of lesioned facial motoneurons, improved choline acetyltransferase immunoreactivity and prevented the induction of nitric oxide synthase activity in these neurons. The treatment with adenovirus encoding CNTF, CT1 or IGF1, however, failed to protect these neurons after avulsion. These results indicate that the gene transfer of GDNF and BDNF and TGFbeta2 but not CNTF, CT1 or IGF1 may prevent the degeneration of motoneurons in adult humans with motoneuron injury and motor neuron diseases.  相似文献   

20.
The survival and functional maintenance of spinal motoneurons, both during the period of developmental cell death and in adulthood, have been shown to be dependent on trophic factors. In vitro experiments have previously been used to identify several survival factors for motoneurons, including CNTF, LIF, and members of the neurotrophin, FGF, and IGF gene families. Some of these factors have also been shown to be active in vivo, either on chick motoneurons during embryonic development or on lesioned facial and spinal motoneurons of the newborn rat. Here we demonstrate that lesioned newborn rat facial motoneurons can be rescued by NT-4/5, IGF-I and LIF. Furthermore, in contrast to chick motoneurons, the survival of isolated embryonic rat motoneurons can be maintained by the neurotrophins BDNF, NT-3, and NT-4/5. IGF-I and FGF-5 were also active in this system, each supporting more than 50% of the originally plated neurons. The responsiveness of motoneurons to multiple factors in vitro and in vivo suggests that motoneuron survival and function are regulated by the coordinated actions of members of different gene families. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号