首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantification of human immunodeficiency virus type 1 (HIV-1) RNA as a measure of viral load has greatly improved the monitoring of therapies for infected individuals. With the significant reductions in viral load now observed in individuals treated with highly active anti-retroviral therapy (HAART), viral load assays have been adapted to achieve greater sensitivity. Two commercially available ultrasensitive assays, the Bayer Quantiplex HIV-1 bDNA version 3.0 (bDNA 3.0) assay and the Roche Amplicor HIV-1 Monitor Ultrasensitive version 1.5 (Amplicor 1.5) assay, are now being used to monitor HIV-1-infected individuals. Both of these ultrasensitive assays have a reported lower limit of 50 HIV-1 RNA copies/ml and were developed from corresponding older generation assays with lower limits of 400 to 500 copies/ml. However, the comparability of viral load data generated by these ultrasensitive assays and the relative costs of labor, disposables, and biohazardous wastes were not determined in most cases. In this study, we used matched clinical plasma samples to compare the quantification of the newer bDNA 3.0 assay with that of the older bDNA 2.0 assay and to compare the quantification and costs of the bDNA 3.0 assay and the Amplicor 1.5 assay. We found that quantification by the bDNA 3.0 assay was approximately twofold higher than that by the bDNA 2.0 assay and was highly correlated to that by the Amplicor 1.5 assay. Moreover, cost analysis based on labor, disposables, and biohazardous wastes showed significant savings with the bDNA 3.0 assay as compared to the costs of the Amplicor 1.5 assay.  相似文献   

2.
Viral quantification or viral load testing has become part of the routine management of patients infected with HIV-1 or hepatitis C virus (HCV). There are currently several molecular technologies that are available for use in the clinical laboratory setting. Of these, only the branched DNA (bDNA) assays are FDA-approved for HIV-1 and HCV viral load testing. This signal amplification technology is built on a series of hybridization reactions that are highly amenable to full automation and thus lessen the amount of labor required to perform this type of analysis. This article provides a historical perspective of bDNA and its clinical applications.  相似文献   

3.
The performance and characteristics of Roche COBAS AMPLICOR HIV-1 MONITOR version 1.5 (CA MONITOR 1.5) UltraSensitive (usCA MONITOR 1. 5) and Standard (stCA MONITOR 1.5) procedures, Organon Teknika NucliSens HIV-1 RNA QT with Extractor (NucliSens), and Bayer Quantiplex HIV RNA version 3.0 (bDNA 3.0) were compared in a multicenter trial. Samples used in this study included 460 plasma specimens from human immunodeficiency virus (HIV) type 1 (HIV-1)-infected persons, 100 plasma specimens from HIV antibody (anti-HIV)-negative persons, and culture supernatants of HIV-1 subtype A to E isolates diluted in anti-HIV-negative plasma. Overall, bDNA 3.0 showed the least variation in RNA measures upon repeat testing. For the Roche assays, usCA MONITOR 1.5 displayed less variation in RNA measures than stCA MONITOR 1.5. NucliSens, at an input volume of 2 ml, showed the best sensitivity. Deming regression analysis indicated that the results of all three assays were significantly correlated (P < 0.0001). However, the mean difference in values between CA MONITOR 1.5 and bDNA 3.0 (0.274 log(10) RNA copies/ml; 95% confidence interval, 0.192 to 0.356) was significantly different from 0, indicating that CA MONITOR 1.5 values were regularly higher than bDNA 3.0 values. Upon testing of 100 anti-HIV-negative plasma specimens, usCA MONITOR 1.5 and NucliSens displayed 100% specificity, while bDNA 3.0 showed 98% specificity. NucliSens quantified 2 of 10 non-subtype B viral isolates at 1 log(10) lower than both CA MONITOR 1.5 and bDNA 3.0. For NucliSens, testing of specimens with greater than 1,000 RNA copies/ml at input volumes of 0.1, 0.2, and 2.0 ml did not affect the quality of results. Additional factors differing between assays included specimen throughput and volume requirements, limit of detection, ease of execution, instrument work space, and costs of disposal. These characteristics, along with assay performance, should be considered when one is selecting a viral load assay.  相似文献   

4.
Quantification of HIV-1 subtypes is essential for appropriate clinical management. Whereas viral load assays were initially developed to accurately quantify subtype B, the recent worldwide spread of non-B subtypes and the introduction of treatment programs in regions with non-B subtypes have prompted adaptations of these assays. The Bayer Versant HIV-1 RNA 3.0 Assay (branched DNA [bDNA] 3.0) and the Roche Amplicor HIV-1 Monitor version 1.5 (Amplicor 1.5) assays are reported to quantify all subtypes in group M; however, evaluation of performance characteristics remains limited. In this study, we evaluated the accuracy and reliability of bDNA 3.0 and Amplicor 1.5 on multiple serially diluted viral isolates from HIV-1 group M, subtypes A through F. Testing was conducted on both assay systems in two independent laboratories. Comparative pansubtype quantification from regression analysis showed that quantification by bDNA 3.0 was approximately 0.3 log-fold lower than that by Amplicor 1.5. Comparative pansubtype accuracy analysis showed data points more closely distributed about their respective regression lines and thus showing greater reliability by bDNA 3.0 than by Amplicor 1.5.  相似文献   

5.
Performance of the Abbott m2000 instrument system and the Abbott RealTime HIV-1 assay was evaluated using a panel of 37 group M (subtypes A-D, F, G, CRF01_AE, CRF02_AG and unique recombinant forms) and 2 group O virus isolates. Testing was performed on 273 sample dilutions and compared to VERSANT HIV-1 RNA 3.0 (bDNA) and AMPLICOR HIV-1 MONITOR v1.5 (Monitor v1.5) test results. RealTime HIV-1, bDNA, and Monitor v1.5 tests quantified 87%, 78%, and 81% of samples, respectively. RealTime HIV-1 detected an additional 31 samples at < 40 copies/mL. For group M, RealTime HIV-1 dilution profiles and viral loads were highly correlated with bDNA and Monitor v1.5 values; 87% and 89% of values were within 0.5 log(10) copies/mL. In contrast, the group O viruses were not detected by Monitor v1.5 and were substantially underquantified by approximately 2 log(10) copies/mL in bDNA relative to the RealTime HIV-1 assay. Sequence analysis revealed that RealTime HIV-1 primer/probe binding sites are highly conserved and exhibit fewer nucleotide mismatches relative to Monitor v1.5. The automated m2000 system and RealTime HIV-1 assay offer the advantages of efficient sample processing and throughput with reduced "hands-on" time while providing improved sensitivity, expanded dynamic range and reliable quantification of genetically diverse HIV-1 strains.  相似文献   

6.
7.
We assessed the performance of a new assay (VERSANT HCV RNA 3.0 [bDNA 3.0] assay [Bayer Diagnostics]) to quantitate HCV RNA levels and compared the results of the bDNA 3.0 assay to results of the Quantiplex HCV RNA 2.0 (bDNA 2.0) assay. Samples used in this study included 211 serum specimens from hepatitis C virus (HCV)-infected persons from two sites (Bordeaux and Marseille, France) with different genotypes; 383 serum specimens from HCV antibody-negative, HCV RNA-negative persons; and serial dilutions of World Health Organization (WHO) HCV RNA standard at a titer of 100,000 IU/ml. The specificity of the bDNA 3.0 assay was 98.2%. A high correlation was observed between expected and observed values in all dilutions of WHO standard (r = 0.9982), in serial dilutions of pooled samples (r = 0.9996), and in diluted sera from different HCV genotypes (r = 0.9930 to 0.9995). The standard deviations (SD) for the within-run and between-run reproducibility of the bDNA 3.0 assay were 相似文献   

8.
The performance of the LCx HIV RNA Quantitative (LCx HIV), AMPLICOR HIV-1 MONITOR version 1.5 (MONITOR v1.5), and Quantiplex HIV-1 RNA version 3.0 (bDNA v3.0) viral load assays was evaluated with 39 viral isolates (3 A, 7 B, 6 C, 4 D, 8 E, 4 F, 1 G, 4 mosaic, and 2 group O). Quantitation across the assay dynamic ranges was assessed using serial fivefold dilutions of the viruses. In addition, sequences of gag-encoded p24 (gag p24), pol-encoded integrase, and env-encoded gp41 were analyzed to assign group and subtype and to assess nucleotide mismatches at primer and probe binding sites. For group M isolates, quantification was highly correlated among all three assays. In contrast, only the LCx HIV assay reliably quantified group O isolates. The bDNA v3.0 assay detected but consistently underquantified group O viruses, whereas the MONITOR v1.5 test failed to detect group O viruses. Analysis of target regions revealed fewer primer or probe mismatches in the LCx HIV assay than in the MONITOR v1.5 test. Consistent with the high level of nucleotide conservation is the ability of the LCx HIV assay to quantify efficiently human immunodeficiency virus type 1 group M and the genetically diverse group O.  相似文献   

9.
BACKGROUND: Plasma human immunodeficiency virus type 1 (HIV-1) RNA level is an important parameter for patient management, yet viral load assays from different manufacturers are not standardized. OBJECTIVES AND STUDY DESIGN: In this study, we evaluated the concordance between test results obtained for 1,000 plasma specimens collected from HIV-1-infected individuals measured with the VERSANT HIV-1 RNA 3.0 assay (bDNA) and the COBAS AMPLICOR HIV-1 MONITOR 1.5 test (PCR). We compared viral load values obtained by each of these assays throughout their dynamic ranges, with particular focus on samples with low viral load (i.e. 50-250 copies/mL), and calculated the estimated distribution of distinct plasma viral load levels for the entire study population modeled from the data observed in the study. RESULTS: We found that these two assays show excellent agreement, with a correlation (R(2)) of 0.957 and a slope of 1.004. The mean difference in viral load values between the two assays was less than 0.10-log(10) throughout the dynamic range and 98.2% of all samples had bDNA and PCR results within 0.5-log(10) of each other, a difference that is within the range considered to be a minimal change in plasma viremia. Moreover, the two assays show very similar results across all assay ranges tested. The estimated prevalence of samples with results <50 copies/mL, 50-250 copies/mL, and 250-500,000 copies/mL were 41.6%, 7.7%, and 49.7%, respectively, by the bDNA assay, and 42.4%, 6.9%, and 50.7%, respectively, by the PCR assay. CONCLUSION: Based on our findings from 1,000 clinical specimens, we do not see the need to re-establish a baseline value or apply a conversion factor when switching from one assay to the other. Since the majority of our patient population likely is infected with subtype B virus, it is unclear if our findings will apply to other patient populations with a greater incidence of infection with non-B subtypes.  相似文献   

10.
We have evaluated the VERSANT HCV RNA 3.0. Assay (HCV 3.0 bDNA assay) (Bayer Diagnostics, Berkeley, Calif.), which is an improved signal amplification procedure for the HCV 2.0 bDNA assay for the quantitation of hepatitis C virus (HCV) RNA in serum or plasma of HCV-infected individuals. The HCV 3.0 bDNA assay has a linear dynamic range of 2.5 x 10(3) to 4.0 x 10(7) HCV RNA copies per ml (c/ml). The performance of the HCV 3.0 bDNA assay was evaluated using three different test panels. An overall specificity of 96.8% relative to the detection limit of the HCV 3.0 bDNA assay was found. The intra- and interrun reproducibilities for both the dilution panel and the NAP (AcroMetrix, Benicia, Calif.) panel were consistent with coefficients of variation of less than 9%. Quantitation with the HCV 3.0 bDNA assay was linear over the entire range of both panels (ranges of 4.4 x 10(3) to 3.5 x 10(6) c/ml and 5 x 10(3) to 2 x 10(6) IU/ml, respectively), with correlation coefficients of 0.999, slopes close to one, and intercepts close to zero. The regression equation indicated that 1 IU corresponded to about 4.8 copies of HCV RNA. A correlation coefficient of 0.941 was found for HCV RNA values (in international units per milliliter) obtained from the HCV 3.0 bDNA assay and the HCV Monitor version 2.0 assay (HCV Monitor 2.0 assay) (Roche Diagnostic Systems, Branchburg, N.J.). Quantitative results obtained close to the lower limit of the HCV 3.0 bDNA assay might imply that its lower limit should be reconsidered and raised, if necessary. It appeared that quantitation values obtained from the HCV Monitor 2.0 assay of between 5 x 10(2) and 10(5) IU/ml were in general higher than those obtained from the HCV 3.0 bDNA assay, whereas values obtained from the HCV Monitor 2.0 assay were underestimated for samples with HCV RNA levels above 10(5) IU/ml.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) evolution and changing strain distribution present a challenge to nucleic acid-based assays. Reliable patient monitoring of viral loads requires the detection and accurate quantification of genetically diverse HIV-1. A panel of 97 HIV-1-seropositive plasma samples collected from Cameroon, Brazil, and South Africa was used to compare the performance of four commercially available HIV RNA quantitative tests: Abbott LCx HIV RNA Quantitative assay (LCx), Bayer Versant HIV-1 RNA 3.0 (bDNA), Roche AMPLICOR HIV-1 MONITOR v1.5 (Monitor v1.5), and bioMérieux NucliSens HIV-1 QT (NucliSens). The panel included group M, group O, and recombinant viruses based on sequence analysis of gag p24, pol integrase, and env gp41. The LCx HIV assay quantified viral RNA in 97 (100%) of the samples. In comparison, bDNA, Monitor v1.5, and NucliSens quantified viral RNA in 96.9%, 94.8%, and 88.6% of the samples, respectively. The two group O specimens were quantified only by the LCx HIV assay. Analysis of nucleotide mismatches at the primer/probe binding sites for Monitor v1.5, NucliSens, and LCx assays revealed that performance characteristics reflected differences in the level of genetic conservation within the target regions.  相似文献   

12.
The branched DNA (bDNA) assay was compared with a semi-quantitative cDNA-polymerase chain reaction (cDNA-PCR) assay for monitoring HCV RNA levels in plasma in 17 haemophilia patients participating in a controlled a-interferon trial. Good correlation between the HCV RNA levels as detected by the two assays was observed, with a correlation co-efficient of 0.83 (P < 0.0001) and 0.90 (P < 0.0001) at week 0 and 24, respectively. Hepatitis C virus RNA (HCV RNA) levels could be assessed with the bDNA assay in 14/17 (82 percent) HCV cDNA-PCR positive pre-treatment samples. The bDNA assay apparently failed to detect low viral titres. (riterferon treated patients (n = 11) showed either a complete response, being a large reduction in HCV RNA level to below the detection limit of the HCV cDNA-PCR assay (6/11) or no significant reduction in HCV RNA level (5/11). A “partial” virological response was not observed. The changes in HCV RNA plasma levels in non-responders during interferon (IFN) treatment were similar to the (small) natural fluctuations in viral load observed in controls (untreated patients). Although the bDNA assay was not as sensitive as cDNA-PCR, given its user friendliness and quantitative results, it is concluded that it is a useful test for monitoring HCV RNA levels in patients treated with interferon. However, patients who are non-reactive in the bDNA assay have to be retested by cDNA-PCR because low viral titres are not detected by the bDNA assay. © 1994 Wiley-Liss, Inc.  相似文献   

13.
This study determined the proficiencies of laboratories measuring human immunodeficiency virus type 1 (HIV-1) viral loads and the accuracies of two assays used for HIV-1 viral load measurement in Australia and investigated the variability of the new versions of these assays. Quality assessment program panels containing (i) dilutions of HIV-1 subtype B, (ii) replicates of identical samples of HIV-1 subtype B, and (iii) samples of subtype E and B were tested by laboratories. Total variability (within and between laboratories) was tested with quality control samples. The coefficients of variation (CVs) for the Roche AMPLICOR HIV-1 MONITOR version (v) 1.0 and Chiron Quantiplex bDNA 2.0 assays ranged from 53 to 87% and 22 to 31%, respectively. The widespread occurrence of invalid runs with the AMPLICOR HIV-1 MONITOR 1.0 assay was identified. The CVs of the new versions of the assays were 82 to 86% for the AMPLICOR HIV-1 MONITOR v 1.5 assay and 16 to 23% for the Quantiplex bDNA 3.0 assay. For virus dilution samples, all but 5 of 19 laboratories obtained results within 2 standard deviations of the mean. The Quantiplex bDNA 2.0 assay reported values lower than those reported by the AMPLICOR HIV-1 MONITOR version 1.0 assay for samples containing HIV-1 subtype B, whereas the reverse was true for subtype E. Identification and resolution of the problem of invalid runs markedly improved the quality of HIV-1 viral load testing. The variability observed between laboratories and between assays, even the most recent versions, dictates that monitoring of viral load in an individual should always be by the same laboratory and by the same assay. Results for an individual which differ by less than 0.5 log(10) HIV-1 RNA copy number/ml should not be considered clinically significant.  相似文献   

14.
15.
Normal assay variation associated with bDNA tests for human immunodeficiency virus type 1 (HIV-1) RNA performed at two laboratories with different levels of test experience was investigated. Two 5-ml aliquots of blood in EDTA tubes were collected from each patient for whom the HIV-1 bDNA test was ordered. Blood was stored for no more than 4 h at room temperature prior to plasma separation. Plasma was stored at -70 degrees C until transported to the Central Pennsylvania Alliance Laboratory (CPAL; York, Pa.) and to the Hershey Medical Center (Hershey, Pa.) on dry ice. Samples were stored at < or =-70 degrees C at both laboratories prior to testing. Pools of negative (donor), low-HIV-1-RNA-positive, and high-HIV-1-RNA-positive plasma samples were also repeatedly tested at CPAL to determine both intra- and interrun variation. From 11 August 1999 until 14 September 2000, 448 patient specimens were analyzed in parallel at CPAL and Hershey. From 206 samples with results of > or =1,000 copies/ml at CPAL, 148 (72%) of the results varied by < or =0.20 log(10) when tested at Hershey and none varied by >0.50 log(10). However, of 242 specimens with results of <1,000 copies/ml at CPAL, 11 (5%) of the results varied by >0.50 log(10) when tested at Hershey. Of 38 aliquots of HIV-1 RNA pool negative samples included in 13 CPAL bDNA runs, 37 (97%) gave results of <50 copies/ml and 1 (3%) gave a result of 114 copies/ml. Low-positive HIV-1 RNA pool intrarun variation ranged from 0.06 to 0.26 log(10) while the maximum interrun variation was 0.52 log(10). High-positive HIV-1 RNA pool intrarun variation ranged from 0.04 to 0.32 log(10), while the maximum interrun variation was 0.55 log(10). In our patient population, a change in bDNA HIV-1 RNA results of < or =0.50 log(10) over time most likely represents normal laboratory test variation. However, a change of >0.50 log(10), especially if the results are >1,000 copies/ml, is likely to be significant.  相似文献   

16.
A rapid and simple method using the polymerase chain reaction (PCR) was devised for the co-amplification and simultaneous detection of hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) specific sequences in the same serum sample. Genomic RNA was extracted from 13 blood donor sera that were reactive in ELISA for both anti-HCV and anti-HIV-1. The extracted RNA was reverse transcribed into cDNA and amplified using nested primer pairs (SN01 and SN04; SN02 and SN03) based on the HCV prototype sequence of clones 37b and 81, and SK 38/39 for HIV-1 simultaneously. PCR products were analyzed by liquid hybridization or Southern blot hybridization with 32P end-labeled oligonucleotide probes from the regions between the primer pairs, excluding the primer sequences. HCV-RNA was detected in all 13 (100%) samples tested; HIV-RNA was detected in 11 (85%) samples. The ability to co-amplify specific sequences from two different viral genomes in the same reaction mixture offers the possibility of simultaneous detection and diagnosis of more than one viral agent in serum samples of infected individuals.  相似文献   

17.
18.
19.
Genotypic testing for HIV-1 resistance to anti-retroviral drugs has become accepted widely as a routine method to guide anti-retroviral therapy. However, implementation into routine high-throughput laboratory diagnosis is difficult due to the complexity of the assay. A commercially available assay is the ViroSeq HIV-1 Genotyping System (Applied Biosystems, Weiterstadt, Germany). We modified and substituted the RNA extraction module to optimize the proportion of samples amplified successfully as follows: 1 ml plasma was concentrated by ultracentrifugation and extracted according to the manufacturer's instructions (Kit), by substituting the lysis buffer (Roche, Roche Diagnostics GmbH, Mannheim, Germany), and by using the QIAamp Viral RNA Kit (Qiagen GmbH, Hilden, Germany) with elution volumes of 60 (Q60) or 50 micro l (Q50). Overall Q50 showed a higher success rate (97%) than the other extraction modules used (range 88-91%). In samples with a viral load range of 1,000-4,999 copies/ml, Q50 was superior (95 vs. 65% to 83%), while in samples with a viral load range of 5,000-9,999 copies/ml or those with 10,000 or more copies/ml, the success rate of the extraction procedures showed no significant differences. In 18 samples, which were negative using the Kit or Roche extraction, Q60 resulted in 7/18 positive results; in addition the Q50 was successful in amplifying 7/10 of the Q60 negative samples. When investigating samples with a measurable viral load of less than 1,000 copies/ml or lower, Q50 had the highest success rate with 80% compared to the other procedures (33-63%). A statistically significant new cut-off could be defined for Q50 at a value of 250 copies/ml. The results showed clearly that the ViroSeq System is suitable for analyzing the HIV-1 genotype over a wide range of viral loads but could be improved significantly when substituting the RNA extraction module with Q50 without using a nested PCR protocol. This is of great importance as it avoids further time- and cost-intensive steps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号