首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mortality displacement (or “harvesting”) has been identified as a key issue in the assessment of the temperature–mortality relationship. However, only a few studies have addressed the “harvesting” issue and findings have not been consistent.

Objectives

We examined the potential impact of both short- and long-term harvesting effects on heat-related deaths in Brisbane, Australia.

Methods

We collected data on daily counts of deaths (nonaccidental, cardiovascular, and respiratory), weather, and air pollution in Brisbane from 1 January 1996 to 30 November 2004. We estimated heat-related deaths, identified potential short-term mortality displacement, and assessed how and to what extent the impact of summer temperature on mortality was modified by mortality in the previous winter using a Poisson time-series regression combined with distributed lag nonlinear model (DLNM).

Results

There were significant associations between temperature and each mortality outcome in summer. We found evidence of short-term mortality displacement for respiratory mortality, and evidence of longer-term mortality displacement for nonaccidental and cardiovascular mortality when the preceding winter’s mortality was low. The estimated heat effect on mortality was generally stronger when the preceding winter mortality level was low. For example, we estimated a 22% increase in nonaccidental mortality (95% CI: 14, 30) with a 1°C increase in mean temperature above a 28°C threshold in summers that followed a winter with low mortality, compared with 12% (95% CI: 7, 17) following a winter with high mortality. The short- and long-term mortality displacement appeared to jointly influence the assessment of heat-related deaths.

Conclusions

We found evidence of both short- and long-term harvesting effects on heat-related mortality in Brisbane, Australia. Our finding may clarify temperature-related health risks and inform effective public health interventions to manage the health impacts of climate change.

Citation

Qiao Z, Guo Y, Yu W, Tong S. 2015. Assessment of short- and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ Health Perspect 123:766–772; http://dx.doi.org/10.1289/ehp.1307606  相似文献   

2.

Background

Recent investigations have reported a decline in the heat-related mortality risk during the last decades. However, these studies are frequently based on modeling approaches that do not fully characterize the complex temperature–mortality relationship, and are limited to single cities or countries.

Objectives

We assessed the temporal variation in heat–mortality associations in a multi-country data set using flexible modelling techniques.

Methods

We collected data for 272 locations in Australia, Canada, Japan, South Korea, Spain, the United Kingdom, and the United States, with a total 20,203,690 deaths occurring in summer months between 1985 and 2012. The analysis was based on two-stage time-series models. The temporal variation in heat–mortality relationships was estimated in each location with time-varying distributed lag nonlinear models, expressed through an interaction between the transformed temperature variables and time. The estimates were pooled by country through multivariate meta-analysis.

Results

Mortality risk due to heat appeared to decrease over time in several countries, with relative risks associated to high temperatures significantly lower in 2006 compared with 1993 in the United States, Japan, and Spain, and a nonsignificant decrease in Canada. Temporal changes are difficult to assess in Australia and South Korea due to low statistical power, and we found little evidence of variation in the United Kingdom. In the United States, the risk seems to be completely abated in 2006 for summer temperatures below their 99th percentile, but some significant excess persists for higher temperatures in all the countries.

Conclusions

We estimated a statistically significant decrease in the relative risk for heat-related mortality in 2006 compared with 1993 in the majority of countries included in the analysis.

Citation

Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, Zanobetti A, Schwartz JD, Tobias A, Leone M, Tong S, Honda Y, Kim H, Armstrong BG. 2015. Temporal variation in heat–mortality associations: a multicountry study. Environ Health Perspect 123:1200–1207; http://dx.doi.org/10.1289/ehp.1409070  相似文献   

3.

Background

Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives

We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods

To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or high-incidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results

We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion

The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

Citation

Chuang WC, Gober P. 2015. Predicting hospitalization for heat-related illness at the census-tract level: accuracy of a generic heat vulnerability index in Phoenix, Arizona (USA). Environ Health Perspect 123:606–612; http://dx.doi.org/10.1289/ehp.1307868  相似文献   

4.

Background

As a result of climate change, the frequency of extreme temperature events is expected to increase, and such events are associated with increased morbidity and mortality. Vulnerability patterns, and corresponding adaptation strategies, are most usefully conceptualized at a local level.

Methods

We used a case-only analysis to examine subject and neighborhood characteristics that modified the association between heat waves and mortality. All deaths of New York City residents from 2000 through 2011 were included in this analysis. Meteorological data were obtained from the National Climatic Data Center. Modifying characteristics were obtained from the death record and geographic data sets.

Results

A total of 234,042 adult deaths occurred during the warm season of our study period. Compared with other warm-season days, deaths during heat waves were more likely to occur in black (non-Hispanic) individuals than other race/ethnicities [odds ratio (OR) = 1.08; 95% CI: 1.03, 1.12], more likely to occur at home than in institutions and hospital settings (OR = 1.11; 95% CI: 1.06, 1.16), and more likely among those living in census tracts that received greater public assistance (OR = 1.05; 95% CI: 1.01, 1.09). Finally, deaths during heat waves were more likely among residents in areas of the city with higher relative daytime summer surface temperature and less likely among residents living in areas with more green space.

Conclusion

Mortality during heat waves varies widely within a city. Understanding which individuals and neighborhoods are most vulnerable can help guide local preparedness efforts.

Citation

Madrigano J, Ito K, Johnson S, Kinney PL, Matte T. 2015. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ Health Perspect 123:672–678; http://dx.doi.org/10.1289/ehp.1408178  相似文献   

5.

Background

Exposure to arsenic is one of the major global health problems, affecting > 300 million people worldwide, but arsenic’s effects on human reproduction are uncertain.

Objectives

We conducted a systematic review and meta-analysis to examine the association between arsenic and adverse pregnancy outcomes/infant mortality.

Methods

We searched PubMed and Ovid MEDLINE (from 1946 through July 2013) and EMBASE (from 1988 through July 2013) databases and the reference lists of reviews and relevant articles. Studies satisfying our a priori eligibility criteria were evaluated independently by two authors.

Results

Our systematic search yielded 888 articles; of these, 23 were included in the systematic review. Sixteen provided sufficient data for our quantitative analysis. Arsenic in groundwater (≥ 50 μg/L) was associated with increased risk of spontaneous abortion (6 studies: OR = 1.98; 95% CI: 1.27, 3.10), stillbirth (9 studies: OR = 1.77; 95% CI: 1.32, 2.36), moderate risk of neonatal mortality (5 studies: OR = 1.51; 95% CI: 1.28, 1.78), and infant mortality (7 studies: OR = 1.35; 95% CI: 1.12, 1.62). Exposure to environmental arsenic was associated with a significant reduction in birth weight (4 studies: β = –53.2 g; 95% CI: –94.9, –11.4). There was paucity of evidence for low-to-moderate arsenic dose.

Conclusions

Arsenic is associated with adverse pregnancy outcomes and infant mortality. The interpretation of the causal association is hampered by methodological challenges and limited number of studies on dose response. Exposure to arsenic continues to be a major global health issue, and we therefore advocate for high-quality prospective studies that include individual-level data to quantify the impact of arsenic on adverse pregnancy outcomes/infant mortality.

Citation

Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M. 2015. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123:412–421; http://dx.doi.org/10.1289/ehp.1307894  相似文献   

6.

Background

There are > 80,000 chemicals in commerce with few data available describing their impacts on human health. Biomonitoring surveys, such as the NHANES (National Health and Nutrition Examination Survey), offer one route to identifying possible relationships between environmental chemicals and health impacts, but sparse data and the complexity of traditional models make it difficult to leverage effectively.

Objective

We describe a workflow to efficiently and comprehensively evaluate and prioritize chemical–health impact relationships from the NHANES biomonitoring survey studies.

Methods

Using a frequent itemset mining (FIM) approach, we identified relationships between chemicals and health biomarkers and diseases.

Results

The FIM method identified 7,848 relationships between 219 chemicals and 93 health outcomes/biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the FIM approach is able to identify published relationships. Because the relationships are derived from the vast majority of the chemicals monitored by NHANES, the resulting list of associations is appropriate for evaluating results from targeted data mining or identifying novel candidate relationships for more detailed investigation.

Conclusions

Because of the computational efficiency of the FIM method, all chemicals and health effects can be considered in a single analysis. The resulting list provides a comprehensive summary of the chemical/health co-occurrences from NHANES that are higher than expected by chance. This information enables ranking and prioritization on chemicals or health effects of interest for evaluation of published results and design of future studies.

Citation

Bell SM, Edwards SW. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Perspect 123:1193–1199; http://dx.doi.org/10.1289/ehp.1409138  相似文献   

7.

Background

Climate change may lead to more severe and extreme heat waves in the future, but its potential impact on sudden infant death—a leading cause of infant mortality—is unclear.

Objectives

We sought to determine whether risk of sudden infant death syndrome (SIDS) is elevated during hot weather.

Methods

We undertook a case-crossover analysis of all sudden infant deaths during warm periods in metropolitan Montreal, Quebec, Canada, from 1981 through 2010. Our analysis included a total of 196 certified cases of SIDS, including 89 deaths at 1–2 months of age, and 94 at 3–12 months. We estimated associations between maximum outdoor temperatures and SIDS by comparing outdoor temperatures on the day of or day before a SIDS event with temperatures on control days during the same month, using cubic splines to model temperature and adjusting for relative humidity.

Results

Maximum daily temperatures of ≥ 29°C on the same day were associated with 2.78 times greater odds of sudden infant death relative to 20°C (95% CI: 1.64, 4.70). The likelihood of sudden death increased steadily with higher temperature. Associations were stronger for infants 3–12 months of age than for infants 1–2 months of age, with odds ratios of 3.90 (95% CI: 1.87, 8.13) and 1.73 (95% CI: 0.80, 3.73), respectively, for 29°C compared with 20°C on the day of the event.

Conclusions

High ambient temperature may be a novel risk factor for SIDS, especially at ≥ 3 months of age. Climate change and the higher temperatures that result may account for a potentially greater proportion of sudden infant deaths in the future.

Citation

Auger N, Fraser WD, Smargiassi A, Kosatsky T. 2015. Ambient heat and sudden infant death: a case-crossover study spanning 30 years in Montreal, Canada. Environ Health Perspect 123:712–716; http://dx.doi.org/10.1289/ehp.1307960  相似文献   

8.

Background

Experimental studies have shown a decrease in driving performance at high temperatures. The epidemiological evidence for the relationship between heat and motor vehicle crashes is not consistent.

Objectives

We estimated the impact of high ambient temperatures on the daily number of motor vehicle crashes and, in particular, on crashes involving driver performance factors (namely distractions, driver error, fatigue, or sleepiness).

Methods

We performed a time-series analysis linking daily counts of motor vehicle crashes and daily temperature or occurrence of heat waves while controlling for temporal trends. All motor vehicle crashes with victims that occurred during the warm period of the years 2000–2011 in Catalonia (Spain) were included. Temperature data were obtained from 66 weather stations covering the region. Poisson regression models adjusted for precipitation, day of the week, month, year, and holiday periods were fitted to quantify the associations.

Results

The study included 118,489 motor vehicle crashes (an average of 64.1 per day). The estimated risk of crashes significantly increased by 2.9% [95% confidence interval (CI): 0.7%, 5.1%] during heat wave days, and this association was stronger (7.7%, 95% CI: 1.2%, 14.6%) when restricted to crashes with driver performance–associated factors. The estimated risk of crashes with driver performance factors significantly increased by 1.1% (95% CI: 0.1%, 2.1%) for each 1°C increase in maximum temperature.

Conclusions

Motor vehicle crashes involving driver performance–associated factors were increased in association with heat waves and increasing temperature. These findings are relevant for designing preventive plans in a context of global warming.

Citation

Basagaña X, Escalera-Antezana JP, Dadvand P, Llatje Ò, Barrera-Gómez J, Cunillera J, Medina-Ramón M, Pérez K. 2015. High ambient temperatures and risk of motor vehicle crashes in Catalonia, Spain (2000–2011): a time-series analysis. Environ Health Perspect 123:1309–1316; http://dx.doi.org/10.1289/ehp.1409223  相似文献   

9.

Background:

Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status.

Objectives:

We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008.

Methods:

We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders.

Results:

The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%).

Conclusions:

Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water.

Citation:

Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon, Portugal. Environ Health Perspect 124:927–934; http://dx.doi.org/10.1289/ehp.1409529  相似文献   

10.

Background

There is substantial evidence that mortality increases in low temperatures. Less is known about the role of prolonged cold periods denoted as cold spells.

Objective

We conducted the first systematic review and meta-analysis to summarize the evidence on the adverse health effects of cold spells in varying climates.

Data sources and extraction

Four databases (Ovid Medline, PubMed, Scopus, Web of Science) were searched for all years and languages available. “Cold spell” was defined as an event below a temperature threshold lasting for a minimum duration of 2 days. Of 1,527 identified articles, 26 satisfied our eligibility criteria for the systematic review, and 9 were eligible for meta-analyses. The articles were grouped by the three main study questions into Overall-effect Group, Added-effect Group, and Temperature-change-effect Group.

Data synthesis

Based on random-effects models in the meta-analyses, cold spells were associated with increased mortality from all or all nonaccidental causes (summary rate ratio = 1.10; 95% CI: 1.04, 1.17 based on 9 estimates from five studies), cardiovascular diseases (1.11; 95% CI: 1.03, 1.19; 12 estimates from eight studies), and respiratory diseases (1.21; 95% CI: 0.97, 1.51; 8 estimates from four studies). Estimated associations were stronger for people ≥ 65 years of age (1.06; 95% CI: 1.00, 1.12) than for people 0–64 years of age (1.01; 95% CI: 1.00, 1.03). Study-specific effect estimates from a limited number of studies suggested an increased morbidity related to cold spells, but it was not possible to quantitatively summarize the evidence.

Conclusions

Cold spells are associated with increased mortality rates in populations around the world. The body of evidence suggests that cold spells also have other adverse health effects. There was substantial heterogeneity among the studies, which should be taken into account in the interpretation of the results.

Citation

Ryti NR, Guo Y, Jaakkola JJ. 2016. Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environ Health Perspect 124:12–22; http://dx.doi.org/10.1289/ehp.1408104  相似文献   

11.

Background

Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD.

Objective

We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035.

Methods

We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution.

Results

In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035.

Conclusion

These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits.

Citation

Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Künzli N, McConnell R. 2016. Near-roadway air pollution and coronary heart disease: burden of disease and potential impact of a greenhouse gas reduction strategy in Southern California. Environ Health Perspect 124:193–200; http://dx.doi.org/10.1289/ehp.1408865  相似文献   

12.

Background

Nearly 40 years of research provides an extensive body of evidence about human health, well-being, and improved function benefits associated with experiences of nearby nature in cities.

Objectives

We demonstrate the numerous opportunities for future research efforts that link metro nature, human health and well-being outcomes, and economic values.

Methods

We reviewed the literature on urban nature-based health and well-being benefits. In this review, we provide a classification schematic and propose potential economic values associated with metro nature services.

Discussion

Economic valuation of benefits derived from urban green systems has largely been undertaken in the fields of environmental and natural resource economics, but studies have not typically addressed health outcomes. Urban trees, parks, gardens, open spaces, and other nearby nature elements—collectively termed metro nature—generate many positive externalities that have been largely overlooked in urban economics and policy. Here, we present a range of health benefits, including benefit context and beneficiaries. Although the understanding of these benefits is not yet consistently expressed, and although it is likely that attempts to link urban ecosystem services and economic values will not include all expressions of cultural or social value, the development of new interdisciplinary approaches that integrate environmental health and economic disciplines are greatly needed.

Conclusions

Metro nature provides diverse and substantial benefits to human populations in cities. In this review, we begin to address the need for development of valuation methodologies and new approaches to understanding the potential economic outcomes of these benefits.

Citation

Wolf KL, Robbins AS. 2015. Metro nature, environmental health, and economic value. Environ Health Perspect 123:390–398; http://dx.doi.org/10.1289/ehp.1408216  相似文献   

13.

Background

The process of creating a cohort or cohort substudy may induce misleading exposure–health effect associations through collider stratification bias (i.e., selection bias) or bias due to conditioning on an intermediate. Studies of environmental risk factors may be at particular risk.

Objectives

We aimed to demonstrate how such biases of the exposure–health effect association arise and how one may mitigate them.

Methods

We used directed acyclic graphs and the example of bone lead and mortality (all-cause, cardiovascular, and ischemic heart disease) among 835 white men in the Normative Aging Study (NAS) to illustrate potential bias related to recruitment into the NAS and the bone lead substudy. We then applied methods (adjustment, restriction, and inverse probability of attrition weighting) to mitigate these biases in analyses using Cox proportional hazards models to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs).

Results

Analyses adjusted for age at bone lead measurement, smoking, and education among all men found HRs (95% CI) for the highest versus lowest tertile of patella lead of 1.34 (0.90, 2.00), 1.46 (0.86, 2.48), and 2.01 (0.86, 4.68) for all-cause, cardiovascular, and ischemic heart disease mortality, respectively. After applying methods to mitigate the biases, the HR (95% CI) among the 637 men analyzed were 1.86 (1.12, 3.09), 2.47 (1.23, 4.96), and 5.20 (1.61, 16.8), respectively.

Conclusions

Careful attention to the underlying structure of the observed data is critical to identifying potential biases and methods to mitigate them. Understanding factors that influence initial study participation and study loss to follow-up is critical. Recruitment of population-based samples and enrolling participants at a younger age, before the potential onset of exposure-related health effects, can help reduce these potential pitfalls.

Citation

Weisskopf MG, Sparrow D, Hu H, Power MC. 2015. Biased exposure–health effect estimates from selection in cohort studies: are environmental studies at particular risk? Environ Health Perspect 123:1113–1122; http://dx.doi.org/10.1289/ehp.1408888  相似文献   

14.

Background

Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice.

Objective

We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS).

Methods

We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science.

Results

Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science–environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications.

Conclusions

A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure.

Citation

Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100–1106; http://dx.doi.org/10.1289/ehp.1409283  相似文献   

15.

Background

Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings.

Objectives

This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements.

Methods

We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency.

Results

Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week).

Conclusions

Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact.

Citation

Johnson MA, Chiang RA. 2015. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ Health Perspect 123:820–826; http://dx.doi.org/10.1289/ehp.1408681  相似文献   

16.

Background

Studies looking at air temperature (Ta) and birth outcomes are rare.

Objectives

We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses.

Methods

We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health.

Results

Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13).

Conclusions

Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population.

Citation

Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075  相似文献   

17.

Background

Climate models project that heat waves will increase in frequency and severity. Despite many studies of mortality from heat waves, few studies have examined morbidity.

Objectives

In this study we investigated whether any age or race/ethnicity groups experienced increased hospitalizations and emergency department (ED) visits overall or for selected illnesses during the 2006 California heat wave.

Methods

We aggregated county-level hospitalizations and ED visits for all causes and for 10 cause groups into six geographic regions of California. We calculated excess morbidity and rate ratios (RRs) during the heat wave (15 July to 1 August 2006) and compared these data with those of a reference period (8–14 July and 12–22 August 2006).

Results

During the heat wave, 16,166 excess ED visits and 1,182 excess hospitalizations occurred statewide. ED visits for heat-related causes increased across the state [RR = 6.30; 95% confidence interval (CI), 5.67–7.01], especially in the Central Coast region, which includes San Francisco. Children (0–4 years of age) and the elderly (≥ 65 years of age) were at greatest risk. ED visits also showed significant increases for acute renal failure, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. We observed significantly elevated RRs for hospitalizations for heat-related illnesses (RR = 10.15; 95% CI, 7.79–13.43), acute renal failure, electrolyte imbalance, and nephritis.

Conclusions

The 2006 California heat wave had a substantial effect on morbidity, including regions with relatively modest temperatures. This suggests that population acclimatization and adaptive capacity influenced risk. By better understanding these impacts and population vulnerabilities, local communities can improve heat wave preparedness to cope with a globally warming future.  相似文献   

18.

Background

With epigenome-wide mapping of DNA methylation, a number of novel smoking-associated loci have been identified.

Objectives

We aimed to assess dose–response relationships of methylation at the top hits from the epigenome-wide methylation studies with smoking exposure as well as with total and cause-specific mortality.

Methods

In a population-based prospective cohort study in Germany, methylation was quantified in baseline blood DNA of 1,000 older adults by the Illumina 450K assay. Deaths were recorded during a median follow-up of 10.3 years. Dose–response relationships of smoking exposure with methylation at nine CpGs were modeled by restricted cubic spline regression. Associations of individual and aggregate methylation patterns with all-cause, cardiovascular, and cancer mortality were assessed by multiple Cox regression.

Results

Clear dose–response relationships with respect to current and lifetime smoking intensity were consistently observed for methylation at six of the nine CpGs. Seven of the nine CpGs were also associated with mortality outcomes to various extents. A methylation score based on the top two CpGs (cg05575921 and cg06126421) showed the strongest associations with all-cause, cardiovascular, and cancer mortality, with adjusted hazard ratios (95% CI) of 3.59 (2.10, 6.16), 7.41 (2.81, 19.54), and 2.48 (1.01, 6.08), respectively, for participants with methylation levels in the lowest quartile at both CpGs. Adding methylation at those two CpGs into a model that included the variables of the Systematic Coronary Risk Evaluation chart for fatal cardiovascular risk prediction improved the predictive discrimination.

Conclusion

The novel methylation biomarkers are highly informative for both smoking exposure and smoking-related mortality outcomes. In particular, these biomarkers may substantially improve cardiovascular risk prediction. Nevertheless, the findings of the present study need to be further validated in additional large longitudinal studies.

Citation

Zhang Y, Schöttker B, Florath I, Stock C, Butterbach K, Holleczek B, Mons U, Brenner H. 2016. Smoking-associated DNA methylation biomarkers and their predictive value for all-cause and cardiovascular mortality. Environ Health Perspect 124:67–74; http://dx.doi.org/10.1289/ehp.1409020  相似文献   

19.

Background

Humans are exposed to low-dose bisphenol A (BPA) through plastic consumer products and dental sealants containing BPA. Although a number of studies have investigated the mammary gland effects after high-dose BPA exposure, the study findings differ. Furthermore, there has been a lack of mechanistic studies.

Objective

The objective of this study was to investigate the effect and the mechanism of low-dose BPA in mammary gland cells.

Methods

We evaluated DNA damage following BPA exposure using the comet assay and immunofluorescence staining, and used cell counting and three-dimensional cultures to evaluate effects on proliferation. We examined the expressions of markers of DNA damage and cell-cycle regulators by immunoblotting and performed siRNA-mediated gene silencing to determine the role of c-Myc in regulating BPA’s effects.

Results

Low-dose BPA significantly promoted DNA damage, up-regulated c-Myc and other cell-cycle regulatory proteins, and induced proliferation in parallel in estrogen receptor-α (ERα)-negative mammary cells. Silencing c-Myc diminished these BPA-induced cellular events, suggesting that c-Myc is essential for regulating effects of BPA on DNA damage and proliferation in mammary cells.

Conclusions

Low-dose BPA exerted c-Myc–dependent genotoxic and mitogenic effects on ERα-negative mammary cells. These findings provide significant evidence of adverse effects of low-dose BPA on mammary cells.

Citation

Pfeifer D, Chung YM, Hu MC. 2015. Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: the role of c-Myc. Environ Health Perspect 123:1271–1279; http://dx.doi.org/10.1289/ehp.1409199  相似文献   

20.

Background

The temperature–mortality relationship has repeatedly been found, mostly in large cities, to be U/J-shaped, with higher minimum mortality temperature (MMT) at low latitudes being interpreted as indicating human adaptation to climate.

Objectives

Our aim was to partition space with a high-resolution grid to assess the temperature–mortality relationship in a territory with wide climate diversity, over a period with notable climate warming.

Methods

The 16,487,668 death certificates of persons > 65 years of age who died of natural causes in continental France (1968–2009) were analyzed. A 30-km × 30-km grid was placed over the map of France. Generalized additive model regression was used to assess the temperature–mortality relationship for each grid square, and extract the MMT and the RM25 and RM25/18 (respectively, the ratios of mortality at 25°C/MMT and 25°C/18°C). Three periods were considered: 1968–1981 (P1), 1982–1995 (P2), and 1996–2009 (P3).

Results

All temperature–mortality curves computed over the 42-year period were U/J-shaped. MMT and mean summer temperature were strongly correlated. Mean MMT increased from 17.5°C for P1 to 17.8°C for P2 and to 18.2°C for P3 and paralleled the summer temperature increase observed between P1 and P3. The temporal MMT rise was below that expected from the geographic analysis. The RM25/18 ratio of mortality at 25°C versus that at 18°C declined significantly (p = 5 × 10–5) as warming increased: 18% for P1, 16% for P2, and 15% for P3.

Conclusions

Results of this spatiotemporal analysis indicated some human adaptation to climate change, even in rural areas.

Citation:

Todd N, Valleron AJ. 2015. Space–time covariation of mortality with temperature: a systematic study of deaths in France, 1968–2009. Environ Health Perspect 123:659–664; http://dx.doi.org/10.1289/ehp.1307771  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号