首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic stress or chronically high glucocorticoids attenuate adult hippocampal neurogenesis by reducing cell proliferation, survival, and differentiation in male rodents. Neurons are still produced in the dentate gyrus during chronically high glucocorticoids, but it is not known whether these new neurons are appropriately activated in response to spatial memory. Thus, the goal of this study was to determine whether immature granule neurons generated during chronically high glucocorticoids (resulting in a depressive‐like phenotype) are differentially activated by spatial memory retrieval. Male Sprague Dawley rats received either 40 mg/kg corticosterone (CORT) or vehicle for 18 days prior to behavioral testing. Rats were tested in the forced swim test (FST) and then tested in a spatial (hippocampus‐dependent) or cued (hippocampus‐independent) Morris Water Maze. Tissue was then processed for doublecortin (DCX) to identify immature neurons and zif268, an immediate early gene product. As expected, CORT increased depressive‐like behavior (greater immobility in the FST) however, prior CORT modestly enhanced spatial learning and memory compared with oil. Prior CORT reduced the number of DCX‐expressing cells and proportion of DCX‐expressing cells colabeled for zif268, but only in the ventral hippocampus. Prior CORT shifted the proportion of cells in the ventral hippocampus away from postmitotic cells and toward immature, proliferative cells, likely due to the fact that postmitotic cells were produced and matured during CORT exposure but proliferative cells were produced after high CORT exposure ceased. Compared with cue training, spatial training slightly increased DCX‐expressing cells and shifted cells toward the postmitotic stage in the ventral hippocampus. These data suggest that the effects of CORT and spatial training on immature neurons are more pronounced in the ventral hippocampus. Further, high CORT reduced activation of immature neurons, suggesting that exposure to high CORT may have long‐term effects on cell integration or function. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The storage and persistence of memories depends on plasticity in the hippocampus. Adult neurogenesis produces new neurons that mature through critical periods for plasticity and cellular survival, which determine their contributions to learning and memory. However, most granule neurons are generated prior to adulthood; the maturational timecourse of these neurons is poorly understood compared to adult‐born neurons but is essential to identify how the dentate gyrus (DG), as a whole, contributes to behavior. To characterize neurons born in the early postnatal period, we labeled DG neurons born on postnatal day 6 (P6) with BrdU and quantified maturation and survival across early (1 hr to 8 weeks old) and late (2–6 months old) cell ages. We find that the dynamics of developmentally‐born neuron survival is essentially the opposite of neurons born in adulthood: P6‐born neurons did not go through a period of cell death during their immature stages (from 1 to 8 weeks). In contrast, 17% of P6‐born neurons died after reaching maturity, between 2 and 6 months of age. Delayed death was evident from the loss of BrdU+ cells as well as pyknotic BrdU+caspase3+ neurons within the superficial granule cell layer. Patterns of DCX, NeuN, and activity‐dependent Fos expression indicate that developmentally‐born neurons mature over several weeks and a sharp peak in zif268 expression at 2 weeks suggests that developmentally‐born neurons mature faster than adult‐born neurons (which peak at 3 weeks). Collectively, our findings are relevant for understanding how developmentally‐born DG neurons contribute to memory and disorders throughout the lifespan. High levels of early survival and zif268 expression may promote learning, while also rendering neurons sensitive to insults at defined stages. Late neuronal death in young adulthood may result in the loss of hundreds of thousands of DG neurons, which could impact memory persistence and contribute to hippocampal/DG atrophy in disorders such as depression.  相似文献   

3.
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.  相似文献   

4.
Physical exercise reduces anxiety‐like behavior in adult mice. The specific mechanisms that mediate this anxiolytic effect are unclear, but adult neurogenesis in the dentate gyrus has been implicated because it is robustly increased by running and has been linked to anxiodepressive‐like behavior. We therefore tested the effects of long‐term wheel running on anxiety‐like behavior in GFAP‐TK (TK) mice, a transgenic strain with complete ablation of adult neurogenesis. Five weeks of running reduced anxiety‐like behavior equally in both TK mice and wild type (WT) control mice on two tests, elevated plus‐maze and novelty‐suppressed feeding. WT and TK mice also had similar patterns of c‐fos expression in the hippocampus following anxiety testing. Following testing on the elevated plus‐maze, running reduced c‐fos expression in the dorsal dentate gyrus and CA3 in both WT and TK mice. Following testing on novelty‐suppressed feeding, running reduced c‐fos expression throughout the dentate gyrus and CA3 in both WT and TK mice. Interestingly, following testing on a less anxiogenic version of novelty‐suppressed feeding, running reduced c‐fos expression only in the dorsal dentate gyrus in both WT and TK mice, supporting earlier suggestions that the dorsal hippocampus is less involved in emotional behavior than the ventral region. These results suggest that although running increases adult neurogenesis, new neurons are not involved in the decreased anxiety‐like behavior or hippocampal activation produced by running. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Recent studies have demonstrated that mice lacking protein L-isoaspartate (D-aspartate) O-methyltransferase (Pcmt1-/- mice) have alterations in the insulin-like growth factor-I (IGF-I) and insulin receptor pathways within the hippocampal formation as well as other brain regions. However, the cellular localization of these changes and whether the alterations might be associated with an increase in cell number within proliferative regions, such as the dentate gyrus, were unknown. In this study, stereological methods were used to demonstrate that these mice have an increased number of granule cells in the granule cell layer and hilus of the dentate gyrus. The higher number of granule cells was accompanied by a greater number of cells undergoing mitosis in the dentate gyrus, suggesting that an increase in neuronal cell proliferation occurs in this neurogenic zone of adult Pcmt1-/- mice. In support of this, increased doublecortin labeling of immature neurons was detected in the subgranular zone of the dentate gyrus. In addition, double immunofluorescence studies demonstrated that phosphorylated IGF-I/insulin receptors in the subgranular zone were localized on immature neurons, suggesting that the increased activation of one or both of these receptors in Pcmt1-/- mice could contribute to the growth and survival of these cells. We propose that deficits in the repair of isoaspartyl protein damage leads to alterations in metabolic and growth-receptor pathways, and that this model may be particularly relevant for studies of neurogenesis that is stimulated by cellular damage.  相似文献   

6.
7.
Messenger ribonucleic acid encoding the alpha-subunit of calcium/calmodulin-dependent protein kinase II (camkII) is abundantly and constitutively expressed in dendrites of pyramidal and granule cell neurons of the adult hippocampus. Recent evidence suggests that camkII messenger ribonucleic acid is stored in a translationally dormant state within ribonucleic acid storage granules. Delivery of camkII messenger ribonucleic acid from sites of storage to sites of translation may therefore be a key step in activity-driven dendritic protein synthesis and synaptic plasticity. Here we explored possible camkII trafficking in the context of long-term potentiation in the dentate gyrus of awake, adult rats. Long-term potentiation was induced by patterned high-frequency stimulation, synaptodendrosomes containing pinched-off dendritic spines were obtained from microdissected dentate gyrus, and messenger ribonucleic acid levels were determined by real-time polymerase chain reaction. High-frequency stimulation triggered a rapid 2.5-fold increase in camkII messenger ribonucleic acid levels in the synaptodendrosome fraction. This increase occurred in the absence of camkII upregulation in the homogenate fraction, indicating trafficking of pre-existing messenger ribonucleic acid to synaptodendrosomes. The elevation in camkII messenger ribonucleic acid was paralleled by an increase in protein expression specific to the synaptodendrosome fraction, and followed by depletion of camkII message. Activity-dependent regulation of camkII messenger ribonucleic acid and protein did not require N-methyl-d-aspartate receptor activation. In contrast, N-methyl-d-aspartate receptor activation was required for induction of the immediate early genes zif268 and activity-regulated cytoskeleton-associated protein in dentate gyrus homogenates. The results support a model in which locally stored camkII messenger ribonucleic acid is rapidly transported to dendritic spines and translated during long-term potentiation in behaving rats.  相似文献   

8.
9.
It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress‐induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAAR) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAAR δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAAR δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAAR δ subunit‐mediated tonic inhibition in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAAR δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand the molecular determinants of synaptic connectivity of these neurons. Brain-derived neurotrophic factor and its receptor TrkB are expressed at high levels in the dentate gyrus (DG) of the hippocampus, and are implicated in regulating neuronal development, neuronal plasticity, learning, and the development of epilepsy. Whether and how TrkB regulates granule cell structure, however, is incompletely understood. To begin to elucidate the role of TrkB in regulating granule cell morphology, here we examine conditional TrkB knockout mice crossed to mice expressing green fluorescent protein in subsets of dentate granule cells. In stratum lucidum, where granule cell mossy fiber axons project, the density of giant mossy fiber boutons was unchanged, suggesting similar output to CA3 pyramidal cell targets. However, filopodial extensions of giant boutons, which contact inhibitory interneurons, were increased in number in TrkB knockout mice relative to wildtype controls, predicting enhanced feedforward inhibition of CA3 pyramidal cells. In knockout animals, dentate granule cells possessed fewer primary dendrites and enlarged dendritic spines, indicative of disrupted excitatory synaptic input to the granule cells. Together, these findings demonstrate that TrkB is required for development and/or maintenance of normal synaptic connectivity of the granule cells, thereby implying an important role for TrkB in the function of the granule cells and hippocampal circuitry.  相似文献   

11.
In contrast to its known anti‐apoptotic activity in sympathetic neurons, immortal neuronal cell lines, and primary cultured immature neurons of the central nervous system (CNS), the role of Bcl‐2 in CNS neurons in the adult brain is poorly understood. In the present study, we examined effects of overexpression of Bcl‐2 on selective neuronal death of the hippocampal CA1 neurons and the dentate granule cells induced by hypoxic ischemia in adult transgenic mice overexpressing human Bcl‐2 under the control of neuron‐specific enolase (NSE‐hbcl‐2). At the light microscopic level, numbers of TUNEL‐positive cells with pyknotic nuclei were observed in the CA1 subfield of NSE‐hbcl‐2 transgenic mice, as well as that of wild‐type mice, after hypoxic ischemic insult, although the onset of neuronal death was apparently delayed in NSE‐hbcl‐2 transgenic mice. The electron microscopic studies showed that morphological changes of the degenerating CA1 neurons from both groups were clearly distinct from ordinary apoptosis. In contrast, a significant amount of degenerating dentate granule cells from wild‐type but not from transgenic mice had typical apoptotic nuclei by the treatment. The activation of caspase‐3 was detected in the dentate granule cells but not that of the CA1 neurons. These results indicate that the overexpression of Bcl‐2 effectively suppressed dentate granule cell apoptosis but only delayed cell death of the CA1 neurons induced by hypoxic ischemia, suggesting the occurrence of a non‐apoptotic, caspase‐3–independent mechanism for neuronal death in the CA1 subfield. J. Neurosci. Res. 57:1–12, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
13.
Alterations in neuronal morphology occur in the brain during normal aging, but vary depending on neuronal cell types and brain regions. Such alterations have been related to memory and cognitive impairment. Changes in hippocampal spine densities are thought to represent a morphological correlate of altered brain functions associated with hippocampal-dependent learning and memory. We therefore have analyzed the impact of aging on different hippocampal-dependent learning tasks and on changes in dendritic spines of CA1 hippocampal and dentate gyrus neurons by analyzing adult (6-7 months) and aged (21-22 months) C57/Bl6 mice. We found a significant decrease in spine numbers of basal CA1 dendrites and decreases in spine length of apical dendrites of CA1 and dentate gyrus neurons. Furthermore, aged mice exhibited significant deficits in hippocampus-dependent learning tasks, such as the probe trial of the Morris water maze and T maze learning. Given the fact that there is no neuronal loss in the hippocampus in aged mice (von Bohlen und Halbach and Unsicker [2002] Eur. J. Neurosci. 16:2434-2440), we suggest that the memory and cognitive decline in the context of aging may be accompanied by rather subtle anatomical changes, such as numbers and morphology of dendritic spines.  相似文献   

14.
Localized expression of BMP and GDF mRNA in the rodent brain.   总被引:1,自引:0,他引:1  
Expression of BMP- and GDF-related factors within the transforming growth factor-beta (TGF-beta) superfamily was examined in the rat and mouse brain by in situ hybridization. Strong signals were obtained in neurons for GDF-1 and GDF-10. GDF-1 is expressed at postnatal day 6 in the cerebral cortex, hippocampal CA1 through CA3 neurons, while only weakly expressed by cells in the dentate gyrus. Granule cells and neurons in the polymorph layer of the dentate gyrus are GDF-1-positive, as are the majority of neurons in the cortex. GDF-10 shows a distinct pattern of expression: At P6, strong labelling was seen in the superficial layers of cortex, notably in the posterior cingulate cortex, and in CA3 and dentate gyrus. From postnatal day 21, GDF-1 expression is strong in the hippocampus, cortex, and thalamic nuclei, while GDF-10 expression becomes restricted to the granule cell layer in the dentate gyrus. In contrast, OP-1 expression is restricted throughout development to cells of the medial habenular nucleus, choroid plexus, and leptomeninges. The markedly different expression patterns of these BMPs suggest they serve separate functions in the brain.  相似文献   

15.
Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus, which is a key structure in learning and memory. Adult‐generated granule cells have been shown to play a role in spatial memory processes such as acquisition or retrieval, in particular during an immature stage when they exhibit a period of increased plasticity. Here, we demonstrate that immature and mature neurons born in the DG of adult rats are similarly activated in spatial memory processes. By imaging the activation of these two different neuron generations in the same rat and by using the immediate early gene Zif268, we show that these neurons are involved in both spatial memory acquisition and retrieval. These results demonstrate that adult‐generated granule cells are involved in memory beyond their immaturity stage. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The basal expression of the protein products of the inducible immediate early genes (IEGs), Fos, Jun, and Krox 24, was investigated in rat hippocampus using immunocytochemical visualization methods with antisera specific for Fos only, Fos and the Fos-related antigens (FRAs), the Jun family, and Krox 24 (previously described as TIS 8, egr-1, NGF-IA or zif 268). In the normal adult rat brain basal levels of Jun, Krox 24 and Fos-related antigens but not Fos were seen within the hippocampus. More specifically very high basal levels of Jun were seen in the dentate granule cells with high basal Krox 24 levels seen in the CA1-subiculum region of the rat hippocampus. Basal FRAs but not Fos-positive cells were seen at low levels in the dentate granule cells. The implications of these results to the functioning of IEG proteins in hippocampal neurons is discussed.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) is a member of a family of related neurotrophic proteins which includes nerve growth factor (NGF) and hippocampus-derived neurotrophic factor/neurotrophin-3 (NT-3). To obtain information regarding possible roles for BDNF during postnatal brain development, we have examined the temporal and spatial expression of this trophic factor using in situ hybridization. In specific neocortical regions BDNF mRNA-expressing cells were seen at 2 weeks of age and thereafter. One particular neuronal cell type strikingly labelled was the inverted pyramidal cell population in the deep layers of parietotemporal cortex. In pyriform and cingulate cortices, BDNF mRNA was detected at postnatal day 1 and 1 week of age, respectively, with increasing levels during ontogeny. Several forebrain regions, including the thalamic anterior paraventricular nucleus, hypothalamic ventromedial nucleus as well as the preoptic area, contained moderate levels of BDNF mRNA throughout development. BDNF mRNA was detected transiently in several brainstem structures, notably in the substantia nigra and interpeduncular nucleus. Expression of this trophic factor in hippocampus was relatively low in the early neonatal brain, but attained high levels in the CA3 and CA4 regions as well as in the dentate gyrus by 2 weeks of age. At this early age, which is still during the period of neurogenesis in the dentate gyrus, labelling was restricted to the outer layer, which contained cells with a more mature appearance. However, by 3 weeks of age labelling was distributed throughout the granule cell layer. Our results show both transient and persistent expression of BDNF mRNA in various regions of the developing rat brain and suggest that there is a caudal to rostral gradient of BDNF expression during postnatal brain development, which may be correlated to neuronal maturation.  相似文献   

18.
We investigated whether the expression of the plasticity-associated gene, zif268, was associated with memories retrieved by exposure to a discrete stimulus that had been associated with cocaine, either self-administered or administered noncontingently. In the absence of drug, passive presentation of a cocaine-associated light stimulus induced changes in the expression of zif268 measured by in situ hybridization within a limbic cortical-ventral striatal circuit that was not only regionally selective but related to whether the rats had originally received response-contingent or noncontingent stimulus-drug pairings. In rats that had self-administered drug, the cocaine-conditioned stimulus (CS) increased zif268 expression in neurons of the ventral tegmental area, nucleus accumbens core and shell, and basal nucleus of the amygdala but not hippocampus, prelimbic area of the medial prefrontal cortex or amygdala central nucleus. The same CS that had been associated with cocaine administered noncontingently additionally increased zif268 mRNA levels in area Cg1 of the anterior cingulate cortex, ventral and lateral regions of the orbitofrontal cortex and lateral nucleus of the amygdala. Zif268 induction was related to the predictive relationship between the stimulus and cocaine as no changes were seen in cocaine-experienced rats that had received unpaired light and drug presentations during training. Thus, zif268 expression is increased by appetitively (drug) conditioned stimuli after Pavlovian learning. Zif268 may participate in the molecular mechanisms underlying the reconsolidation or re-encoding of Pavlovian stimulus-drug associations across a distributed limbic cortical-ventral striatal neural network and that may contribute to the basis of the enduring drug-seeking behaviour produced by environmental cues.  相似文献   

19.
20.
Although many aspects of the morphological development of interneurons in the dentate gyrus have been described, the full extent of their dendrites and local axon projections in immature rodents has not been examined. Here intracellular labeling was used to assess the branching patterns of interneurons in the dentate gyrus of rat pups between 7 and 9 days of age. Labeled neurons were located within or just below the granule cell layer, and most were classified as GABAergic basket neurons on the basis of their dendritic morphologies. All labeled interneurons exhibited immature characteristics. Spines were present on cell bodies and dendrites, and growth cones were visible on some dendrites and axons. In spite of these immature features, the dendrites and axon arbors of the labeled neurons were extensive. Many apical dendrites reached the top of the molecular layer, and a number of basal dendrites extended to the CA3 pyramidal cell layer of the hippocampus. Elaborate axon plexuses were present within the dentate gyrus itself, and axon collaterals of several neurons extended beyond the dentate gyrus to branch within regions CA3 and CA1 of the hippocampus. These results indicate that the dendrites and axon collaterals of dentate interneurons are extensive at a time when the principal neurons, the granule cells, are still proliferating. These data are consistent with the idea that GABAergic interneurons may influence granule cell development in the dentate gyrus, as well as pyramidal cell maturation in the hippocampus proper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号