首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STATEMENT OF PROBLEM: The few available studies on the resin bond to zirconium-oxide ceramic recommend airborne-particle abrasion and modified resin luting agents containing adhesive monomers for superior and long-term durable bond strengths. It is unknown whether this regimen can also be successfully applied to the intaglio surface of a commercial zirconia-based all-ceramic system. PURPOSE: The purpose of this study was to evaluate and compare bond strengths of different bonding/silane coupling agents and resin luting agents to zirconia ceramic before and after artificial aging. MATERIAL AND METHODS: Composite cylinders (2.9 mm x 3.0 mm) were bonded to airborne-particle-abraded intaglio surfaces of Procera AllZirkon specimens (n=80) with either Panavia F (PAN) or Rely X ARC (REL) resin luting agents after pretreatment with Clearfil SE Bond/ Porcelain Bond Activator (Group SE). In another group, Rely X ARC was used with its bonding/silane coupling agent (Single Bond/Ceramic Primer, Group SB). PAN without any bonding/silane agent (Group NO) was the control. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested. One hundred eighty-day-old specimens were repeatedly thermal cycled for 12,000 cycles between 5 and 60 degrees C with a 15-second dwell time. Data were analyzed with 1- and 2-way analysis of variance and the Tukey multiple comparisons test (alpha=.05). Failure modes were examined under original magnification x25. RESULTS: After 3 days, SE-REL (25.15 +/- 3.48 MPa) and SE-PAN (20.14 +/- 2.59 MPa) groups had significantly superior mean shear bond strengths (P=.0007) compared with either NO-PAN (17.36 +/- 3.05 MPa) or SB-REL (16.90 +/- 7.22 MPa). SE-PAN, NO-PAN, and SB-REL groups were not significantly different. Artificial aging significantly reduced bond strengths. After 180-day storage, SE-PAN (16.85 +/- 3.72 MPa), and SE-REL (15.45 +/- 3.79 MPa) groups demonstrated significantly higher shear bond strengths than NO-PAN (9.45 +/- 5.06 MPa) or SB-REL (1.08 +/- 1.85 MPa) groups. The modes of failure varied among 3-day groups but were 100% adhesive at the ceramic surfaces after artificial aging. CONCLUSION: Artificial aging significantly reduced bond strength. A bonding/silane coupling agent containing an adhesive phosphate monomer can achieve superior long-term shear bond strength to airborne-particle- abraded Procera AllZirkon restorations with either one of the 2 resin luting agents tested.  相似文献   

2.
The purpose of this study was to evaluate the shear bond strengths of three dual-cured resin luting cements (Linkmax HV, Panavia Fluoro Cement, and RelyX ARC) to glass-infiltrated alumina-reinforced ceramic material and the effect of four silane coupling agents (Clearfil Porcelain Bond, GC Ceramic Primer, Porcelain LinerM, and Tokuso Ceramic Primer) on the bond strength. The two type-shaped of In-Ceram alumina ceramic glass-infiltrated specimens were untreated or treated with one of the four ceramic primers and then cemented together with one of the three dual-cured resin luting cements. Half of the specimens were stored in water at 37 degrees C for 24 h and the other half thermocycled 20,000 times before shear bond strength testing. Surface treatment by all silane coupling agents improved the shear bond strength compared with non-treatment. The specimens treated with Clearfil Porcelain Bond showed significantly greater shear bond strength than any of the other three silane coupling agents regardless of resin luting cements and thermocycling except for the use of Panavia Fluoro Cement at 20,000 thermocycles. When the alumina-reinforced ceramic material was treated with any silane coupling agent except GC Ceramic Primer and cemented with Linkmax HV, no significant differences in bond strength were noted between after water storage and after 20,000 thermocycles. After 20,000 thermocycles, all specimens except for the combined use of Clearfil Porcelain Bond or GC Ceramic Primer and Linkmax HV and GC Ceramic Primer and Panavia Fluoro Cement showed adhesive failures at the ceramic-resin luting cement interface.  相似文献   

3.
STATEMENT OF PROBLEM: Reliable bonding between zirconia posts and composite resin core materials is difficult to achieve because of the smooth surface texture and lack of silica content of zirconia posts. PURPOSE: The purpose of this study was to evaluate the effect of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. MATERIAL AND METHODS: Eighty zirconia posts were divided into 4 groups (n=20). Specimens received 1 of 4 different surface treatments: group AIRB, airborne-particle abrasion; group TSC-SIL, tribochemical silica coating (CoJet system) and silanization (ESPE Sil); group AIRB-BSIL, airborne-particle abrasion and MDP-containing primer (Clearfil SE Bond Primer)/silane coupling agent (Clearfil Porcelain Bond Activator) mixture application; and group TSC-BSIL, tribochemical silica coating and MDP-containing primer/silane coupling agent mixture application. Average surface roughness (Ra) of zirconia posts produced by airborne-particle abrasion or silica coating was measured using an optical profilometer. Composite resin core foundations (Build-it FR) were formed using transparent acrylic resin tubes (12mm in length and 7mm in diameter). Each group was further divided into 2 subgroups of 10 specimens and stored in distilled water at 37 degrees C, either for 24 hours or for 150 days with 37,500 thermal cycles between 5 degrees C and 55 degrees C, with a dwell time of 30 seconds. Following water storage, the specimens were sectioned perpendicular to the bonded interface into 2-mm-thick post-and-core specimens under water cooling. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5mm/min. Debonded post surfaces were examined with SEM. Data were analyzed with 1- and 2-way ANOVA and Tukey multiple comparison tests (alpha=0.05). RESULTS: No significant differences were detected between the Ra values of airborne-particle-abraded and silica-coated specimens (P=.781). The short-term mean bond strengths for group TSC-BSIL (27.1 +/- 3.2 MPa) and TSC-SIL (25.2 +/- 2.4 MPa) were statistically higher (P<.001) than AIRB-BSIL (23.3 +/- 2.2 MPa). The relatively high bond strengths for groups TSC-BSIL and TSC-SIL decreased significantly after 150 days of water storage to 13.5 +/- 1.6 and 11.8 +/- 1.2 MPa, respectively (P<.001). Durable bonding was obtained only in group AIRB-BSIL (21.8 +/- 2.7 MPa), which was also the only group demonstrating predominantly cohesive failures in the core material after long-term water storage. CONCLUSIONS: Data suggest that the short-term high bond strength obtained with a silane coupling agent or MPD-containing primer/silane coupling agent mixture to silica-coated zirconia posts was decreased with water storage and thermal cycling, whereas a durable bond could be obtained when an MPD-containing primer/silane coupling agent mixture was applied to the airborne-particle-abraded post surface.  相似文献   

4.
This study evaluated the repair bond strength of Estenia composite. Disk specimens of a dentin material were conditioned with varying combinations of silane primer (Add-on Primer, Clearfil Porcelain Bond Activator, Clearfil Porcelain Bond Activator + Clearfil Mega Bond-Primer, Porcelain Liner M, and unprimed) and bonding agent (Clearfil Mega Bond-Bond, Modeling Liquid, Stain Diluent, and no bonding agent). After photopolymerization of the enamel material placed on each surface, the specimens were either wet- or dry-stored at 37 degrees C for 24 hours. Average shear bond strength varied from 24.9 to 61.4 MPa, where the Clearfil Porcelain Bond Activator + Clearfil Mega Bond-Bond group and the Add-on Primer + Modeling Liquid group showed the greatest bond strength for dry and wet conditions respectively. To achieve reliable bond strength between layers of Estenia composite, it is highly recommended to use specific combinations of silane primer and bonding agent.  相似文献   

5.
PURPOSE: To evaluate the shear bond strength of two dual-cured resin luting cements (Linkmax HV and Panavia Fluoro Cement) to machinable glass-ceramics (Decsy Machinable Ceramic) and the effect of three silane coupling agents (Clearfil Porcelain Activator, Ceramic Primer, and Porcelain Liner M) on the bond strength. METHODS: Disk-shaped specimens fabricated from machinable glass-ceramic blocks using a low-speed cutting saw were either treated or not treated with one of three silane coupling agents and then bonded together with one of two dual-cured resin luting cements. Specimens were stored in water at 37degrees C for 24 hours and/or thermal cycled 50,000 times before shear bond strength testing. RESULTS: Regardless of the resin luting cement and thermal cycling, specimens treated with the Clearfil Porcelain Activator showed the highest shear bond strength among all the treatments. Surface treatment of the Clearfil Porcelain Activator showed significantly greater shear bond strength after 50,000 thermocycles compared with other treatments. However, significant differences in bond strength were observed between 0 and 50,000 thermocycles for all treatments.  相似文献   

6.
This study determined the bond strengths of porcelain bonding systems joined to a ceramic material, with the aim of evaluating the effect of a catalyst for silane coupling as well as that of initiators for bonding agents. Two sizes of specimen were cut from ceramic blocks (Cerec 2 Vitablocs Mark II) and then primed with either a three-liquid self-curing bonding agent (Clearfil Porcelain Bond, CPB), a three-liquid dual-activated bonding agent (Clapearl Bonding Agent, CBA), or their components. Unprimed specimens were also used as controls. After conditioning, the two different sized plates were bonded together with a dual-cured luting agent (Clapearl DC). The specimens were stored in 37 degrees C water for 24 h and shear bond strengths were determined. Shear testing revealed that the greatest bond strength was generated in the group consisting of ceramic material primed with CBA and exposed for 20 s prior to luting. Bond strengths of the CPB-primed group and the CBA-primed group without pre-exposure were comparable, whereas the remaining groups resulted in significantly lower bond strengths than the other three groups. The priming effect was greatly enhanced when a catalyst was used with the silane coupler as compared with the application of silane alone. The results suggest that incorporation of an initiator and a catalyst for silane coupling into the bonding agent reciprocally enhances bonding between the luting agent and the ceramic material.  相似文献   

7.
纳米硅涂层对玻璃渗透氧化铝陶瓷粘结强度的影响   总被引:4,自引:0,他引:4  
目的:探讨利用溶胶凝胶法进行纳米硅涂层表面改性对玻璃渗透氧化铝陶瓷粘结强度的影响。方法:3组In-Ceram氧化铝瓷块分别施以“喷砂(P组)”、“喷砂+硅烷偶联(PO组)”、“喷砂+纳米硅涂层+硅烷偶联(PTO)组)”的表面处理。制作陶瓷/复合树脂粘结体,室温下置蒸馏水中浸泡24h,微拉伸法测试各组试件粘结强度。结果:P组与PO组粘结强度较弱且无明显差异(P=0.797),PTO组的粘结强度明显高于其他组(P〈0.05)。结论:通过溶胶凝胶法在喷砂表面制备纳米硅涂层后应用硅烷偶联剂可以显著提高In-Ceram氧化铝陶瓷的粘结强度。  相似文献   

8.
STATEMENT OF PROBLEM: Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures. PURPOSE: The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent. Material and methods Blocks (6 x 6 x 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-microm Al 2 O 3 ; RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm 2 (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis. RESULTS: Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) ( P =.00015) and CS (18.5 +/- 4.7) ( P =.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone. CONCLUSION: Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.  相似文献   

9.
PURPOSE: This study evaluated the effect of different physicochemical aging methods and surface conditioning techniques on the repair bond strength of composite. It was hypothesized that the aging conditions would decrease the repair bond strength and surface conditioning methods would perform similarly for the repair of resin composites. MATERIALS AND METHODS: Disk-shaped resin composite specimens (Clearfil Photo Bright, Kuraray) were randomly assigned to one of the three aging conditions (N=120, n = 12/per group): (1) immersion in deionized water (37 degrees C, 1 week), (2) immersion in citric acid (pH: 3.0, 1 week), (3) boiling in water (8 h), (4) thermocycling (5000 times, 5 degrees C to 55 degreesC), (5) immersion in water (37 degrees C, 2 months). After aging procedures, the specimens were subjected to one of the following surface conditioning methods: (1) chairside silica coating (30-microm SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (SC method), (2) silane (Clearfil SE Bond Primer and Clearfil Porcelain Bond Activator) + bonding agent (Clearfil SE Bond) (SB method). The fresh and aged composite surfaces were also examined using SEM (n=6, 1/group). Resin composite (Quadrant Anterior Shine) was bonded to the conditioned substrates using polyethylene molds and then light polymerized. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). The failure types were categorized as: (A) cohesive in the substrate, (B) adhesive at the interface, or C) cohesive in the adherend. Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (alpha < 0.05). RESULTS: A significant influence of the conditioning method (p < 0.0001) and aging method was observed (p < 0.01) (two-way ANOVA, Tukey-Kramer). The SC method showed significantly higher bond values (7.8 +/- 1.2 to 11.6 +/- 5 MPa) than those of SB method (4.6 +/- 2.3 to 7.6 +/- 3.9 MPa) in all groups (p < 0.0001). While the SC method showed 96% cohesive (A type), the SB method demonstrated 92% adhesive failures (B type). SEM images showed distinct pattern of microcracks in the boiled specimens and filler dissolution with disorganized matrix resin in the other aged specimens. Aging the composite substrates through water storage for 2 months produced significantly lower bond strengths than those of water or acid storage for 1 week (p = 0.011). CONCLUSION: Chairside silica coating and silanization provided the highest bond strength values with almost exclusively cohesive failures on aged composites. Aging methods showed significant differences on the composite-composite repair strength.  相似文献   

10.
OBJECTIVES: To evaluate the microtensile bond strength (microTBS) of a dual-cure resin core material to different regions of fibre posts using different surface treatments. MATERIALS AND METHODS: Twenty-five silica zirconium glass fibre posts (Snowpost) and 25 quartz fibre posts (Aestheti-Plus) were used and randomly divided into five groups according to the surface treatments: (1) no surface treatment (Control) (2) dual-cure bonding agent, Clearfil Liner Bond 2V (LB) (3) LB followed by light curing for 20 s (LB and C) (4) silane coupling bonding agent agent, Clearfil Photobond with Porcelain Bond Activator (PB+PBA) (5) PB+PBA followed by light curing for 20 s (PB+PBA and LC). Treated posts were cemented into artificial post cavities using a dual-cure composite core material (Clearfil DC Core) and cured for 60 s from the top of the cavity. After 24 h storage in water, each specimen was serially sliced into 8, 0.6 x 0.6 mm2-thick beams for the microTBS test. The data were divided into three regions (upper/middle/bottom) and analyzed using three-way ANOVA and Dunnet's T3 multiple comparisons (alpha=0.05). RESULTS: There were no significant differences in bond strength between the three regions (p>0.05). The bond strengths were enhanced by the application of a silane coupling agent. For Snowpost, photoirradiation of the dual-cure bonding agent applied to the post surface significantly improved the bond strength (p<0.05) whereas it did not affect the bond strength of Aestheti-Plus post (p>0.05). CONCLUSION: The bond strength between fibre post and dual-cure resin core material depends upon the type of post and surface treatment. There were no regional differences in microTBS of the bonded post.  相似文献   

11.

Objective

This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling.

Material and Methods

Fifty rectangular heat-polymerized acrylic resin (QC-20) specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10) according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive) (control); Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System); Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P) were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles) before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS) and Fourier Transform Infrared spectrometer (FTIR) analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces.

Results

The highest bond strength test value was observed for Group A (1.35±0.13); the lowest value was for Group S (0.28±0.07) and Group SCSIL (0.34±0.03). Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces.

Conclusion

Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone soft liner.  相似文献   

12.
The purpose of the present study was to evaluate the effect of four silane coupling agents on the bond strength between two resin-modified glass ionomer cements and a machinable leucite glass ceramic. Ceramic specimens were ground with silicon carbide paper and cleaned with phosphoric acid. They were then conditioned and bonded with combinations of four silane coupling agents (GC Ceramic Primer, Clapearl Bonding Agent, Clearfil Mega Bond Porcelain Bonding Kit, and RelyX Ceramic Primer) and two resin-modified glass ionomer cements (Fuji Luting S and Fuji Lute). Shear bond strength was determined after 24-hour immersion in water or after thermocycling of 50,000 cycles. The results showed that every silane coupling agent significantly improved the bond strength. It was thus recommended that resin-modified glass ionomer cement be applied in conjunction with silane coupling agent when luting ceramic restorations.  相似文献   

13.
This study evaluated the effectiveness of a simplified silica coating method (CoJet System) on the bonding strength of resin cements to dental alloy. Bonding strength of the specimens treated with metal primer after alumina sandblasting was compared with those treated with silica coating and silane coupling agent after alumina sandblasting. Furthermore, the influence of silane coupling agent on bonding strength was compared between one-liquid and two-liquid silane coupling agents. Measurement of shear bond strength before and after thermal cycling revealed that the group treated with silica coating in one step without alumina sandblasting yielded high bonding strength. As for the influence of silane coupling agent, treatment with two-liquid silane coupling agent achieved higher mean shear bond strength than with one-liquid silane coupling agent. Findings in this study indicated that silicatization by means of this simplified silica coating method was effective in improving the bonding strength to dental alloy.  相似文献   

14.
目的 研究不同粘结方法及冷热循环对Cerec全瓷冠粘结后抗折强度的影响。 方法 选择离体前磨牙80颗,进行Cerec全瓷冠预备及制作。随机分为1~4组,每组20颗,分别使用Variolink N树脂粘结剂+硅烷偶联剂粘结、Variolink N树脂粘结剂粘结、Bisco Choice TM 2树脂粘结剂+硅烷偶联剂粘结、Bisco Choice TM 2树脂粘结剂粘结;每组再分为A、B小组,分别不进行和进行冷热循环。8组试件均用万能力学实验机测试其全瓷冠最大抗折裂强度,观察所有标本粘结破坏形式;进行统计分析。 结果 使用Variolink N树脂粘结剂+硅烷偶联剂组粘结的Cerec全瓷冠抗折裂强度最高;全瓷冠抗折强度A组(非冷热循环)高于B组。差异有统计学意义(P<0.05)。 结论 双重固化树脂粘结系统是牙科长石质陶瓷粘结的理想选择,可以获得较高的抗折裂强度。冷热循环降低Cerec全瓷冠抗折裂强度。  相似文献   

15.
Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer.  相似文献   

16.
This clinical report describes the fabrication and bonding of porcelain laminate veneer restorations in a patient with anterior open spaces. Laminate veneer restorations made of feldspathic porcelain were etched with 5% hydrofluoric acid, rinsed under tap water, ultrasonically cleaned with methanol, and primed with a chemically activated three-liquid silane bonding agent (Clearfil Porcelain Bond). The enamel surfaces were etched with 40% phosphoric acid, rinsed with water, and primed with a two-liquid bonding agent (Clearfil New Bond) that contained a hydrophobic phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP). The restorations were bonded with a dual-activated luting composite (Clapearl DC). The veneers have been functioning satisfactorily for an observation period of one year. Combined use of the Clearfil bonding agents and Clapearl DC luting composite is an alternative to conventional materials for seating porcelain laminate veneer restorations, although the system is inapplicable to dentin bonding.  相似文献   

17.
目的: 比较5种不同表面处理方法对纤维桩黏结强度的影响。方法:50根纤维桩按照表面处理方法的不同,随机分为5组,A组为硅烷偶联剂组(Clearfil Porcelain Bond Activator,Kuraray),B组为硅烷偶联剂+黏结剂组(A+ Clearfil SE Bond,Kuraray),C组为过氧化氢组(30%H2O2溶液),D组为过氧化氢+硅烷偶联剂组(C+A),E组为对照组。分别与树脂黏结剂黏结后,每组再平均分成2个小组,1组37℃生理盐水保存24 h后进行微拉伸强度测试,1组37℃生理盐水保存24 h后进行10000次冷热循环再进行微拉伸强度测试。采用SPSS17.0软件包对数据进行统计学分析。结果:冷热循环前A组~E组的微拉伸黏结强度分别为(6.7±0.7)、(14.4±1.1)、(10.7±0.9)、(16.0±1.0)和(6.7±1.0) MPa,冷热循环后,A组~E组的微拉伸黏结强度分别为(6.0±0.7 )、(13.1±0.7)、(9.0±0.7)、(15.0±0.9 ) 和(5.6±0.7) MPa。除硅烷偶联剂组与对照组之间外,其余各组之间差异均有显著性(P<0.05),其中,过氧化氢+硅烷偶联剂组黏结强度最大。各组之间在冷热循环前、后的微拉伸黏结强度差异均有显著性(P<0.05)。结论:温度疲劳循环可以降低5种表面处理的纤维桩与树脂间的黏结强度,30%H2O2溶液处理纤维桩后再使用硅烷偶联剂,可显著增加纤维桩与树脂之间的黏结强度。  相似文献   

18.
PURPOSE: To evaluate the microtensile bond strength (muTBS) of a dual-cure resin core material to different regions of translucent quartz fiber post in a post cavity using different surface treatments. METHODS: 30 translucent quartz fiber posts (Light-Post) were used and divided into six groups according to the surface treatments: (1) no surface treatment (Control); (2) photo-cure bonding agent, Clearfil Liner Bond 2V Bond A (PLB); (3) dual-cure bonding agent, Clearfil Liner Bond 2V Bond A+B (DLB); (4) BdA+B followed by light-cured for 20 seconds (DLB & LC); (5) silane coupling bonding agent, Clearfil Photobond with Porcelain Bond Activator (PB+PBA); (6) PB+PBA followed by light-cure for 20 seconds (PB+PBA&LC). Treated post were cemented into artificial post cavities using a dual-cure composite core material (Clearfil DC Core) and light-cured for 60 seconds from the top of the cavity. After 24-hour storage in water, each specimen was serially sliced into twelve 0.6 x 0.6 mm-thick beams for the muTBS test. The data were divided into three regions (upper/middle/bottom) and analyzed using two-way ANOVA and Dunnet's T3 multiple comparisons (alpha = 0.05). RESULTS: The highest bond strength was present in the silane coupling bonding agent group for all regions (P < 0.05). Application of the bonding agent to the post surface significantly improved the bond strength compared with control (P < 0.05). There were no significant differences in muTBS at all regions between the photo and dual-cure type bonding agents (P < 0.05). The bond strength significantly decreased at the bottom region when the post surface was treated with bonding agents (P < 0.05), whereas no regional differences in bond strength were found in the silane coupling bonding agent group (P > 0.05).  相似文献   

19.
This study evaluated the microtensile bond strength of a resin composite to a ceramic submitted to three surface treatments. Twelve glass-infiltrated alumina ceramic blocks (In-Ceram Alumina, VITA) and twelve resin composite blocks (Clearfil APX, Kuraray) with dimensions of 6mm x 6mm x 5mm were made. The surface of the ceramic was wet-grounded with # 600, 800 and 1200-grid sandpaper, and the blocks were divided in three groups: Group 1 - sandblasting with aluminum oxide - particles 110mm (Micro-Etcher, Danville); Group 2 - Rocatec System (ESPE): Tribochemical silica coating (Rocatec pre-powder + Rocatec-Plus powder + Rocatec-Sil); Group 3 - CoJet System (3M/ESPE): silica coating (silica oxide + ESPE-Sil). The ceramic blocks were cemented to the resin composite blocks with Panavia F (Kuraray Co), following the manufacturer's instructions, under load of 750g for 10min. The samples were stored (distilled water / 7 days / 37O C) and sectioned in two axis, x and y, with diamond disk under cooling in order to obtain samples (S) with 0.6 ± 0.1mm2 of adhesive area (n=36). The S were attached in adapted device for the microtensile test that was performed at an universal testing machine (EMIC), at a speed of 1mm/min. The results (MPa) were submitted to ANOVA and Tukey's test (p<0.05): G1 - 15.36; G2 - 30.98; G3 - 31.25. Groups 2 (Rocatec) and 3 (CoJet) presented larger bond strength than group 1. There was no statistical difference between group 2 and group 3.  相似文献   

20.
目的 探讨在牙科氧化铝陶瓷表面进行SiO2水溶胶涂层对陶瓷与树脂粘结强度的影响.方法 32个氧化铝陶瓷试件根据计算机产生的伪随机数字表分为4组,每组8个,采用溶胶-凝胶法在试件表面分别进行20%SiO2水溶胶涂层+硅烷偶联剂(A组)、30%SiO2水溶胶涂层+硅烷偶联剂(B组)、40%溶胶涂层+硅烷偶联剂(C组)和硅烷偶联剂(对照组)处理,应用傅立叶红外光谱、扫描电镜、X射线能谱仪进行分析.制作陶瓷-复合树脂粘结体,剪切法测试各组剪切粘结强度.结果 溶胶-凝胶法可在氧化铝陶瓷试件表面制得纳米硅涂层.热处理后A、B、C 3组试件Si-O-Si反对称伸缩振动吸收峰、对称伸缩振动吸收峰、弯曲振动吸收峰均增强;扫描电镜显示纳米氧化硅粒子分布较均匀,局部粒子产生团聚;试件表面硅元素含量均明显增加.A、B、C组试件与树脂的剪切粘结强度分别为(3.196±0.171)Mpa、(4.852±0.178)Mpa、(3.576±0.671)Mpa,与对照组[(1.881±0.156)Mpa]相比,差异均有统计学意义(P<0.05);B组的剪切粘结强度与A、C组相比,差异有统计学意义(P<0.05).结论 3种浓度硅溶胶可在牙科氧化铝陶瓷表面制得纳米硅涂层.纳米硅涂层可显著提高氧化铝陶瓷与树脂的剪切粘结强度.其中30%浓度SiO2水溶胶制备的硅涂层提高剪切粘结强度的效果最明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号