首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ristagno G  Tang W  Sun S  Weil MH 《Resuscitation》2007,74(2):366-371
We have shown previously that arginine vasopressin (AVP) given during sinus rhythm increases mean arterial blood pressure (MAP) and left anterior descending (LAD) coronary artery cross sectional area. AVP was assumed to result in vasodilatation via activation of the endothelial nitric oxide system. The purpose of the present study was to assess the effects of AVP before and after NO-inhibition. Nine domestic pigs were instrumented for measurement of haemodynamic variables using micromanometer-tipped catheters, and measurement of LAD coronary artery cross sectional area employing intravascular ultrasound (IVUS). Haemodynamic variables, LAD coronary artery cross sectional area and cardiac output were measured at baseline, 90 s and 5, 15, and 30 min after AVP (0.4 U kg (-1) IV) before and after blockade of nitric oxide synthase with N(G)-nitro L-arginine methyl ester (L-NAME). Compared with baseline, AVP significantly increased MAP after 90 s (89+/-4 versus 160+/-5 mm Hg), increased LAD coronary artery cross sectional area (11.3+/-1 versus 11.8+/-1 mm(2)) and decreased cardiac index (138+/-6 versus 53+/-6 mL/min kg(-1)). After blockade of nitric oxide synthase, AVP significantly increased MAP after 90 s (135+/-4 versus 151+/-3 mm Hg), increased LAD coronary artery cross sectional area (8.7+/-1 versus 8.9+/-1 mm(2)), and significantly decreased cardiac index (95+/-6 versus 29+/-4 mL/min kg (-1)). IMPLICATIONS: During sinus rhythm, AVP increased MAP and LAD coronary artery cross sectional area, but decreased cardiac index.  相似文献   

2.
OBJECTIVE: Direct measurement of brain tissue oxygenation (PbtO2) is established during spontaneous circulation, but values of PbtO2 during and after cardiopulmonary resuscitation (CPR) are unknown. The purpose of this study was to investigate: (1) the time-course of PbtO2 in an established model of CPR, and (2) the changes of cerebral venous lactate and S-100B. METHODS: In 12 pigs (12-16 weeks, 35-45 kg), ventricular fibrillation (VF) was induced electrically during general anaesthesia. After 4 min of untreated VF, all animals were subjected to CPR (chest compression rate 100/min, FiO2 1.0) with vasopressor therapy after 7, 12, and 17 min (vasopressin 0.4, 0.4, and 0.8 U/kg, respectively). Defibrillation was performed after 22 min of cardiac arrest. After return of spontaneous circulation (ROSC), the pigs were observed for 1h. RESULTS: After initiation of VF, PbtO2 decreased compared to baseline (mean +/- SEM; 22 +/- 6 versus 2 +/- 1 mmHg after 4 min of VF; P < 0.05). During CPR, PbtO2 increased, and reached maximum values 8 min after start of CPR (25 +/- 7 mmHg; P < 0.05 versus no-flow). No further changes were seen until ROSC. Lactate, and S-100B increased during CPR compared to baseline (16 +/- 2 versus 85 +/- 8 mg/dl, and 0.46 +/- 0.05 versus 2.12 +/- 0.40 microg/l after 13 min of CPR, respectively; P < 0.001); lactate remained elevated, while S-100B returned to baseline after ROSC. CONCLUSIONS: Though PbtO2 returned to pre-arrest values during CPR, PbtO2 and cerebral lactate were lower than during post-arrest reperfusion with 100% oxygen, which reflected the cerebral low-flow state during CPR. The transient increase of S-100B may indicate a disturbance of the blood-brain-barrier.  相似文献   

3.
Because of the possibility of vasopressin-mediated coronary vasospasm, this study was designed to assess effects of vasopressin compared to saline placebo on left anterior descending (LAD) coronary artery blood flow. Twelve anaesthetized domestic swine were prepared for LAD coronary artery blood flow measurement with ultrasonic flow probes, using cardiopulmonary by-pass adjusted to 10% of the prearrest cardiac output. This 10% value approximates that reported for cardiac output during conventional closed-chest CPR. After 4 min of untreated ventricular fibrillation, and 3 min of cardiopulmonary by-pass blood flow, 12 pigs were randomly assigned to receive intravenously, every 5 min, either vasopressin (0.4, 0.4, and 0.8 U/kg; n = 6) or saline placebo (n = 6). The mean +/- S.D. LAD coronary artery blood flow in the vasopressin and placebo pigs was comparable before cardiac arrest, and during cardiopulmonary by-pass low flow; but increased significantly (P < 0.05) 90 s after each of three vasopressin injections compared to placebo (78 +/- 1 versus 42 +/- 2 ml/min; 62 +/- 2 versus 36 +/- 1 ml/min; and 54 +/- 1 versus 27 +/- 1 ml/min), respectively. Coronary vascular resistance decreased significantly (P < 0.05 ) 90 s after each of three vasopressin and placebo injections. In this model, repeated bolus administration of vasopressin, given during simulated extremely low cardiac output improved LAD coronary artery blood flow to prearrest levels without affecting coronary vascular resistance. Conclusions: during extremely low blood flow using cardiopulmonary by-pass, vasopressin improves LAD coronary artery blood flow without affecting coronary vascular resistance.  相似文献   

4.
OBJECTIVE: Intravenous administration of vasopressin during cardiopulmonary resuscitation (CPR) may be more effective than optimal doses of epinephrine. The main purpose of this study was to determine whether intraosseous vasopressin achieves serum drug levels comparable with intravenous doses during CPR and, additionally, to evaluate the effects of intraosseous vasopressin during CPR. DESIGN: Prospective, randomized laboratory investigation using an established porcine model with instrumentation for measurement of hemodynamic variables, blood gases, and return of spontaneous circulation. SETTING: University hospital laboratory. SUBJECTS: Twelve domestic pigs. INTERVENTIONS: After 4 mins of untreated ventricular fibrillation and 3 mins of CPR, 12 pigs were randomized to be treated with intravenous administration of vasopressin (0.8 unit/kg vasopressin; n = 6) or intraosseous vasopressin (0.8 unit/kg vasopressin; n = 6). Defibrillation was performed 5 mins after drug administration to attempt the return of spontaneous circulation. MEASUREMENTS AND MAIN RESULTS: At both 90 secs and 5 mins after drug administration, intravenous and intraosseous administration of vasopressin resulted in comparable mean (+/-SEM) coronary perfusion pressure (43+/-4 vs. 44+/-3 and 30+/-2 vs. 37+/-2 mm Hg, respectively) and vasopressin plasma concentrations (13,706+/-1,857 vs. 16,166+/-3,114 pg/mL and 10,372+/-883 vs. 8246+/-2211 pg/mL, respectively). All animals in both groups were successfully resuscitated; pigs that received intraosseous vasopressin had a significantly higher (p < .05) mean arterial (92+/-6 vs. 129+/-12 mm Hg) and coronary perfusion pressure (84+/-11 vs. 119+/-11 mm Hg) at 5 mins of return of spontaneous circulation. CONCLUSIONS: Intraosseous vasopressin resulted in comparable vasopressin plasma levels, hemodynamic variables, and return of spontaneous circulation rates as did intravenous vasopressin. Intraosseous vasopressin may be an alternative for vasopressor administration during CPR, when intravenous access is delayed or not available.  相似文献   

5.
In animal models, vasopressin improves short-term outcome after cardiopulmonary resuscitation (CPR) for ventricular fibrillation compared to placebo, and improves myocardial and cerebral hemodynamics during CPR compared to epinephrine. This study was designed to test the hypothesis that vasopressin would improve 24-h neurologically intact survival compared to epinephrine. After a 2-min untreated ventricular fibrillation interval followed by 6 min of simulated bystander CPR, 35 domestic swine (weight, 25+/-1 kg) were randomly provided with a single dose of vasopressin (20 U or approximately 0.8 U kg(-1) intravenously) or with epinephrine (0.02 mg kg(-1) intravenously every 5 min). Ten minutes after initial medication administration (18 min after induction of ventricular fibrillation), standard advanced life support was provided, starting with defibrillation. Animals that were successfully resuscitated received 1 h of intensive care support and were observed for 24 h. Coronary perfusion pressures were higher in the vasopressin group 2 and 4 min after vasopressin administration (28+/-2 versus 18+/-1 mm Hg, P<0.01, and 26+/-3 versus 18+/-2 mm Hg, P<0.05, respectively). The vasopressin group tended to be successfully defibrillated on the first attempt more frequently (8/18 versus 3/17, P = 0.15). Return of spontaneous circulation (ROSC) was attained in 12/18 (67%) vasopressin-treated pigs versus 8/17 (47%) epinephrine-treated pigs, P = 0.24. Twenty-four hour neurologically normal survival occurred in 11/18 (61%) versus 7/17 (41%), respectively, P = 0.24. In conclusion, vasopressin administration during CPR improved coronary perfusion pressure, but did not result in statistically significant outcome improvement.  相似文献   

6.
Mean fibrillation frequency may predict defibrillation success during cardiopulmonary resuscitation (CPR). N(alpha)-histogram analysis should be investigated as an alternative. After 4 min of cardiac arrest, and 3 versus 8 min of CPR, 25 pigs received either vasopressin or epinephrine (0.4, 0.4, and 0.8 U/kg vasopressin versus 45, 45, and 200 microg/kg epinephrine) every 5 min with defibrillation at 22 min. Before defibrillation, the N(alpha)-parameter histogramstart/histogramwidth and the mean fibrillation frequency in resuscitated versus non-resuscitated pigs were 2.9+/-0.4 versus 1.7+/-0.5 (P=0.0000005); and 9.5+/-1.7 versus 6.9+/-0.7 (P=0.0003). During the last minute prior to defibrillation, histogramstart/histogramwidth of > or =2.3 versus mean fibrillation frequency > or =8 Hz predicted successful defibrillation with subsequent return of a spontaneous circulation for more than 60 min with sensitivity, specificity, positive predictive value and negative predictive value of 94 versus 82%, 96 versus 89%, 98 versus 93% and 90 versus 74%, respectively. We conclude, that N(alpha)-analysis was superior to mean fibrillation frequency analysis during CPR in predicting defibrillation success, and distinction between vasopressin versus epinephrine effects.  相似文献   

7.
BACKGROUND: Hyperventilation during cardiopulmonary resuscitation (CPR) is harmful. METHODS: We tested the hypotheses that, during CPR, 2 breaths/min would result in higher cerebral perfusion pressure and brain-tissue oxygen tension than 10 breaths/min, and an impedance threshold device (known to increase circulation) would further enhance cerebral perfusion and brain-tissue oxygen tension, especially with 2 breaths/min. RESULTS: Female pigs (30.4 +/- 1.3 kg) anesthetized with propofol were subjected to 6 min of untreated ventricular fibrillation, followed by 5 min of CPR (100 compressions/min, compression depth of 25% of the anterior-posterior chest diameter), and ventilated with either 10 breaths/min or 2 breaths/min, while receiving 100% oxygen and a tidal volume of 12 mL/kg. Brain-tissue oxygen tension was measured with a probe in the parietal lobe. The impedance threshold device was then used during an 5 additional min of CPR. During CPR the mean +/- SD calculated coronary and cerebral perfusion pressures with 10 breaths/min versus 2 breaths/min, respectively, were 17.6 +/- 9.3 mm Hg versus 14.3 +/- 6.5 mm Hg (p = 0.20) and 16.0 +/- 9.5 mm Hg versus 9.3 +/- 12.5 mm Hg (p = 0.25). Carotid artery blood flow, which was prospectively designated as the primary end point, was 65.0 +/- 49.6 mL/min in the 10-breaths/min group, versus 34.0 +/- 17.1 mL/min in the 2-breaths/min group (p = 0.037). Brain-tissue oxygen tension was 3.0 +/- 3.3 mm Hg in the 10-breaths/min group, versus 0.5 +/- 0.5 mm Hg in the 2-breaths/min group (p = 0.036). After 5 min of CPR there were no significant differences in arterial pH, PO2, or PCO2 between the groups. During CPR with the impedance threshold device, the mean carotid blood flow and brain-tissue oxygen tension in the 10-breaths/min group and the 2-breaths/min group, respectively, were 102.5 +/- 67.9 mm Hg versus 38.8 +/- 23.7 mm Hg (p = 0.006) and 4.5 +/- 6.0 mm Hg versus 0.7 +/- 0.7 mm Hg (p = 0.032). CONCLUSIONS: Contrary to our initial hypothesis, during the first 5 min of CPR, 2 breaths/min resulted in significantly lower carotid blood flow and brain-tissue oxygen tension than did 10 breaths/min. Subsequent addition of an impedance threshold device significantly enhanced carotid flow and brain-tissue oxygen tension, especially in the 10-breaths/min group.  相似文献   

8.
Cerebral blood flow (CBF) during cardiopulmonary resuscitation and after restoration of spontaneous circulation (ROSC) from cardiac arrest has previously been measured with the microspheres and laser Doppler techniques. We used positron emission tomography (PET) with [15O]--water to map the haemodynamic changes after ROSC in nine young pigs. After the baseline PET recording, ventricular fibrillation of 5 min duration was induced, followed by closed-chest cardiopulmonary resuscitation (CPR) in conjunction with IV administration of three bolus doses of adrenaline (epinephrine). After CPR, external defibrillatory shocks were applied to achieve ROSC. CBF was measured at intervals during 4h after ROSC. Relative to the mean global CBF at baseline (32+/-5 ml hg(-1)min(-1)), there was a substantial global increase in CBF at 10 min, especially in the diencephalon. This was followed by an interval of cortical hypoperfusion and a subsequent gradual return to baseline values.  相似文献   

9.
Wang J  Weil MH  Tang W  Chang YT  Huang L 《Resuscitation》2007,72(3):477-483
OBJECTIVE: The present study was undertaken to compare an animal model of electrically induced VF with ischemically induced VF. In a preponderance of models of cardiac arrest and resuscitation in intact animals, ventricular fibrillation (VF) is induced by an alternating current delivered directly to the epicardium or endocardium. Yet, the applicability of such animal models has been challenged for it is not an electrical current alone but rather a current generated in the ischemic myocardium that triggers VF. Accordingly, a potentially more clinically relevant model was investigated in which spontaneous VF followed acute myocardial ischemia. METHODS: Twenty anesthetized pigs were randomized to either electrical fibrillation or myocardial ischemia following transient occlusion of the left anterior descending (LAD) coronary artery. RESULTS: VF was untreated for 7 min in both models after which mechanical ventilation and precordial compression were begun. Defibrillation was attempted after 5 min of CPR in both groups. VF appeared within 5.7+/-2.0 min of LAD occlusion. CONCLUSIONS: A significant increase in the number of post-resuscitation premature ventricular beats and recurrent VF followed ROSC and a significantly greater number of shocks was required for restoration of spontaneous circulation (ROSC) after LAD occlusion. Nevertheless, early post-resuscitation myocardial dysfunction, neurological recovery and 72 h survival were indistinguishable between the two models.  相似文献   

10.
OBJECTIVES: To compare immediate countershocks (defibrillation 1st) with precountershock cardiopulmonary resuscitation (CPR 1st) for prolonged ventricular fibrillation (VF). DESIGN: Randomized, controlled trial. SETTING: University animal laboratory. SUBJECTS: Thirty swine (27 +/- 1 kg). INTERVENTIONS: After 8 mins of untreated ventricular fibrillation, swine were randomly assigned to receive either immediate countershocks or CPR for 90 secs followed by countershocks. MEASUREMENTS AND MAIN RESULTS: After the first set of shocks, nine of 15 CPR 1st animals attained return of spontaneous circulation vs. 0 of 15 defibrillation 1st animals (p <.001), and pulseless electrical activity occurred in only one of 15 CPR 1st animals vs. ten of 15 defibrillation 1st animals (p <.01). The ultimate outcomes in the two groups were not different: Return of spontaneous circulation and 24-hr survival occurred in 15 of 15 CPR 1st and 13 of 15 defibrillation 1st animals. Good neurologic outcome at 24 hrs occurred in 12 of 15 CPR 1st and nine of 15 defibrillation 1st animals. None of the animals was successfully resuscitated with defibrillation alone; all successfully resuscitated animals were provided with chest compressions during the resuscitation.The ventricular fibrillation median frequency by fast Fourier transformation decreased during the untreated ventricular fibrillation interval in both groups (9.7 +/- 0.3 Hz and 10.1 +/- 0.2 Hz after 1 min vs. 8.8 +/- 0.3 Hz and 8.9 +/- 0.5 Hz at 8 mins, respectively). Because the ventricular fibrillation median frequency substantially increased after CPR 1st, it was much higher in the CPR 1st group before the first shock (15.1 +/- 0.9 Hz vs. 8.9 +/- 0.5 Hz, p <.001). The ventricular fibrillation median frequency before the first countershock was much higher in the animals that attained return of spontaneous circulation after the first set of shocks vs. those that did not (16.1 +/- 1.3 Hz vs. 10.0 +/- 0.6 Hz, p <.0001) CONCLUSIONS: Precountershock CPR can result in substantial physiologic benefits and superior response to initial defibrillation attempts compared with immediate defibrillation in the setting of prolonged ventricular fibrillation.  相似文献   

11.
OBJECTIVE: This study was designed to assess the effects of a phased chest and abdominal compression-decompression cardiopulmonary resuscitation (CPR) device, Lifestick, vs. standard CPR on vital organ blood flow in a porcine CPR model. DESIGN: Prospective, randomized laboratory investigation using an established porcine model with instrumentation for measurement of hemodynamic variables, vital organ blood flow, blood gases, and return of spontaneous circulation. SETTING: University hospital research laboratory. SUBJECTS: Twelve domestic pigs. INTERVENTIONS: After 4 mins of untreated ventricular fibrillation, either the Lifestick CPR device (n = 6) or standard CPR (n = 6) was started and maintained for an additional interval of 6 mins before attempting defibrillation. MEASUREMENTS AND MAIN RESULTS: During CPR, but before epinephrine, use of the Lifestick CPR device resulted in significantly higher (p < .05) mean (+/- SD) coronary perfusion pressure (23+/-9 vs. 10+/-7 mm Hg), cerebral perfusion pressure (29+/-11 vs. 18+/-10 mm Hg), mean arterial pressure (49+/-10 vs. 36+/-13 mm Hg), end-tidal carbon dioxide (32+/-11 vs. 20+/-7 mm Hg), left ventricular myocardial blood flow (44+/-19 vs. 19+/-12 mL x min(-1) x 100 g(-1)), and total cerebral blood flow (29+/-10 vs. 14+/-12 mL x min(-1) x 100 g(-1)). After 45 microg/kg epinephrine, hemodynamic and vital organ blood flow variables increased to comparable levels in both groups. CONCLUSIONS: Compared with standard CPR, the Lifestick CPR device increased significantly hemodynamic variables and vital organ blood flow during CPR before epinephrine administration.  相似文献   

12.
INTRODUCTION: American Heart Association/American College of Cardiology guidelines recommend a compression-to-ventilation ratio (C/V ratio) of 15:2 during cardiopulmonary resuscitation (CPR) for out-of-the-hospital cardiac arrest. Recent data have shown that frequent ventilations are unnecessary and may be harmful during CPR, since each positive-pressure ventilation increases intrathoracic pressure and may increase intracranial pressure and decrease venous blood return to the right heart and thereby decrease both the cerebral and coronary perfusion pressures. HYPOTHESIS: We hypothesized that reducing the ventilation rate by increasing the C/V ratio from 15:2 to 15:1 will increase vital-organ perfusion pressures without compromising oxygenation and acid-base balance. METHODS: Direct-current ventricular fibrillation was induced in 8 pigs. After 4 min of untreated ventricular fibrillation without ventilation, all animals received 4 min of standard CPR with a C/V ratio of 15:2. Animals were then randomized to either (A) a C/V ratio of 15:1 and then 15:2, or (B) a C/V ratio of 15:2 and then 15:1, for 3 min each. During CPR, ventilations were delivered with an automatic transport ventilator, with 100% oxygen. Right atrial pressure, intratracheal pressure (a surrogate for intrathoracic pressure), aortic pressure, and intracranial pressure were measured. Coronary perfusion pressure was calculated as diastolic aortic pressure minus right atrial pressure. Cerebral perfusion pressure was calculated as mean aortic pressure minus mean intracranial pressure. Arterial blood gas values were obtained at the end of each intervention. A paired t test was used for statistical analysis, and a p value < 0.05 was considered significant. RESULTS: The mean +/- SEM values over 1 min with either 15:2 or 15:1 C/V ratios were as follows: intratracheal pressure 0.93 +/- 0.3 mm Hg versus 0.3 +/- 0.28 mm Hg, p = 0.006; coronary perfusion pressure 10.1 +/- 4.5 mm Hg versus 19.3 +/- 3.2 mm Hg, p = 0.007; intracranial pressure 25.4 +/- 2.7 mm Hg versus 25.7 +/- 2.7 mm Hg, p = NS; mean arterial pressure 33.1 +/- 3.7 mm Hg versus 40.2 +/- 3.6 mm Hg, p = 0.007; cerebral perfusion pressure 7.7 +/- 6.2 mm Hg versus 14.5 +/- 5.5 mm Hg, p = 0.008. Minute area intratracheal pressure was 55 +/- 17 mm Hg . s versus 22.3 +/- 10 mm Hg . s, p < 0.001. End-tidal CO(2) with 15:2 versus 15:1 was 24 +/- 3.6 mm Hg versus 29 +/- 2.5 mm Hg, respectively, p = 0.001. Arterial blood gas values were not significantly changed with 15:2 versus 15:1 C/V ratios: pH 7.28 +/- 0.03 versus 7.3 +/- 0.03; P(aCO(2)) 37.7 +/- 2.9 mm Hg versus 37.6 +/- 3.5 mm Hg; and P(aO(2)) 274 +/- 36 mm Hg versus 303 +/- 51 mm Hg. CONCLUSIONS: In a porcine model of ventricular fibrillation cardiac arrest, reducing the ventilation frequency during CPR by increasing the C/V ratio from 15:2 to 15:1 resulted in improved vital-organ perfusion pressures, higher end-tidal CO(2) levels, and no change in arterial oxygen content or acid-base balance.  相似文献   

13.
End-tidal carbon dioxide concentrations were measured prospectively in 12 cardiac arrest patients undergoing cardiopulmonary resuscitation (CPR) in an accident and emergency department. The end-tidal carbon dioxide (CO2) concentration decreased from a mean (+/- SD) of 4.55 +/- 0.88% 1 min after chest compression and ventilation was established, to values ranging from 2.29 +/- 0.84% at 2 min to 1.56 +/- 0.66% following 8 min of CPR. Spontaneous circulation was restored in five patients. This was accompanied by a rapid rise in end-tidal CO2 which peaked at 2 min (3.7 +/- 1.08%). Changes in end-tidal CO2 values were often the first indication of return of spontaneous cardiac output. There was a significant difference in the end-tidal CO2 in patients undergoing CPR before return of spontaneous circulation (2.63 +/- 0.32%) and patients who failed to develop spontaneous output (1.64 +/- 0.89%) (p < 0.001). We conclude that measurement of end-tidal CO2 concentration provides a simple and non-invasive method of measuring blood flow during CPR and can indicate return of spontaneous circulation.  相似文献   

14.
BACKGROUND: Synergistic effects of adrenaline (epinephrine) and vasopressin may be beneficial during cardiopulmonary resuscitation. However, it is unknown whether either adrenaline alone or an alternating administration of adrenaline and vasopressin is better for restoring vital organ perfusion following basic life support (BLS) according to the revised algorithm with a compression-to-ventilation (c/v) ratio of 30:2. MATERIAL AND METHODS: After 4min of ventricular fibrillation, and 6min of BLS with a c/v ratio of 30:2, 16 pigs were randomised to receive either 45microg/kg adrenaline, or alternating 45microg/kg adrenaline and 0.4U/kg vasopressin, respectively. RESULTS: Coronary perfusion pressure (mean+/-S.D.) 20 and 25min after cardiac arrest was 7+/-4 and 5+/-3mm Hg after adrenaline, and 25+/-2 and 14+/-3mm Hg after adrenaline/vasopressin (p<0.001 and <0.01 versus adrenaline), respectively. Cerebral perfusion pressure was 23+/-7 and 19+/-9mm Hg after adrenaline, and 40+/-10 and 33+/-7mm Hg after adrenaline/vasopressin (p<0.001 and <0.01 versus adrenaline), and cerebral blood flow was 30+/-10 and 27+/-11% of baseline after adrenaline, and 65+/-40 and 50+/-31% of baseline after adrenaline/vasopressin (p<0.05 versus adrenaline), respectively. Return of spontaneous circulation (ROSC) did not differ significantly between the adrenaline group (0/8) and the adrenaline/vasopressin group (3/8). CONCLUSION: Adrenaline/vasopressin resulted in higher coronary and cerebral perfusion pressures, and cerebral blood flow, while ROSC was comparable.  相似文献   

15.
BACKGROUND: To evaluate the effectiveness of a bolus application of pentoxifylline (PTXF) at the beginning of CPR in a standardized resuscitation animal model. METHODS AND RESULTS: In a laboratory model of cardiac arrest, 12 Wistar rats (382-413 g) were randomized into two groups. Both groups underwent 4 min of cardiopulmonary arrest induced by a transthoracic application of a fibrillating current of 10 mA. At the beginning of CPR, group one (n=6) received a bolus injection of 10 mg kg(-1) body weight PTXF versus sodium chloride in group two (controls: n=6). All animals developed a severe lactate acidosis during and after CPR but in PTXF treated animals acid-base values returned to baseline pattern. During return of spontaneous circulation (ROSC) in the PTXF group lactate concentration decreased from 13.4+/-2.1 to 1.9+/-0.7 mmol l(-1) within 60 min (P<0.01). In control animals, lactate values remained high (10.8+/-3.5 by 60 min, P<0.01). After bolus injection of PTXF pH increased from 6.93+/-0.06 to 7.29+/-0.13 within 60 min of ROSC versus 6.85+/-0.05 to 6.97+/-0.23 in sodium chloride treated animals (P<0.01). Within 5 min of ROSC, PTXF treated animals achieved higher oxygenation values (PTXF P(a)O(2)=216.9+/-62.5 mmHg, control 132. 2+/-15.1 mmHg, P<0.01). CONCLUSIONS: Administration of PTXF at the beginning of CPR improved macrocirculation, acid-base status and arterial oxygenation.  相似文献   

16.
BACKGROUND: Nitric oxide (NO) is a critical regulator of vascular tone, and signal transduction. NO is produced via three unique synthases (NOS); endothelial (eNOS), and neuronal (nNOS) are both constitutively expressed and inducible (iNOS) produced primarily after stimulation. NO has been implicated during and after ischemia reperfusion injury as both a detrimental and cardioprotective mediator. Since cardiopulmonary resuscitation (CPR) in ventricular fibrillation (VF) is a model of whole body ischemia reperfusion injury, it provides an opportunity to assess the effects of NO from the three NOS isoforms. OBJECTIVE: To determine the differential role of nitric oxide synthase isoforms inhibition in ventricular fibrillation CPR and investigate whether inhibition of the NOS isoforms afford any cardioprotection in this model. METHODS: Thirty-two pigs, weight range 25-35 kg, were assigned to four groups of eight animals each. The animals were randomized to receive (1) N(G)-nitro-L-arginine methyl ester (LNAME), a non-selective endothelial nitric oxide synthase inhibitor, (2) 1-(2-trifluoromethylphenyl) imidazole (TRIM), a selective neuronal NOS inhibitor, (3) aminoguanidine (AMINOG), a selective inducible NOS inhibitor or (4) saline control (Control) in equal volumes, 30 min before induction of ventricular fibrillation (VF). After 3 min VF with no intervention, the animals received standard chest compressions using an automated chest compression device (Thumper) for 15 min. After 18 min of VF, single doses of vasopressin and bicarbonate were given and defibrillation attempted. Hemodynamics, regional blood flows, and echocardiography and were performed, before and after drug infusion, during CPR, and after return of spontaneous circulation (ROSC). RESULTS: ROSC for 3 h occurred in 5/8 (63%), 1/8 (13%), 0/8 (0%), and 6/8 (75%) in Control, LNAME, TRIM, and AMINOG treated animals, respectively. After infusion of LNAME, there was a significant increase from baseline in blood pressure [127+/-6 mmHg versus 169+/-3 mmHg, p<0.002] and coronary perfusion pressure [119+/-6 mmHg versus 149+/-6 mmHg, p<0.003]. During CPR, there were no differences among groups in hemodynamics or regional blood flow. In surviving animals, AMINOG had significantly better myocardial function (left ventricular ejection fraction, fractional shortening, and wall motion score index) than control or LNAME treated animals, and attenuated the post-resuscitation hyperemic response in heart and brain. CONCLUSIONS: Intact basal nNOS activity is vital for survival from whole body ischemia reperfusion injury. iNOS inhibition prior to ischemia reperfusion, protects myocardial function after ROSC and decreases myocardial and brain hyperemic response after ROSC.  相似文献   

17.
Lindberg L  Liao Q  Steen S 《Resuscitation》2000,43(2):129-140
End-tidal CO2 concentration correlates with pulmonary blood flow during cardiopulmonary resuscitation and has been claimed to be a useful tool to judge the effectiveness of chest compression. A high concentration of end-tidal CO2 has been related to a better outcome. However, most authors have noticed a decrease in end-tidal CO2 concentration after administration of epinephrine, concomitant with an increase in coronary perfusion pressure and an increased incidence of return of spontaneous circulation. This study was performed to evaluate changes in end-tidal CO2 concentration after injection of vasopressors during cardiopulmonary resuscitation and to investigate the time-course of the response and possible explanations for it. After 1 min of electrically induced cardiac arrest and 5 min of chest compressions, 18 pigs were randomly assigned to receive 0.045 mg kg(-1) epinephrine, 0.045 mg kg(-1) norepinephrine or no drug. After another 4 min of chest compressions the pigs were defibrillated. End-tidal CO2, pulmonary blood flow and coronary perfusion pressure decreased immediately after the induction of cardiac arrest, increased slightly during chest compressions and increased initially to supernormal levels after the return of spontaneous circulation. Injection of epinephrine or norepinephrine during chest compressions decreased end-tidal CO2 51 +/- 2%, (mean +/- S.E.M.), and 43 +/- 1%, respectively, and pulmonary blood flow by 134 +/- 13 and 125 +/- 16%, respectively, within 1 min, simultaneously increasing coronary perfusion pressure from 10 +/- 2 to 45 +/- 5 mm Hg and from 11 +/- 1 to 38 +/- 5 mm Hg, respectively. The coronary perfusion pressure slowly fell, but the effects on end-tidal CO2 and pulmonary blood flow were prolonged. In conclusion, vasopressors increased coronary perfusion pressure and the likelihood of a return of spontaneous circulation, but decreased end-tidal CO2 concentration and induced a critical deterioration in cardiac output and thus oxygen delivery in this model of cardiopulmonary resuscitation.  相似文献   

18.
BACKGROUND AND HYPOTHESIS TESTED: The effects of adenosine (100 micrograms/kg/min; n = 7) were examined during rodent cardiopulmonary resuscitation (CPR). Change in coronary artery perfusion pressure, end-tidal PCO2, and arterial acid-base status of anesthetized, male, Sprague-Dawley rats were compared with CPR controls (0.9% sodium chloride; n = 7) and with sham controls (n = 9). Sustained ventricular fibrillation was induced and precordial chest compression was followed by defibrillation. RESULTS: After 6 mins of cardiac arrest, six (86%) of seven adenosine-treated animals were resuscitated after adenosine infusion and four (57%) of seven control animals were resuscitated after sodium chloride infusion. During chest compression, coronary artery perfusion pressure was 7 +/- 2 mm Hg after adenosine, but was 22 +/- 3 mm Hg in the controls (p less than .01). Parallel decreases were observed in mean aortic pressure. Arterial and end-tidal PCO2 significantly (p less than .01) decreased after adenosine. These changes contrasted with a second control group of nine identically prepared animals which, in the absence of ventricular fibrillation and subsequent chest compression, demonstrated no changes in hemodynamic, respiratory, or blood gas variables. CONCLUSIONS: Adenosine decreased coronary artery perfusion pressure. However, despite marked reductions in coronary artery perfusion pressure, survival was not compromised after adenosine infusion in this rodent model of CPR.  相似文献   

19.
BACKGROUND: Asphyxia is one of the most common causes of pediatric cardiac arrest, and becoming a more frequently recognized cause in adults. Periodic acceleration (pGz) is a novel method of cardiopulmonary resuscitation (CPR). pGz is achieved by rapid motion of the supine body headward-footward that generates adequate perfusion and ventilation during cardiac arrest. In a swine ventricular fibrillation cardiac arrest model, pGz produced a higher return of spontaneous circulation (ROSC), superior neurological outcome, less echocardiography evidence of post resuscitation myocardial stunning, and decreased indices of tissue injury. In contrast to standard chest compression CPR, pGz does not produce rib fractures. We investigated the feasibility of pGz in severe asphyxia cardiac arrest and assessed whether beneficial effects seen in the VF model of cardiac arrest could be realized. METHODS AND RESULTS: Sixteen swine weight 4+/-1 kg were anesthetized, tracheally intubated, and instrumented to measure, hemodynamics and echocardiography. Asphyxia was induced by occlusion of the tracheal tube. After loss of aortic pulsations (median time 10 min) animals were observed for three additional minutes following which all were in cardiac arrest. The animals were then randomized to receive 10 min of pGz or standard chest compression ventilation performed with a commercial device (Thumper). A single dose of epinephrine (adrenaline) and sodium bicarbonate were given and defibrillation attempted if appropriate for a maximum of 10 min. Both groups received fractional inspired O2 concentration of 100% during CPR and after resuscitation. Four animals in each group (50%) had an initial ROSC, however only two of the four initial survivors remained alive 3h after ROSC. There were no significant differences in blood pressure, coronary perfusion pressure during CPR and after early ROSC between groups. pGz treated animals had significantly lower pulmonary artery pressure; 20+/-4 mmHg compared to Thumper 46+/-5 mmHg, 30 min after ROSC (p<0.01). Surviving animals in both groups had severe myocardial dysfunction at 30 min after ROSC. At necropsy, 25% of the Thumper treated animals had rib fractures, while none occurred in the pGz group. CONCLUSIONS: In a lethal model of asphyxia cardiac arrest, pGz is equivalent to standard CPR, with respect to acute outcomes and resuscitation survival rates but is associated with significantly lower pulmonary artery pressures and does not produce traumatic rib fractures.  相似文献   

20.
OBJECTIVE: During spontaneous circulation, nonspecific inhibition of nitric oxide synthase by N(G)-nitro-L-arginine methyl ester (L-NAME) increases systemic vascular resistance and, therefore, mean arterial pressure. If this effect can be extrapolated to cardiopulmonary resuscitation (CPR), administering L-NAME during CPR may be beneficial by maintaining or even improving coronary perfusion pressure, and hence successful defibrillation. DESIGN: Prospective, randomized laboratory investigation using an established porcine model with instrumentation for hemodynamic variables, blood gases, and defibrillation attempt. SETTING: University medical center experimental laboratory. SUBJECTS: Ten domestic pigs. INTERVENTIONS: After 4 mins of ventricular fibrillation, ten animals were randomly assigned to receive L-NAME (25 mg/kg; n = 5) or saline placebo (n = 5) (given in two doses) after 3 and 13 mins of CPR, respectively. Defibrillation was provided 5 mins after the second dose of active drug or placebo. MEASUREMENTS AND MAIN RESULTS: Mean +/- sem coronary perfusion pressure was significantly (p < .05) higher 90 secs (27 +/- 3 vs. 17 +/- 3 mm Hg), 10 mins (28 +/- 3 vs. 14 +/- 2 mm Hg), and 15 mins (21 +/- 5 vs. 7 +/- 3 mm Hg) after the first L-NAME administration compared with saline placebo. Mean +/- sem coronary perfusion pressure remained significantly higher 90 secs and 5 mins after the second L-NAME vs. saline placebo administration (19 +/- 4 vs. 6 +/- 4 mm Hg, and 17 +/- 3 vs. 4 +/- 4 mm Hg). After 22 mins of cardiac arrest, including 18 mins of CPR, four of five pigs in the L-NAME group were successfully defibrillated, and survived the 60-min postresuscitation phase. In the placebo group, none of five pigs could be defibrillated successfully (p < .05). CONCLUSIONS: Nonspecific blockade of nitric oxide synthase with L-NAME during CPR was associated with an increase in coronary perfusion pressure and resulted in significantly better initial resuscitation when compared with saline placebo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号