首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We recently reported that the leptin-induced increase in uncoupling protein 1 (UCP1) mRNA in brown adipose tissue (BAT) is prevented by the denervation of BAT. We also reported that retinoic acid (RA) increases UCP1 mRNA in BAT. To extend these finding to UCP2 and UCP3 in BAT, we examined UCP2 and UCP3 mRNA after unilateral denervation of BAT, as well as after leptin, beta(3)-adrenergic agonist, RA, and glucocorticoid administration to rats. UCP3 mRNA was 20% less in the denervated compared with the intact BAT, whereas UCP2 mRNA was unchanged with denervation. The beta(3)-adrenergic agonist, CGP-12177 (0.75 mg/kg), increased UPC3 mRNA by 40% in the innervated and by 85% in the denervated BAT. Leptin (0.9 mg/day for 3 days) increased both UCP2 and UCP3 mRNA by 30% in the innervated and, surprisingly, in the denervated BAT. RA (7.5 mg/kg) increased UCP1 mRNA but decreased UCP2 and UCP3 mRNA by 50%, whereas methylprednisolone (65 mg/kg, two doses 24 h apart) suppressed all three uncoupling proteins by greater than 60%. The present findings indicate that: sympathetic innervation is necessary to maintain basal levels of UCP3 mRNA; beta(3)-adrenergic agonist stimulation induces UCP3 mRNA; leptin induces UCP2 and UCP3 mRNA and this induction is not dependent on sympathetic innervation; RA increases UCP1 but decreases UCP2 and UCP3 mRNA; and methylprednisolone suppresses UCP1, UCP2, and UCP3 mRNA equally. These data suggest that there are distinct patterns of regulation between UCP1, UCP2, and UCP3, and there may be at least two modes by which leptin could modulate thermogenesis in BAT; first, by increasing sympathetic stimulation of BAT and induction of UCP1 mRNA and, secondly, by increasing UCP2 and UCP3 mRNA by a mechanism independent of sympathetic stimulation.  相似文献   

2.
3.
Exogenous leptin enhances energy utilization in ob/ob mice by binding its hypothalamic receptor and selectively increasing peripheral fat oxidation. Leptin also increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but the neurotransmitter that mediates this effect has not been established. The present experiments sought to determine whether leptin regulates UCP1 expression in BAT and its own expression in white adipose tissue (WAT) through the long or short forms of leptin receptor and modulation of norepinephrine release. Mice lacking dopamine beta-hydroxylase (Dbh-/-), the enzyme responsible for synthesizing norepinephrine and epinephrine from dopamine, were treated with leptin (20 microg/g body weight/day) for 3 days before they were euthanized. UCP1 messenger RNA (mRNA) and protein expression were 5-fold higher in BAT from control (Dbh+/-) compared with Dbh-/- mice. Leptin produced a 4-fold increase in UCP1 mRNA levels in Dbh+/- mice but had no effect on UCP1 expression in Dbh-/-. The beta3-adrenergic agonist, CL-316,243 increased UCP1 expression and established that BAT from both groups of mice was capable of responding to beta-adrenergic stimulation. Similarly, exogenous leptin reduced leptin mRNA in WAT from Dbh+/- but not Dbh-/- mice. In separate experiments, leptin produced comparable reductions in food intake in both Dbh+/- and Dbh-/- mice, illustrating that norepinephrine is not required for leptin's effect on food intake. Lastly, db/db mice lacking the long form of the leptin receptor failed to increase UCP1 mRNA in response to exogenous leptin but increased UCP1 mRNA in response to CL-316,243. These studies establish that norepinephrine is required for leptin to regulate its own expression in WAT and UCP1 expression in BAT and indicate that these effects are likely mediated through the centrally expressed long form of the leptin receptor.  相似文献   

4.
5.
Uncoupling proteins (UCPs) are mitochondrial proteins that play a role in regulation of energy expenditure by uncoupling respiration from ATP synthesis. Lactation is a physiological condition characterized by negative energy balance due to the loss of energy sources to the production of milk. The objective of the current study was to investigate whether UCP mRNA and protein expressions were altered during lactation compared with those after 48 h of fasting. Lactation significantly reduced serum leptin levels, and removal of pups for 48 h increased serum leptin to higher levels than those observed in control rats. Compared with control rats, mRNA expression of UCP1 and UCP3 in brown adipose tissue (BAT) was dramatically reduced during lactation and fasting. The reduction in mRNAs was reflected by a lowered UCP1 protein level, and to some extent, UCP3 protein. Treatment of lactating rats with exogenous leptin (3 mg/kg) or removal of pups for 48 h completely reversed the down-regulation of UCP1 and UCP3 mRNA expression in BAT, and pup removal led to a recovery of protein expression. In contrast to BAT, UCP3 expression in skeletal muscle was increased in fasted rats and decreased during lactation. Similar changes were observed in serum free fatty acid levels. These changes are consistent with the idea that the utilization of free fatty acids as a fuel source is spared during lactation. As in BAT, leptin treatment and removal of pups were able to restore changes in mRNA expression of UCP3 in skeletal muscle during lactation. The present results suggest that the inhibition of leptin secretion during lactation is involved in the down-regulation of UCP expression in BAT and skeletal muscle, which, in turn, is responsible for the decrease in metabolic fuel oxidation and thermogenesis.  相似文献   

6.
OBJECTIVE: To analyse the impact of vitamin A supplementation of both a normal fat (NF) diet and a high fat (HF) diet and of acute retinoic acid (RA)-treatment on the expression of uncoupling protein 3 (UCP3) in mice. DESIGN: C57BL/6J mice were fed for 18 weeks a NF or a HF diet (10 and 45 energy% as fat, respectively), both with the normal vitamin A content or an excess vitamin A (8 mg and 320 mg retinyl palmitate/kg diet, respectively). Body weight and energy intake were recorded periodically. UCP3 mRNA and UCP3 protein levels in skeletal muscle (soleus/gastrocnemius) were analysed, as well as UCP1, UCP2 and UCP3 mRNA levels in interscapular brown adipose tissue (BAT), and UCP2 mRNA, UCP2 protein and leptin mRNA levels in white adipose tissue (WAT) depots. The effect of acute RA-treatment (100 mg/kg/day, 4 days) on UCP3 mRNA levels in skeletal muscle and BAT of NMRI mice was also assessed. RESULTS: Vitamin A supplementation of a NF diet led to increased levels of UCP3 mRNA and UCP3 protein in muscle, UCP1 mRNA in BAT, and UCP2 mRNA in inguinal WAT, but had no impact on body weight or adiposity of B6 mice. HF diet promoted obesity and increased levels of UCP3 mRNA and UCP3 protein in skeletal muscle, and of the mRNAs for all three UCPs in BAT. Supplementing the HF diet with vitamin A had little effect on the final obesity reached and did not lead to further increases of muscle UCP3 mRNA nor BAT UCP1 mRNA over the levels achieved with the non-supplemented HF diet. Adipose leptin mRNA levels were down regulated after vitamin A supplementation, independently of the fat content of the diet. Up-regulation of muscle, but not BAT, UCP3 mRNA levels was also found after acute RA-treatment in NMRI mice. CONCLUSION: The results provide evidence of a stimulatory effect of retinoids on muscle UCP3 expression in vivo, and a differential retinoid-regulation of the UCP3 gene in muscle and BAT.  相似文献   

7.
Sivitz WI  Fink BD  Donohoue PA 《Endocrinology》1999,140(4):1511-1519
Leptin is believed to act through hypothalamic centers to decrease appetite and increase energy utilization, in part through enhanced thermogenesis. In this study, we examined the effects of fasting for 2 days and exogenous s.c. leptin, 200 microg every 8 h for 2 days, on the regulation of uncoupling protein (UCP) subtypes in brown adipose tissue (BAT) and gastrocnemius muscle. Northern blot analysis (UCP-1) and ribonuclease protection (UCP-2 and 3) were used for quantitative messenger RNA (mRNA) analysis, and specific antibodies were used to measure UCP-1 and UCP-3 total protein expression. Leptin, compared with vehicle, did not alter BAT UCP-1 or UCP-3 mRNA or protein expression when administered to normal ad libitum fed rats. Fasting significantly decreased BAT UCP-1 and UCP-3 mRNA expression, to 31% and 30% of ad libitum fed controls, respectively, effects which were prevented by administration of leptin to fasted rats. Fasting also significantly decreased BAT UCP-1 protein expression, to 67% of control; however, that effect was not prevented by leptin treatment. Fasting also decreased BAT UCP-3 protein, to 85% of control, an effect that was not statistically significant. Fasting, with or without leptin administration, did not affect BAT UCP-2 mRNA; however, leptin administration to ad libitum fed rats significantly increased BAT UCP-2 mRNA, to 138% of control. Fasting significantly enhanced gastrocnemius muscle UCP-3 mRNA (411% of control) and protein expression (168% of control), whereas leptin administration to fasted rats did not alter either of these effects. In summary, UCP subtype mRNA and protein are regulated in tissue- and subtype-specific fashion by leptin and food restriction. Under certain conditions, the effects of these perturbations on UCP mRNA and protein are discordant.  相似文献   

8.
Brown adipose tissue (BAT) is present throughout life in rodents and plays an important role in energy balance. However, whereas BAT is clearly recognizable in the neonates of larger mammals (including dogs, cats, sheep, cattle, and humans), it is undetectable or present in only small quantities in adults of these species and is replaced by a tissue with the gross characteristics of white adipose tissue. Here we provide evidence that treatment of adult dogs with a beta 3-adrenergic receptor agonist (ICI D7114) that has thermogenic and antiobesity properties leads to the appearance of BAT at several anatomical sites. The presence of BAT was primarily demonstrated by monitoring the inner mitochondrial membrane uncoupling protein and its mRNA, which are unique to the tissue. Neither message nor protein was detected in adipose tissue samples from control dogs but both were detected in samples from dogs treated with ICI D7114. The data suggest that stimulation of beta 3-adrenergic receptors can reactivate nascent BAT (which has the appearance of white adipose tissue) by increasing expression of the gene coding for uncoupling protein or lead to the recruitment of fully differentiated BAT from preadipocyte precursor cells.  相似文献   

9.
Li G  Zhang Y  Cheng KY  Scarpace PJ 《Diabetologia》2007,50(7):1490-1499
Aims/hypothesis Central pro-opiomelanocortin (Pomc) gene therapy ameliorates genetic- or age-related obesity. We hypothesised that this treatment would delay or prevent dietary obesity in young, lean rats. Materials and methods Recombinant adeno-associated virus encoding Pomc (rAAV-Pomc) was delivered bilaterally into the basomedial hypothalamus of lean rats for 42 days. Food intake, body weight, serum hormones, brown adipose tissue (BAT) uncoupling protein 1 (UCP1) and mRNA levels of hypothalamic neuropeptides and melanocortin receptors were assessed. Beginning on day 43, half of the rats remained on chow while the others received a high-fat diet for 89 days. We examined energy balance and responsiveness to the melanocortin agonist melanotan II (MTII) or the antagonist SHU9119. Results Pomc gene delivery produced elevated hypothalamic Pomc mRNA (fourfold) and α-melanocyte-stimulating hormone levels in the arcuate nucleus (twofold). Food intake and body weight were not altered by rAAV-Pomc in rats fed standard-chow. In rAAV-Pomc rats at day 42, perirenal fat and serum leptin decreased but overall visceral adiposity did not; expression of the hypothalamic agouti-related protein (Agrp) mRNA was elevated, whereas expression of melanocortin 3 and 4 receptor mRNA was reduced; BAT UCP1 protein increased nearly fourfold. The rAAV-Pomc rats fed the high-fat diet consumed more energy and gained more body weight compared with chow- or high-fat-fed controls that did not receive Pomc gene delivery. The anorexic response to MTII was impaired, whereas the orexigenic effect of SHU9119 was enhanced by rAAV-Pomc pretreatment. Conclusions/interpretation Delivery of the Pomc gene alters energy homeostasis in lean rats, predisposing them to diet-induced obesity. Diminished hypothalamic melanocortin receptors, increased Agrp expression, and potential rewiring of brain circuits may underlie the exacerbated obesity.  相似文献   

10.
The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma modulates the expression of numerous genes involved in glucose and lipid homeostasis and plays a critical role in adipocyte differentiation. Expression of uncoupling protein (UCP)1, which is necessary for thermogenesis, is strongly stimulated by PPARgamma agonists but without an increase in energy expenditure. This study was designed to assess whether PPARgamma-induced UCP1 has any functional impact and, if so, whether it involves sympathetic activity. In a first phase, obese ob/ob C57BL/6J mice and lean controls were treated for 2 wk with the PPARgamma agonist [2-(2-[4-phenoxy-2-propylphenoxy]ethyl)indole-5-acetic acid] (COOH). COOH induced UCP1 expression in brown and white adipose tissues as well as that of other genes associated with substrate oxidation and thermogenesis. However, UCP1 induction did not increase energy expenditure, as assessed by indirect calorimetry and other energy balance measurements. In a second phase, mice received for an additional 2 wk a combination of COOH and the beta(3)-adrenergic receptor (beta(3)-AR) agonist CL-316243 to stimulate the adrenergic signaling pathway and assess whether COOH-induced UCP1 was physiologically functional. The beta(3)-AR agonist stimulated thermogenesis in lean and ob/ob mice, an effect that was much stronger in COOH-pretreated mice, which exhibited lower respiratory quotient, higher oxygen consumption, and marked weight and fat mass loss, compared with mice not pretreated with COOH. These results demonstrate that PPARgamma agonism increases the thermogenic potential of white and brown adipose depots in lean and obese mice. This enhanced capacity leads to increased thermogenesis under beta-adrenergic stimulation, suggesting that the sympathetic drive is blunted by PPARgamma agonism.  相似文献   

11.
Although the lipoprotein lipase (LPL) activator NO-1886 shows antiobesity effects in high-fat-induced obese animals, the mechanism remains unclear. To clarify the mechanism, we studied the effects of NO-1886 on the expression of uncoupling protein (UCP) 1, UCP2, and UCP3 in rats. NO-1886 was mixed with a high-fat chow to supply a dose of 100 mg/kg to 8-month-old male Sprague-Dawley rats. The animals were fed the high-fat chow for 8 weeks. At the end of the administration period, brown adipose tissue (BAT), mesenteric fat, and soleus muscle were collected and levels of UCP1, UCP2, and UCP3 messenger RNA (mRNA) were determined. NO-1886 suppressed the body weight increase seen in the high-fat control group after the 8-week administration (585 +/- 39 vs 657 +/- 66 g, P < .05). NO-1886 also suppressed fat accumulation in visceral (46.9 +/- 10.4 vs 73.7 +/- 14.5 g, P < .01) and subcutaneous (43.1 +/- 18.1 vs 68.9 +/- 18.8 g, P < .05) tissues and increased the levels of plasma total cholesterol and high-density lipoprotein cholesterol in comparison to the high-fat control group. In contrast, NO-1886 decreased the levels of plasma triglycerides, nonesterified free fatty acid, glucose, and insulin. NO-1886 increased LPL activity in soleus muscle (0.082 +/- 0.013 vs 0.061 +/- 0.016 mumol of free fatty acid per minute per gram of tissue, P < .05). NO-1886 increased the expression of UCP3 mRNA in soleus muscle 3.14-fold (P < .01) compared with the high-fat control group without affecting the levels of UCP3 in mesenteric adipose tissue and BAT. In addition, NO-1886 did not affect the expression of UCP1 and UCP2 in BAT, mesenteric adipose tissue, and soleus muscle. In conclusion, NO-1886 increased the expression of UCP3 mRNA and LPL activity only in skeletal muscle. Therefore, a possible mechanism for NO-1886's antiobesity effects in rats may be the enhancement of LPL activity in skeletal muscle and the accompanying increase in UCP3 expression.  相似文献   

12.
To examine the functional role of CRH in the regulation of energy homeostasis by leptin, we measured the effects of the CRH antagonist, alpha-helical CRH 8-41 (alphaCRH) on a number of factors affected by leptin activity. These included food intake, body weight, hypothalamic c-fos-like immunoreactivity (c-FLI), weight and histological characterization of white adipose tissue, and mRNA expressions of uncoupling protein (UCP) in brown adipose tissue (BAT) in C57Bl/6 mice. Central infusion of leptin into the lateral cerebroventricle (icv) caused significant induction of c-FLI in the paraventricular nucleus (PVN), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus, and arcuate nucleus. In all these nuclei, the effect of leptin on expression of cFLI in the PVN and VMH was decreased by treatment with alphaCRH. Administration of leptin markedly decreased cumulative food intake and body weight with this effect being attenuated by pretreatment with alphaCRH. In peripheral tissue, leptin up-regulated BAT UCP1 mRNA expression and reduced fat depositions in this tissue. Those changes in BAT were also decreased by treatment with alphaCRH. As a consequence of the effects on food intake or energy expenditure, treatment with alphaCRH attenuated the leptin-induced reduction of body adiposity, fat cell size, triglyceride contents, and ob mRNA expression in white adipose tissue. Taken together, these results indicate that CRH neurons in the PVN and VMH may be an important mediator for leptin that contribute to regulation of feeding, adiposity, and UCP expression.  相似文献   

13.
The effects of the chronic activation of the central melanocortin (MC) system by melanotan II (MTII) were assessed in chow-fed (CH) and high-fat (HF) diet-induced obese (DIO) Sprague-Dawley rats. Six-day central infusion of MTII (1 nmol/day) reduced body weight and visceral adiposity compared with ad libitum-fed control and pair-fed groups and markedly suppressed caloric intake in both CH and DIO rats. The anorexic response to MTII was similar in DIO relative to CH rats. MTII induced a sustained increase in oxygen consumption in DIO but a delayed response in CH rats. In both diet groups, MTII reduced serum insulin and cholesterol levels compared with controls. HF feeding increased brown adipose tissue (BAT) uncoupling protein 1 (UCP1) by over twofold, and UCP1 levels were further elevated in MTII-treated CH and DIO rats. MTII lowered acetyl-CoA carboxylase expression and prevented the reduction in muscle-type carnitine palmitoyltransferase I mRNA by pair-feeding in the muscle of DIO rats. Compared with CH controls, hypothalamic MC3 and MC4 receptor expression levels were reduced in DIO controls. This study has demonstrated that, despite reduced hypothalamic MC3/MC4 receptor expression, anorexic and thermogenic responses to MTII are unabated with an initial augmentation of energy expenditure in DIO versus CH rats. The HF-induced up-regulation of UCP1 in BAT may contribute to the immediate increase in MTII-stimulated thermogenesis in DIO rats. MTII also increased fat catabolism in the muscle of DIO rats and improved glucose and cholesterol metabolism in both groups.  相似文献   

14.
The present study was conducted to assess the effects of chronic treatment with triiodothyronine (T3) on mRNA expression of uncoupling protein (UCP) family in male Wistar King A rats. Subcutaneous injection of T3 (37 nmol/body weight 100 g) over 7 d increased mRNA expression of UCP1 in brown adipose tissue (BAT), UCP2 in white adipose tissue (WAT), and UCP3 in skeletal muscle (MSL) mRNA by 1.3, 1.7, and 2.0-fold, respectively. In contrast, the expression of ob gene mRNA in WAT and serum leptin level in the T3-treated rats decreased by 0.5-fold of the controls. These results suggest that T3 may increase UCP family expression independent of leptin action.  相似文献   

15.
In mammals with a lower mass-specific metabolic rate than small laboratory rodents, the brown adipose tissue (BAT) loses its thermogenic activity after birth and undergoes a transformation into white adipose tissue (WAT). Rabbit is a model of these mammals of larger body mass. Preadipocytes from cervical BAT of foetal or newborn rabbits differentiated in a chemically-defined medium and expressed low levels of uncoupled protein-1 (UCP1) mRNA, greatly increased by beta3-adrenergic or retinoic acid stimulations. On the contrary, preadipocytes from 1-month-old animals differentiated in the same conditions with no detectable,expression of UCP1. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists were necessary to induce UCP1 in these cells from older animals, a synergistic increase being noted in the presence of beta3-adrenergic agonists. In contrast to these results, preadipocytes from perirenal WAT stimulated by PPARgamma agonists never expressed UCPI. CONCLUSION: preadipocytes in the postnatal period are determined as brown or white preadipocytes. PPARgamma agonists induce UCP1 expression in brown postnatal preadipocytes, but they are unable to trigger the gene in white preadipocytes.  相似文献   

16.
Peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) is highly expressed in brown adipose tissue (BAT) and plays an important role in adaptive thermogenesis. The aim of this study was to assess the acute effect of a beta(3)-adrenergic agonist (Trecadrine) and leptin on the expression of PGC-1 and PPARgamma2 mRNA in BAT. Trecadrine produced a marked increase (4.5-fold) in PGC-1 mRNA compared to controls (P<0.001) without changes in PPARgamma2 mRNA, whereas leptin administration did not alter either PGC-1 or PPARgamma2 expression. These results show that selective stimulation of the beta(3)-adrenoceptor rapidly upregulates the expression of PGC-1 in brown adipocytes without a concomitant increase in PPARgamma2. Moreover, our results show that PGC-1 and PPARgamma2 expression in BAT seems not to be acutely regulated by leptin.  相似文献   

17.
18.
Apelin, the endogenous ligand of the APJ receptor, has been identified in a variety of tissues, including stomach, heart, skeletal muscle, and white adipose tissue. We sought to clarify the effects of apelin on body adiposity and the expression of uncoupling proteins (UCPs) in C57BL/6 mice. Treatment with ip apelin at a dose of 0.1 mumol/kg.d for 14 d decreased the weight of white adipose tissue and serum levels of insulin and triglycerides, compared with controls, without influencing food intake. Apelin treatment also decreased body adiposity and serum levels of insulin and triglycerides in obese mice fed a high-fat diet. Apelin increased the serum adiponectin level and decreased that of leptin. Additionally, apelin treatment increased mRNA expression of UCP1, a marker of peripheral energy expenditure, in brown adipose tissue (BAT) and of UCP3, a regulator of fatty acid export, in skeletal muscle. In addition, immunoblot bands and relative densities of UCP1 content in BAT were also higher in the apelin group than controls. Furthermore, apelin treatment increased body temperature and O(2) consumption and decreased the respiratory quotient. In conclusion, apelin appears to regulate adiposity and lipid metabolism in both lean and obese mice. In addition, apelin regulates insulin resistance by influencing the circulating adiponectin level, the expression of BAT UCP1, and energy expenditure in mice.  相似文献   

19.
A role for mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) in thermogenesis was investigated in transgenic mice lacking the mGPD gene (mGPD-/-). Reared and studied at 22 C, these mice have a small, but significant, reduction (7-10%) in energy expenditure, as evidenced by oxygen consumption (QO2) and food intake, and show signs of increased brown adipose tissue (BAT) stimulation, higher plasma T4 and T3 concentrations, as well as increased uncoupling protein 3 (UCP3) expression in muscle. When acclimated at thermoneutrality temperature (32 C), QO2 decreased in both genotypes, but the difference between them widened to 16%, whereas BAT underwent atrophy, and plasma T4 and T3 levels and UCP3 mRNA decreased, yet T3 and UCP3 persisted at significantly higher levels in mGPD-/- mice. Such differences disappeared when the mice were rendered hypothyroid. A compensatory role for the observed changes in BAT, thyroid hormone levels, and UCP3 was investigated with a 2-h cold challenge of 12 C in euthyroid and hypothyroid mice. No hypothermia ensued if the mice had been acclimated at 22 C, but when acclimated at 32 C, euthyroid mGPD-/- mice became significantly more hypothermic than the wild-type controls. When rendered hypothyroid, this difference was accentuated, and the mGPD-/- mice developed profound hypothermia ( approximately 28 vs. 34 C in wild-type mice; P < 0.001). Thus, mGPD-deficient mice have, despite increased plasma T4 and T3, a small, but distinct, reduction in obligatory thermogenesis, which is compensated by increased BAT facultative thermogenesis and by thyroid hormone-dependent mechanisms using other proteins, possibly UCP3. The results support a role for mGPD in thyroid hormone thermogenesis.  相似文献   

20.
The effects of a 3-d peripheral administration of an alpha-MSH agonist, MTII, on body weight and the expression of uncoupling proteins (UCPs) and carnitine palmitoyltransferase-1 were determined in lean and genetically obese fa/fa rats by comparing MTII-treated animals with two different control groups, one being ad libitum fed, the other pair-fed to the amount of food consumed by MTII-treated rats. MTII treatment of lean and obese rats lowered food intake and body weight, the effects being more marked in obese than in lean rats. In both groups, MTII administration suppressed the increased plasma FFA levels brought about by food restriction. In lean rats, MTII prevented the decrease in brown adipose tissue UCP1, UCP2, and UCP3 expression and muscle UCP3 occurring during food restriction. In obese animals, MTII markedly increased brown adipose tissue (7-fold) and muscle (2.5-fold) UCP3 expression. The decrease in liver carnitine palmitoyltransferase-1 elicited by food restriction in lean and obese rats was prevented by MTII administration. In summary, the effects of MTII resemble those of leptin and are more marked in obese than in lean animals, in keeping with their reported reduced endogenous melanocortin tone. Melanocortin agonists may be useful in the treatment of obesity associated with impaired leptin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号