首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ObjectivesRegardless of the proportion of missing values, complete-case analysis is most frequently applied, although advanced techniques such as multiple imputation (MI) are available. The objective of this study was to explore the performance of simple and more advanced methods for handling missing data in cases when some, many, or all item scores are missing in a multi-item instrument.Study Design and SettingReal-life missing data situations were simulated in a multi-item variable used as a covariate in a linear regression model. Various missing data mechanisms were simulated with an increasing percentage of missing data. Subsequently, several techniques to handle missing data were applied to decide on the most optimal technique for each scenario. Fitted regression coefficients were compared using the bias and coverage as performance parameters.ResultsMean imputation caused biased estimates in every missing data scenario when data are missing for more than 10% of the subjects. Furthermore, when a large percentage of subjects had missing items (>25%), MI methods applied to the items outperformed methods applied to the total score.ConclusionWe recommend applying MI to the item scores to get the most accurate regression model estimates. Moreover, we advise not to use any form of mean imputation to handle missing data.  相似文献   

2.
Review: a gentle introduction to imputation of missing values   总被引:1,自引:0,他引:1  
In most situations, simple techniques for handling missing data (such as complete case analysis, overall mean imputation, and the missing-indicator method) produce biased results, whereas imputation techniques yield valid results without complicating the analysis once the imputations are carried out. Imputation techniques are based on the idea that any subject in a study sample can be replaced by a new randomly chosen subject from the same source population. Imputation of missing data on a variable is replacing that missing by a value that is drawn from an estimate of the distribution of this variable. In single imputation, only one estimate is used. In multiple imputation, various estimates are used, reflecting the uncertainty in the estimation of this distribution. Under the general conditions of so-called missing at random and missing completely at random, both single and multiple imputations result in unbiased estimates of study associations. But single imputation results in too small estimated standard errors, whereas multiple imputation results in correctly estimated standard errors and confidence intervals. In this article we explain why all this is the case, and use a simple simulation study to demonstrate our explanations. We also explain and illustrate why two frequently used methods to handle missing data, i.e., overall mean imputation and the missing-indicator method, almost always result in biased estimates.  相似文献   

3.
Multiple imputation (MI) is one of the most popular methods to deal with missing data, and its use has been rapidly increasing in medical studies. Although MI is rather appealing in practice since it is possible to use ordinary statistical methods for a complete data set once the missing values are fully imputed, the method of imputation is still problematic. If the missing values are imputed from some parametric model, the validity of imputation is not necessarily ensured, and the final estimate for a parameter of interest can be biased unless the parametric model is correctly specified. Nonparametric methods have been also proposed for MI, but it is not so straightforward as to produce imputation values from nonparametrically estimated distributions. In this paper, we propose a new method for MI to obtain a consistent (or asymptotically unbiased) final estimate even if the imputation model is misspecified. The key idea is to use an imputation model from which the imputation values are easily produced and to make a proper correction in the likelihood function after the imputation by using the density ratio between the imputation model and the true conditional density function for the missing variable as a weight. Although the conditional density must be nonparametrically estimated, it is not used for the imputation. The performance of our method is evaluated by both theory and simulation studies. A real data analysis is also conducted to illustrate our method by using the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset.  相似文献   

4.
The purpose of this paper was to illustrate the influence of missing data on the results of longitudinal statistical analyses [i.e., MANOVA for repeated measurements and Generalised Estimating Equations (GEE)] and to illustrate the influence of using different imputation methods to replace missing data. Besides a complete dataset, four incomplete datasets were considered: two datasets with 10% missing data and two datasets with 25% missing data. In both situations missingness was considered independent and dependent on observed data. Imputation methods were divided into cross-sectional methods (i.e., mean of series, hot deck, and cross-sectional regression) and longitudinal methods (i.e., last value carried forward, longitudinal interpolation, and longitudinal regression). Besides these, also the multiple imputation method was applied and discussed. The analyses were performed on a particular (observational) longitudinal dataset, with particular missing data patterns and imputation methods. The results of this illustration shows that when MANOVA for repeated measurements is used, imputation methods are highly recommendable (because MANOVA as implemented in the software used, uses listwise deletion of cases with a missing value). Applying GEE analysis, imputation methods were not necessary. When imputation methods were used, longitudinal imputation methods were often preferable above cross-sectional imputation methods, in a way that the point estimates and standard errors were closer to the estimates derived from the complete dataset. Furthermore, this study showed that the theoretically more valid multiple imputation method did not lead to different point estimates than the more simple (longitudinal) imputation methods. However, the estimated standard errors appeared to be theoretically more adequate, because they reflect the uncertainty in estimation caused by missing values.  相似文献   

5.
ObjectiveWe compared popular methods to handle missing data with multiple imputation (a more sophisticated method that preserves data).Study Design and SettingWe used data of 804 patients with a suspicion of deep venous thrombosis (DVT). We studied three covariates to predict the presence of DVT: d-dimer level, difference in calf circumference, and history of leg trauma. We introduced missing values (missing at random) ranging from 10% to 90%. The risk of DVT was modeled with logistic regression for the three methods, that is, complete case analysis, exclusion of d-dimer level from the model, and multiple imputation.ResultsMultiple imputation showed less bias in the regression coefficients of the three variables and more accurate coverage of the corresponding 90% confidence intervals than complete case analysis and dropping d-dimer level from the analysis. Multiple imputation showed unbiased estimates of the area under the receiver operating characteristic curve (0.88) compared with complete case analysis (0.77) and when the variable with missing values was dropped (0.65).ConclusionAs this study shows that simple methods to deal with missing data can lead to seriously misleading results, we advise to consider multiple imputation. The purpose of multiple imputation is not to create data, but to prevent the exclusion of observed data.  相似文献   

6.
BACKGROUND AND OBJECTIVES: To illustrate the effects of different methods for handling missing data--complete case analysis, missing-indicator method, single imputation of unconditional and conditional mean, and multiple imputation (MI)--in the context of multivariable diagnostic research aiming to identify potential predictors (test results) that independently contribute to the prediction of disease presence or absence. METHODS: We used data from 398 subjects from a prospective study on the diagnosis of pulmonary embolism. Various diagnostic predictors or tests had (varying percentages of) missing values. Per method of handling these missing values, we fitted a diagnostic prediction model using multivariable logistic regression analysis. RESULTS: The receiver operating characteristic curve area for all diagnostic models was above 0.75. The predictors in the final models based on the complete case analysis, and after using the missing-indicator method, were very different compared to the other models. The models based on MI did not differ much from the models derived after using single conditional and unconditional mean imputation. CONCLUSION: In multivariable diagnostic research complete case analysis and the use of the missing-indicator method should be avoided, even when data are missing completely at random. MI methods are known to be superior to single imputation methods. For our example study, the single imputation methods performed equally well, but this was most likely because of the low overall number of missing values.  相似文献   

7.
ABSTRACT: BACKGROUND: Multiple imputation is becoming increasingly popular for handling missing data. However, it is often implemented without adequate consideration of whether it offers any advantage over complete case analysis for the research question of interest, or whether potential gains may be offset by bias from a poorly fitting imputation model, particularly as the amount of missing data increases. METHODS: Simulated datasets (n = 1000) drawn from a synthetic population were used to explore information recovery from multiple imputation in estimating the coefficient of a binary exposure variable when various proportions of data (10-90%) were set missing at random in a highly-skewed continuous covariate or in the binary exposure. Imputation was performed using multivariate normal imputation (MVNI), with a simple or zero-skewness log transformation to manage non-normality. Bias, precision, mean-squared error and coverage for a set of regression parameter estimates were compared between multiple imputation and complete case analyses. RESULTS: For missingness in the continuous covariate, multiple imputation produced less bias and greater precision for the effect of the binary exposure variable, compared with complete case analysis, with larger gains in precision with more missing data. However, even with only moderate missingness, large bias and substantial under-coverage were apparent in estimating the continuous covariate's effect when skewness was not adequately addressed. For missingness in the binary covariate, all estimates had negligible bias but gains in precision from multiple imputation were minimal, particularly for the coefficient of the binary exposure. CONCLUSIONS: Although multiple imputation can be useful if covariates required for confounding adjustment are missing, benefits are likely to be minimal when data are missing in the exposure variable of interest. Furthermore, when there are large amounts of missingness, multiple imputation can become unreliable and introduce bias not present in a complete case analysis if the imputation model is not appropriate. Epidemiologists dealing with missing data should keep in mind the potential limitations as well as the potential benefits of multiple imputation. Further work is needed to provide clearer guidelines on effective application of this method.  相似文献   

8.
ObjectiveMissing data are a pervasive problem, often leading to bias in complete records analysis (CRA). Multiple imputation (MI) via chained equations is one solution, but its use in the presence of interactions is not straightforward.Study Design and SettingWe simulated data with outcome Y dependent on binary explanatory variables X and Z and their interaction XZ. Six scenarios were simulated (Y continuous and binary, each with no interaction, a weak and a strong interaction), under five missing data mechanisms. We use directed acyclic graphs to identify when CRA and MI would each be unbiased. We evaluate the performance of CRA, MI without interactions, MI including all interactions, and stratified imputation. We also illustrated these methods using a simple example from the National Child Development Study (NCDS).ResultsMI excluding interactions is invalid and resulted in biased estimates and low coverage. When XZ was zero, MI excluding interactions gave unbiased estimates but overcoverage. MI including interactions and stratified MI gave equivalent, valid inference in all cases. In the NCDS example, MI excluding interactions incorrectly concluded there was no evidence for an important interaction.ConclusionsEpidemiologists carrying out MI should ensure that their imputation model(s) are compatible with their analysis model.  相似文献   

9.
Missing values, common in epidemiologic studies, are a major issue in obtaining valid estimates. Simulation studies have suggested that multiple imputation is an attractive method for imputing missing values, but it is relatively complex and requires specialized software. For each of 28 studies in the Asia Pacific Cohort Studies Collaboration, a comparison of eight imputation procedures (unconditional and conditional mean, multiple hot deck, expectation maximization, and four different approaches to multiple imputation) and the naive, complete participant analysis are presented in this paper. Criteria used for comparison were the mean and standard deviation of total cholesterol and the estimated coronary mortality hazard ratio for a one-unit increase in cholesterol. Further sensitivity analyses allowed for systematic over- or underestimation of cholesterol. For 22 studies for which less than 10% of the values for cholesterol were missing, and for the pooled Asia Pacific Cohort Studies Collaboration, all methods gave similar results. For studies with roughly 10-60% missing values, clear differences existed between the methods, in which case past research suggests that multiple imputation is the method of choice. For two studies with over 60% missing values, no imputation method seemed to be satisfactory.  相似文献   

10.
目的 探讨在纵向随访数据中如何处理缺失值和相关性,充分利用所收集到的数据来反映研究总体。方法 先模拟产生纵向完整数据集和缺失数据集,然后用多重填补法(multiple imputation methods,MI)和多水平模型(multilevel model,MLM)来处理,再用随机区组方差分析比较各组的差异,最后用实例验证。结果 不同缺失类型和不同缺失比例的数据集所得结果一致:基于MI的MLM所得的偏差比MLM小,且随着填补次数的增多而有所减小;偏差随着缺失率的增大而增加,样本量大的结果更稳定。实例分析也验证了模拟的结果。结论 用多重填补法和多水平模型共同处理纵向随访数据可以提高结果的准确性和精确性。  相似文献   

11.
Multiple imputation (MI) is a technique that can be used for handling missing data in a public-use dataset. With MI, two or more completed versions of the dataset are created, containing possibly different but reasonable replacements for the missing data. Users analyse the completed datasets separately with standard techniques and then combine the results using simple formulae in a way that allows the extra uncertainty due to missing data to be assessed. An advantage of this approach is that the resulting public-use data can be analysed by a variety of users for a variety of purposes, without each user needing to devise a method to deal with the missing data. A recent example for a large public-use dataset is the MI of the family income and personal earnings variables in the National Health Interview Survey. We propose an approach to utilise MI to handle the problems of missing gestational ages and implausible birthweight-gestational age combinations in national vital statistics datasets. This paper describes MI and gives examples of MI for public-use datasets, summarises methods that have been used for identifying implausible gestational age values on birth records, and combines these ideas by setting forth scenarios for identifying and then imputing missing and implausible gestational age values multiple times. Because missing and implausible gestational age values are not missing completely at random, using multiple imputations and, thus, incorporating both the existing relationships among the variables and the uncertainty added from the imputation, may lead to more valid inferences in some analytical studies than simply excluding birth records with inadequate data.  相似文献   

12.
Missing data are common in longitudinal studies due to drop‐out, loss to follow‐up, and death. Likelihood‐based mixed effects models for longitudinal data give valid estimates when the data are missing at random (MAR). These assumptions, however, are not testable without further information. In some studies, there is additional information available in the form of an auxiliary variable known to be correlated with the missing outcome of interest. Availability of such auxiliary information provides us with an opportunity to test the MAR assumption. If the MAR assumption is violated, such information can be utilized to reduce or eliminate bias when the missing data process depends on the unobserved outcome through the auxiliary information. We compare two methods of utilizing the auxiliary information: joint modeling of the outcome of interest and the auxiliary variable, and multiple imputation (MI). Simulation studies are performed to examine the two methods. The likelihood‐based joint modeling approach is consistent and most efficient when correctly specified. However, mis‐specification of the joint distribution can lead to biased results. MI is slightly less efficient than a correct joint modeling approach and can also be biased when the imputation model is mis‐specified, though it is more robust to mis‐specification of the imputation distribution when all the variables affecting the missing data mechanism and the missing outcome are included in the imputation model. An example is presented from a dementia screening study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Cost and effect data often have missing data because economic evaluations are frequently added onto clinical studies where cost data are rarely the primary outcome. The objective of this article was to investigate which multiple imputation strategy is most appropriate to use for missing cost-effectiveness data in a randomized controlled trial. Three incomplete data sets were generated from a complete reference data set with 17, 35 and 50 % missing data in effects and costs. The strategies evaluated included complete case analysis (CCA), multiple imputation with predictive mean matching (MI-PMM), MI-PMM on log-transformed costs (log MI-PMM), and a two-step MI. Mean cost and effect estimates, standard errors and incremental net benefits were compared with the results of the analyses on the complete reference data set. The CCA, MI-PMM, and the two-step MI strategy diverged from the results for the reference data set when the amount of missing data increased. In contrast, the estimates of the Log MI-PMM strategy remained stable irrespective of the amount of missing data. MI provided better estimates than CCA in all scenarios. With low amounts of missing data the MI strategies appeared equivalent but we recommend using the log MI-PMM with missing data greater than 35 %.  相似文献   

14.
Multiple imputation (MI) is a technique that can be used for handling missing data in a public-use dataset. With MI, two or more completed versions of the dataset are created, containing possibly different but reasonable replacements for the missing data. Users analyse the completed datasets separately with standard techniques and then combine the results using simple formulae in a way that allows the extra uncertainty due to missing data to be assessed. An advantage of this approach is that the resulting public-use data can be analysed by a variety of users for a variety of purposes, without each user needing to devise a method to deal with the missing data. A recent example for a large public-use dataset is the MI of the family income and personal earnings variables in the National Health Interview Survey. We propose an approach to utilise MI to handle the problems of missing gestational ages and implausible birthweight–gestational age combinations in national vital statistics datasets. This paper describes MI and gives examples of MI for public-use datasets, summarises methods that have been used for identifying implausible gestational age values on birth records, and combines these ideas by setting forth scenarios for identifying and then imputing missing and implausible gestational age values multiple times. Because missing and implausible gestational age values are not missing completely at random, using multiple imputations and, thus, incorporating both the existing relationships among the variables and the uncertainty added from the imputation, may lead to more valid inferences in some analytical studies than simply excluding birth records with inadequate data.  相似文献   

15.

Background

Missing data often cause problems in longitudinal cohort studies with repeated follow-up waves. Research in this area has focussed on analyses with missing data in repeated measures of the outcome, from which participants with missing exposure data are typically excluded. We performed a simulation study to compare complete-case analysis with Multiple imputation (MI) for dealing with missing data in an analysis of the association of waist circumference, measured at two waves, and the risk of colorectal cancer (a completely observed outcome).

Methods

We generated 1,000 datasets of 41,476 individuals with values of waist circumference at waves 1 and 2 and times to the events of colorectal cancer and death to resemble the distributions of the data from the Melbourne Collaborative Cohort Study. Three proportions of missing data (15, 30 and 50%) were imposed on waist circumference at wave 2 using three missing data mechanisms: Missing Completely at Random (MCAR), and a realistic and a more extreme covariate-dependent Missing at Random (MAR) scenarios. We assessed the impact of missing data on two epidemiological analyses: 1) the association between change in waist circumference between waves 1 and 2 and the risk of colorectal cancer, adjusted for waist circumference at wave 1; and 2) the association between waist circumference at wave 2 and the risk of colorectal cancer, not adjusted for waist circumference at wave 1.

Results

We observed very little bias for complete-case analysis or MI under all missing data scenarios, and the resulting coverage of interval estimates was near the nominal 95% level. MI showed gains in precision when waist circumference was included as a strong auxiliary variable in the imputation model.

Conclusions

This simulation study, based on data from a longitudinal cohort study, demonstrates that there is little gain in performing MI compared to a complete-case analysis in the presence of up to 50% missing data for the exposure of interest when the data are MCAR, or missing dependent on covariates. MI will result in some gain in precision if a strong auxiliary variable that is not in the analysis model is included in the imputation model.
  相似文献   

16.
When missing data occur in one or more covariates in a regression model, multiple imputation (MI) is widely advocated as an improvement over complete‐case analysis (CC). We use theoretical arguments and simulation studies to compare these methods with MI implemented under a missing at random assumption. When data are missing completely at random, both methods have negligible bias, and MI is more efficient than CC across a wide range of scenarios. For other missing data mechanisms, bias arises in one or both methods. In our simulation setting, CC is biased towards the null when data are missing at random. However, when missingness is independent of the outcome given the covariates, CC has negligible bias and MI is biased away from the null. With more general missing data mechanisms, bias tends to be smaller for MI than for CC. Since MI is not always better than CC for missing covariate problems, the choice of method should take into account what is known about the missing data mechanism in a particular substantive application. Importantly, the choice of method should not be based on comparison of standard errors. We propose new ways to understand empirical differences between MI and CC, which may provide insights into the appropriateness of the assumptions underlying each method, and we propose a new index for assessing the likely gain in precision from MI: the fraction of incomplete cases among the observed values of a covariate (FICO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Multiple imputation (MI) is becoming increasingly popular for handling missing data. Standard approaches for MI assume normality for continuous variables (conditionally on the other variables in the imputation model). However, it is unclear how to impute non‐normally distributed continuous variables. Using simulation and a case study, we compared various transformations applied prior to imputation, including a novel non‐parametric transformation, to imputation on the raw scale and using predictive mean matching (PMM) when imputing non‐normal data. We generated data from a range of non‐normal distributions, and set 50% to missing completely at random or missing at random. We then imputed missing values on the raw scale, following a zero‐skewness log, Box–Cox or non‐parametric transformation and using PMM with both type 1 and 2 matching. We compared inferences regarding the marginal mean of the incomplete variable and the association with a fully observed outcome. We also compared results from these approaches in the analysis of depression and anxiety symptoms in parents of very preterm compared with term‐born infants. The results provide novel empirical evidence that the decision regarding how to impute a non‐normal variable should be based on the nature of the relationship between the variables of interest. If the relationship is linear in the untransformed scale, transformation can introduce bias irrespective of the transformation used. However, if the relationship is non‐linear, it may be important to transform the variable to accurately capture this relationship. A useful alternative is to impute the variable using PMM with type 1 matching. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
多重填补法与Ad Hoc法对模拟纵向数据集缺失值处理的比较   总被引:3,自引:0,他引:3  
目的:采用多重填补法(multiple imputation,MI)和Ad hoc法分别对模拟的纵向数据集中的缺失值进行处理,较两种方法的优劣并探讨其适用性。方法:运用SAS9.0,采用数据模拟技术,分别模拟纵向完整数据集和具有各种缺失的随机缺失数据集,分别用MI和Ad hoc法对各缺失数据集进行处理,对结果进行比较和分析。结果:数据缺失率≤%时,Ad hoc方法有一定优势;数据缺失率在20%-40%时,经MI处理后的分析结果更接近“真实”;数据缺失率≥50%时,两种方法均无效。结论:对不同缺失率的数据集,MI和Ad hoc法对缺失值的处理各有优劣。  相似文献   

19.
We consider a study‐level meta‐analysis with a normally distributed outcome variable and possibly unequal study‐level variances, where the object of inference is the difference in means between a treatment and control group. A common complication in such an analysis is missing sample variances for some studies. A frequently used approach is to impute the weighted (by sample size) mean of the observed variances (mean imputation). Another approach is to include only those studies with variances reported (complete case analysis). Both mean imputation and complete case analysis are only valid under the missing‐completely‐at‐random assumption, and even then the inverse variance weights produced are not necessarily optimal. We propose a multiple imputation method employing gamma meta‐regression to impute the missing sample variances. Our method takes advantage of study‐level covariates that may be used to provide information about the missing data. Through simulation studies, we show that multiple imputation, when the imputation model is correctly specified, is superior to competing methods in terms of confidence interval coverage probability and type I error probability when testing a specified group difference. Finally, we describe a similar approach to handling missing variances in cross‐over studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Most implementations of multiple imputation (MI) of missing data are designed for simple rectangular data structures ignoring temporal ordering of data. Therefore, when applying MI to longitudinal data with intermittent patterns of missing data, some alternative strategies must be considered. One approach is to divide data into time blocks and implement MI independently at each block. An alternative approach is to include all time blocks in the same MI model. With increasing numbers of time blocks, this approach is likely to break down because of co‐linearity and over‐fitting. The new two‐fold fully conditional specification (FCS) MI algorithm addresses these issues, by only conditioning on measurements, which are local in time. We describe and report the results of a novel simulation study to critically evaluate the two‐fold FCS algorithm and its suitability for imputation of longitudinal electronic health records. After generating a full data set, approximately 70% of selected continuous and categorical variables were made missing completely at random in each of ten time blocks. Subsequently, we applied a simple time‐to‐event model. We compared efficiency of estimated coefficients from a complete records analysis, MI of data in the baseline time block and the two‐fold FCS algorithm. The results show that the two‐fold FCS algorithm maximises the use of data available, with the gain relative to baseline MI depending on the strength of correlations within and between variables. Using this approach also increases plausibility of the missing at random assumption by using repeated measures over time of variables whose baseline values may be missing. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号