首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, we and others have shown that Helicobacter pylori induces dendritic cell (DC) activation and maturation. However, the impact of virulence factors on the interplay between DCs and H. pylori remains elusive. Therefore, we investigated the contribution of cag pathogenicity island (PAI) and VacA status on cytokine release and up-regulation of costimulatory molecules in H. pylori-treated DCs. In addition, to characterize the stimulatory capacity of H. pylori compounds in more detail, we studied the effect of formalin-inactivated and sonicated H. pylori, as well as secreted H. pylori molecules, on DCs. Incubation of DCs with viable or formalin-inactivated H. pylori induced comparable secretion of interleukin-6 (IL-6), IL-8, IL-10, IL-12, IL-1beta, and tumor necrosis factor (TNF). In contrast, IL-12 and IL-1beta release was significantly reduced in DCs treated with sonicated bacteria and secreted bacterial molecules. Treatment of sonicated H. pylori preparations with polymyxin B resulted in a significant reduction of IL-8 and IL-6 secretion, suggesting that H. pylori-derived lipopolysaccharide at least partially contributes to activation of immature DCs. In addition, the capacity of H. pylori-pulsed DCs to activate allogeneic T cells was not affected by cag PAI and VacA. Pretreatment of DC with cytochalasin D significantly inhibited secretion of IL-12, IL-1beta, and TNF, indicating that phagocytosis of H. pylori contributes to maximal activation of DCs. Taken together, our results suggest that DC activation and maturation, as well as DC-mediated T-cell activation, are independent of the cag PAI and VacA status of H. pylori.  相似文献   

2.
Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1alpha, IL-6, and TNF-alpha production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.  相似文献   

3.
Helicobacter pylori causes chronic gastric infection that affects the majority of the world's population. Despite generating an inflammatory response, the immune system usually fails to clear the infection. Since dendritic cells (DCs) play a pivotal role in shaping the immune response, we investigated the effects of H. pylori on DC function. We have demonstrated that H. pylori increased the expression of activation markers on DCs while upregulating the inhibitory B7 family molecule, PD-L1. Functionally, H. pylori-treated DCs resulted in the production of interleukin-10 (IL-10) and IL-23 but not of alpha interferon (IFN-alpha). While very little or no IL-12 was produced to H. pylori alone, simultaneous ligation of CD40 on DCs induced IL-12 release. We also demonstrated that DCs treated with H. pylori-induced IFN-gamma production by allogeneic naive T cells. However, stimulation of DCs with H. pylori for an extended period of time impaired their ability to produce cytokines after CD40 ligation and limited their ability to promote IFN-gamma release, suggesting that the DCs had become exhausted by the prolonged stimulation. The effect of chronic infection with H. pylori on DC function was further investigated by focusing on DC development. Demonstrating that monocytes differentiated into DCs in the presence of H. pylori exhibited an exhausted phenotype with an impaired ability to produce IL-12 and a downregulation of CD1a. Our results raise the possibility that in chronic H. pylori infection DCs become exhausted after prolonged antigen exposure leading to suboptimal Th1 development. This effect may contribute to persistence of H. pylori infection.  相似文献   

4.
Specific functional properties of dendritic cells (DCs) have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs). Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNgamma, CD40L, TNFalpha, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNgamma proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.  相似文献   

5.
Dendritic cells (DCs) are the most efficient antigen-presenting cells and thus, have a major role in regulating host immune responses. In the present study, we have analyzed the ability of Gram-positive, pathogenic Streptococcus pyogenes and nonpathogenic Lactobacillus rhamnosus to induce the maturation of human monocyte-derived DCs. Stimulation of DCs with S. pyogenes resulted in strong expression of DC costimulatory molecules CD80, CD83, and CD86 accompanied with a T helper cell type 1 (Th1) cytokine and chemokine response. S. pyogenes also induced interleukin (IL)-2 and IL-12 production at mRNA and protein levels. In addition, IL-23 and IL-27 subunits p40, p19, p28, and EBI3 were induced at mRNA level. In contrast, L. rhamnosus-stimulated DCs showed only moderate expression of costimulatory molecules and produced low levels of cytokines and chemokines. Furthermore, no production of IL-2 or IL-12 family cytokines was detected. Bacteria-induced DC maturation and especially cytokine and chemokine production were reduced when bacteria were heat-inactivated. Our results show that human monocyte-derived DCs respond differently to different Gram-positive bacteria. Although pathogenic S. pyogenes induced a strong Th1-type response, stimulation with nonpathogenic L. rhamnosus resulted in development of semi-mature DCs characterized by moderate expression of costimulatory molecules and low cytokine production.  相似文献   

6.
Dendritic cells (DCs) are potent antigen-presenting cells that play a pivotal role in the initiation of T cell-dependent immune responses. Immature DCs obtained from peripheral blood CD14+ monocytes by culture with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) differentiate into mature DCs upon stimulation with lipopolysaccharide (LPS). At least three families of mitogen-activated protein kinases (MAPKs), that is, extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38 MAPK, are involved in the DC maturation process. We report investigations of the role of JNK in the maturation of human monocyte-derived DCs. SP600125, a specific inhibitor of JNK, inhibited the LPS-induced up-regulation of CD80, CD83, CD86 and CD54, but augmented the up-regulation of HLA-DR. SP600125 slightly inhibited the down-regulation of FITC-dextran uptake during DC maturation. However, SP600125 did not affect the LPS induced up-regulation of allostimulatory capacity of DCs. SP600125 inhibited the release of IL-12 p70 and TNF-alpha from mature DCs. Although autologous T cells primed by the ovalbumin (OVA)-pulsed mature DCs produced IFN-gamma, but not IL-4, OVA-pulsed SP600125-treated mature DCs could initiate IL-4 production from autologous T cells. In contrast, a p38 MAPK inhibitor, SB203580, profoundly inhibited the phenotypic and functional maturation of DCs, while an ERK inhibitor, PD98059, had little or no effect. Taken together, the JNK signaling pathway appears to have a role that is distinct from the p38 MAPK and ERK cascades in the maturation process of DCs, and may be involved in the augmentation of Th2-prone T cell responses when it is suppressed.  相似文献   

7.
K D Kim  H G Lee  J K Kim  S N Park  I S Choe  Y-K Choe  S J Kim  E Lee    J-S Lim 《Immunology》1999,97(4):626-633
Dendritic cells (DCs) are most potent among the antigen-presenting cells and are believed to be crucial for the initiation of a primary T-cell response to foreign antigens. Mycobacterial infection within macrophages is controlled by cell-mediated immunity. To elucidate the stimulation of immune response by Mycobacterium bovis bacillus Calmette-Guérin (BCG), we purified DCs from precursor cells in human peripheral blood mononuclear cells (PBMC) by culturing them with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) and characterized their surface antigen expression. The interaction of cultured DCs with BCG resulted in increased surface expression of several DC-related marker antigens. BCG also induced reduction of endocytosis, enhancement of CD83 expression as well as B7 costimulatory molecules and IL-12 production, suggesting that BCG treatment directly induces DCs to mature. BCG-treated DCs were much more potent antigen-presenting cells in allogeneic immune response than untreated DCs. Moreover, while the neutralization of tumour necrosis factor-alpha (TNF-alpha) significantly blocked the DC maturation induced by lipopolysaccharide (LPS), it could not inhibit the induction of DC maturation by the BCG treatment, indicating that TNF-alpha production plays a minor role in the BCG-induced DC maturation. However, the neutralization of TNF-alpha resulted in decreased IL-12 production by activated DCs. These results suggest that infection with BCG might evoke direct activation and maturation of DC and the general immune stimulant effect of BCG might be related with the activation of DCs.  相似文献   

8.
BACKGROUND: Commensal gut bacteria are essential for the development and maintenance of the gut's immune system. Some bacteria strains, such as Lactobacillus and Bifidobacterium species, have been reported to provide protection from allergic and inflammatory bowel diseases. However, the interactions between these commensal bacteria and the immune system are largely unknown. OBJECTIVE: We studied the effects of a supernatant from the culture of B breve C50 (BbC50) on the maturation, activation, and survival of human dendritic cells (DCs). METHODS: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50 supernatant (BbC50SN) or LPS for 2 days. RESULTS: BbC50SN induced DC maturation, with increase in CD83, CD86, and HLA-DR expression. We also showed, for the first time, that BbC50SN prolonged DC survival, with high IL-10 and low IL-12 production compared with that seen in LPS-DCs. Moreover, BbC50SN inhibited the effects of LPS on DCs, both in terms of IL-12 production and in terms of survival. The prolonged DC survival was independent of IL-10 production and nuclear factor kappaB pathway but was associated with an upregulation of Bcl-xL and Phospho-Bad. Finally, BbC50SN induced activation of Toll-like receptor 2 (TLR2)-transfected cells in contrast to TLR4-, TLR7-, and TLR9-transfected cells. CONCLUSION: The supernatant of B breve C50 can induce DC maturation and prolonged DC survival through TLR2, with high IL-10 production. These properties might correspond to a regulatory DC profile, which could limit the excessive TH1 response and control the excessive TH2 polarization observed in atopic newborns.  相似文献   

9.
Dendritic cells (DCs) are critical antigen presentation cells whose influence on murine immune responses to polysaccharide antigens has only recently been elucidated. Little is known about human DC-polysaccharide interactions. We set out to study the interaction between human monocyte-derived DCs and pneumococcal capsular polysaccharides (PPS) in vitro. Immature DCs were generated from peripheral blood monocytes and incubated with fluorescein isothiocyanate-labeled PPS type 9N or 14 for assessment of uptake. DCs were exposed to PPS type 1, 6B, 9N, 14, 19F, or 23F in the absence or presence of Escherichia coli lipopolysaccharide (LPS) for assessment of phenotypic DC maturation and cytokine production. PPS were taken up by immature DCs and proceeded to HLA-DR+ and lysosome-associated membrane protein-1+ late endosomal compartments. Uptake was reduced in the presence of cytochalasin D and wortmannin, suggesting that both cytoskeletal rearrangements and phosphatidylinositol 3-kinase activation may be required for internalization. None of the PPS tested induced DC phenotype changes, maturation, or interleukin-12 (IL-12)/IL-10 production. However, PPS were capable of modulating the response of the DCs to a second signal such as LPS. Exposure of DCs to PPS in the presence of LPS resulted in an altered cytokine balance with significantly increased IL-10 production and reduced IL-12 production compared to LPS alone. This effect was not seen using the control antigen tetanus toxoid. DC-pneumococcus interaction may affect subsequent immune responses to pneumococci, as an altered cytokine balance may have a profound effect on DC-driven T-cell priming.  相似文献   

10.
Impaired dendritic cell differentiation and maturation in the absence of C3   总被引:2,自引:2,他引:0  
Human monocytes can be differentiated into immature dendritic cells (DCs) in the presence of serum and cytokines. One of the main functions of immature DCs is to capture and process antigens. Following maturation, they differentiate into antigen presenting cells. The role of complement in the differentiation process from monocytes towards immature DCs remains elusive. Here we demonstrate that complement 3 (C3) has a regulatory impact on the expression of specific DC surface molecules and DC-derived cytokine production during DC differentiation. We isolated human adherent peripheral blood mononuclear cells, which were cultured in the presence of GM-CSF plus IL-4 in medium supplemented with normal human serum or C3 deficient serum. The lack of C3 during DC differentiation negatively impacted the expression of C-type lectin receptor DC-SIGN, the antigen presenting molecules HLA-DR and CD1a, and the costimulatory molecules CD80 and CD86. Further, the spontaneous production of IL-6 and IL-12 was reduced in the absence of C3. Moreover, the maturation of immature DCs in response to LPS challenge was impaired in the absence of C3 as evidenced by reduced MHC-II, co-stimulatory molecule expression as well as modulated IL-12 and TNF-alpha production. Collectively, our results provide evidence for a novel role of C3 as a critical cofactor in human DC differentiation and maturation.  相似文献   

11.
The intestinal micro flora is indispensable in developing and maintaining homeostasis of the gut-associated immune system. Evidence indicates that lactic acid bacteria (LAB), e.g. lactobacilli and bifidobacteria, have beneficial effects on the host. Established health effects include increased gut maturation, antagonisms towards pathogens and immune modulation. The objective of this study is to evaluate the immunomodulating properties of a range of LAB of human origin. As dendritic cells (DCs) play a pivotal role in the balance between tolerance and immunity to commensal microorganisms, in vitro -generated immature DCs serve as a suitable model for studying the immunomodulating effects of lab. Human immature DCs were generated in vitro from monocytes and exposed to lethally UV-irradiated LAB. The effect of various species of LAB on DCs in direct contact was evaluated. Furthermore, the maturation pattern of DCs separated from the bacteria by an epithelial cell layer (CaCo-2 cells), which should mimic the intestinal environment, was studied. Cytokine secretion (IL-12, IL-10 and TNF-α) and upregulation of maturation surface markers on DCs (CD83 and CD86) was measured. Different LAB induced diverse cytokine responses. Some strains were strong IL-12 and TNF-α inducers and others weak. All strains induced IL-10. Different LAB also differentially modulated expression of CD83 and CD86 on DCs. Although some variation in the response to LAB of DCs generated from different blood donors was observed, general differences in the effect of the various LAB was revealed. Experiments with the DC CaCo-2 coculture system are ongoing. Different species of LAB differentially affect DC maturation; this suggets that the gut flora plays a pivotal role in polarization of the immune response.  相似文献   

12.
Type I interferons (IFNs) are widely used therapeutically. IFN-alpha2a in particular is used as an antiviral agent, but its immunomodulatory properties are poorly understood. Dendritic cells (DCs) are the only antigen-presenting cells able to prime naive T cells and therefore play a crucial role in initiating the adaptive phase of the immune response. We studied the effects of IFN-alpha2a on DC maturation and its role in determining Th1/Th2 equilibrium. We found that IFN-alpha2a induced phenotypic maturation of DCs and increased their allostimulatory capacity. When dendritic cells were stimulated simultaneously by CD40 ligation and IFN-alpha2a, the production of interleukin (IL)-10 and IL-12 was increased. In contrast, lipopolysaccharide (LPS) stimulation in the presence of IFN-alpha2a mainly induced IL-10 release. The production of IFN-gamma and IL-5 by the responder naive T cells was also amplified in response to IFN-alpha2a-treated DCs. Furthermore, IL-12 production by IFN-alpha2a-treated DCs was enhanced further in the presence of anti-IL-10 antibody. Different results were obtained when DCs were treated simultaneously with IFN-alpha2a and other maturation factors, in particular LPS, and then stimulated by CD40 ligation 36 h later. Under these circumstances, IFN-alpha2a did not modify the DC phenotype, and the production of IL-10/IL-12 and IFN-gamma/IL-5 by DCs and by DC-stimulated naive T cells, respectively, was inhibited compared to the effects on DCs treated with maturation factors alone. Altogether, this work suggests that IFN-alpha2a in isolation is sufficient to promote DC activation, however, other concomitant events, such as exposure to LPS during a bacterial infection, can inhibit its effects. These results clarify some of the in vivo findings obtained with IFN-alpha2a and have direct implications for the design of IFN-alpha-based vaccines for immunotherapy.  相似文献   

13.
Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and monocyte-derived (classically activated; M1) macrophages with H. pylori and analyzed phenotypic alterations, cytokine secretion, phagocytosis, and immunostimulation. Since we detected CD163(+) (alternatively activated; M2) macrophages in gastric biopsy specimens from H. pylori-positive patients, we also included monocyte-derived M2 macrophages in the study. Upon H. pylori infection, monocytes secreted interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70. Infected DCs became activated, as shown by the enhanced expression of CD25, CD80, CD83, PDL-1, and CCR7, and secreted IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, and IL-23. However, infection led to significantly downregulated CD209 and suppressed the constitutive secretion of macrophage migration inhibitory factor (MIF). H. pylori-infected M1 macrophages upregulated CD14 and CD32, downregulated CD11b and HLA-DR, and secreted mainly IL-1β, IL-6, IL-10, IL-12p40, and IL-23. Activation of DCs and M1 macrophages correlated with increased capacity to induce T-cell proliferation and decreased phagocytosis of dextran. M2 macrophages upregulated CD14 and CD206 and secreted IL-10 but produced less of the proinflammatory cytokines than M1 macrophages. Thus, H. pylori affects the functions of human APC subsets differently, which may influence the course and the outcome of H. pylori infection. The suppression of MIF in DCs constitutes a novel immune evasion mechanism exploited by H. pylori.  相似文献   

14.
Graft-versus-host disease (GVHD) is a major complication of allogeneic bone marrow transplantation. Extracorporeal photochemotherapy (ECP) has been introduced as an alternative treatment for GVHD refractory to conventional immunosuppressive treatment, although its mechanism of action is not yet clear. We investigated, in seven GVHD patients, the effects of ECP on dendritic cell maturation and cytokine production in an in vitro model that could mimic the potential in vivo effect of reinfusion of ECP-treated peripheral blood mononuclear cells. The model was based on co-culture of ECP-treated lymphocytes with monocyte-derived dendritic cells (DCs) of the same patient. We found that the co-culture of ECP-treated lymphocytes with immature DCs reduced CD54, CD40 and CD86 mean fluorescence intensity (MFI) significantly after lipopolysaccharide (LPS) stimulation, without affecting human leucocyte antigen D-related and CD80 MFI. In the same co-culture model, DCs produced increased amounts of interleukin (IL)-10 when co-cultured with ECP-treated lymphocytes and stimulated with LPS, while IL-12 and tumour necrosis factor-alpha production were not affected. These results suggest that reinfusion of large numbers of autologous apoptotic lymphocytes is significant for the therapeutic outcome of ECP through down-regulation of co-stimulatory molecules on DCs, inducing non-fully mature DCs with a low signal 2 and up-regulation of IL-10, which is an immunosuppressive cytokine.  相似文献   

15.
Dendritic cells (DCs) play an important role in innate and adaptive immune responses. In addition to their phagocytic activity, DCs present foreign antigens to na?ve T cells and regulate the development of adaptive immune responses. Upon contact with DCs, activated T cells produce large quantities of cytokines such as interferon-gamma (IFN-gamma) and interleukin (IL)-21, which have important immunoregulatory functions. Here, we have analyzed the effect of IL-21 and IFN-gamma on lipopolysaccharide (LPS)-induced maturation and cytokine production of human monocyte-derived DCs. IL-21 and IFN-gamma receptor genes were expressed in high levels in immature DCs. Pretreatment of immature DCs with IL-21 inhibited LPS-stimulated DC maturation and expression of CD86 and human leukocyte antigen class II (HLAII). IL-21 pretreatment also dramatically reduced LPS-stimulated production of tumor necrosis factor alpha, IL-12, CC chemokine ligand 5 (CCL5), and CXC chemokine ligand 10 (CXCL10) but not that of CXCL8. In contrast, IFN-gamma had a positive feedback effect on immature DCs, and it enhanced LPS-induced DC maturation and the production of cytokines. IL-21 weakly induced the expression Toll-like receptor 4 (TLR4) and translation initiation region (TIR) domain-containing adaptor protein (TIRAP) genes, whereas the expression of TIR domain-containing adaptor-inducing IFN-beta (TRIF), myeloid differentiation (MyD88) 88 factor, or TRIF-related adaptor molecule (TRAM) genes remained unchanged. However, IL-21 strongly stimulated the expression of suppressor of cytokine signaling (SOCS)-1 and SOCS-3 genes. SOCS are known to suppress DC functions and interfere with TLR4 signaling. Our results demonstrate that IL-21, a cytokine produced by activated T cells, can directly inhibit the activation and cytokine production of myeloid DCs, providing a negative feedback loop between DCs and T lymphocytes.  相似文献   

16.
BACKGROUND: Dendritic cells (DCs) translate environmental cues into T-cell activating signals, and are centrally involved in allergic airway inflammation. Ambient particulate matter (APM) is ubiquitous and associated with allergic diseases, but it is unknown whether APM directly activates DCs. OBJECTIVE: To study comprehensively the effects of APM on myeloid DC phenotype and function. METHODS: Development of DC was modeled using human CD34(+) progenitor cells. APM was collected from ambient outdoor air in Baltimore city. We studied the effects of APM on DC activation in vitro, compared with LPS. RESULTS: Ambient particulate matter enhanced DC expression of costimulatory receptors but suppressed the expression of both the endocytosis receptor CD206 and uptake of fluorescein isothiocyanate-conjugated dextran. The expression of the Toll-like pattern-recognition receptors Toll-like receptor 2 and Toll-like receptor 4 was also blunted. APM-exposed DCs secreted less IL-12 and IL-6 but exhibited increased secretion of IL-18 and IL-10 compared with LPS stimulation. A T(H)2-like pattern of cytokine production was seen in cocultures of APM-stimulated DCs and alloreactive naive CD4(+) T cells where the IL-13 to IFN-gamma ratio was reversed. This contrasted with the T(H)1 polarizing effects of LPS on DCs. CONCLUSION: We report for the first time that APM-exposed DCs direct a complex T(H)1/T(H)2-like pattern of T-cell activation by mechanisms that involve nonclassic activation of DCs. CLINICAL IMPLICATIONS: Inhaled APM can act directly on DCs as a danger signal to direct a proallergic pattern of innate immune activation.  相似文献   

17.
唐蓓 《中国免疫学杂志》2012,28(2):114-116,121
目的:探讨树突状细胞成熟过程中,DC表面MHC分子和共刺激分子的表达变化及MHCⅡ的胞内分布变化。方法:制备小鼠骨髓来源的树突状细胞,LPS分别刺激0、3、6、12和24小时,荧光抗体标记后,用流式细胞仪检测MHCⅠ、MHCⅡ分子和CD86、CD80、CD40等共刺激分子在细胞表面的表达,同时以激光共聚焦显微镜观察MHCⅡ的胞内分布变化。结果:在LPS刺激后,DC细胞表面的不同表型分子,其表达水平随时间延长有不同的上升趋势。同时在未成熟DC中,MHCⅡ主要集中在细胞核附近,LPS刺激后,MHCⅡ朝细胞外围扩散,到刺激12小时,有较多的MHCⅡ出现在细胞表面。结论:LPS介导的树突状细胞成熟过程中的表型分子有不同的变化趋势。  相似文献   

18.
Sphingosine kinase (Sphk) has been shown to be activated by growth factor and survival factors, and one of its products, sphingosine-1-phosphate, plays an important role in the regulation of various cellular responses. However, the effect of Sphk on the maturation and immunostimulatory function of dendritic cells (DCs) still remains largely unknown. In this study, we examined whether sphingosine kinase inhibitor (SKI) can influence co-stimulatory molecules (CD40, CD80, CD86 and MHC class II) and cytokine production (IL-12 and IL-10) in murine bone marrow-derived DCs. SKI significantly inhibited co-stimulatory molecules in DCs. SKI suppressed IL-12 production by DCs and IFN-gamma production by T cells. In addition, SKI-inhibited LPS induced the translocation of nuclear factor-kappaB, whereas it did not affect the degradation of IL-1 receptor-associated kinase-1 by LPS. These novel findings provide new insight into the immunopharmacological role of SKI in terms of its effects on DCs. These findings open a possibility for further understanding of the immunopharmacological functions of SKI, as well as therapeutic adjuvants for the treatment of DC-related acute and chronic diseases.  相似文献   

19.
Dendritic cells (DCs) orchestrate the immune response establishing immunity versus tolerance. These two opposite functions may be dictated by DC maturation status with maturity linked to immunogenicity. DCs directly interact with trillions of noninvasive intestinal bacteria in vivo, a process that contributes to gut homeostasis. We here evaluated the maturation program elicited in human DCs by direct exposure to commensal-related bacteria (CB) in the absence of inflammatory signals. We showed that eight gram(+) and gram(-) CB strains up-regulated costimulatory molecule expression in DCs and provoked a chemokine receptor switch similar to that activated by gram(+) pathogens. CB strains may be classified into three groups according to DC cytokine release: high IL-12 and low IL-10; low IL-12 and high IL-10; and low IL-12 and IL-10. All CB-treated DCs produced IL-1beta and IL-6 and almost no TGF-beta. Yet, CB instructed DCs to convert naive CD4+ T cells into hyporesponsive T cells that secreted low or no IFN-gamma, IL-10, and IL-17 and instead, displayed suppressor function. These data demonstrate that phenotypic DC maturation combined to an appropriate cytokine profile is insufficient to warrant Th1, IL-10-secreting T regulatory Type 1 (Tr1), or Th17 polarization. We propose that commensal flora and as such, probiotics manipulate DCs by a yet-unidentified pathway to enforce gut tolerance.  相似文献   

20.
Dendritic cells orchestrate innate and adaptive immune responses, which are central to establishing efficient responses to vaccination. Wall‐associated protein A (WapA) of Streptococcus mutans was previously used as a vaccine in animal studies for immunization against dental caries. However, as a cell surface protein, whether WapA activates innate immune responses and the effects of WapA on DCs remain unclear. In this study, WapA was cloned into the GST fusion vector pEBG, which can be expressed efficiently in mammalian cells. We found that when added before stimulation with LPS, purified WapA‐GST protein increased TLR4‐induced NF‐κB and MAPK signalling pathway activation. Pretreatment with WapA‐GST also increased LPS‐induced proinflammatory cytokine production by DCs, including IL‐12, IL‐6 and TNF‐α. Furthermore, expression of the DC maturation markers CD80/86, CD40 and MHC II was also increased by WapA pretreatment. These data indicate that WapA is recognized by DCs and promotes DC maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号